高等数学-习题答案-方明亮-第十一章
- 格式:doc
- 大小:4.38 MB
- 文档页数:52
高等数学-习题答案-方明亮-第四章习题4-11.求下列不定积分:(1)解:(1某某12355某某)d某(某某5某2)d某2某2某2C(2)解:(23)d某某242ln226某ln69某2ln3C(3)略.(4)解:(1某12cot2某)d某1某12d某(cc2某1)d某=arcin某cot某某C(5)解:102d某108d某80d某某3某某某某80某ln8012C(6)解:in(7)co2某2某2d某=21(1co某)d某212某in某Cco某in某d某co某in2某co某in某co2d某(cod某某in某)d某in某co某C(8)解:co2某co2某in2某d某某in22某co某in2某(1in2某1co2某)d某cot某tan某C(9)解:ec某(ec某tan某)d某ec2某d某ec某tan某d某tan某ec某C某,某1(10)解:设f(某)ma某{1,某},则f(某)1,1某1.某,某1f(某)在(,)上连续,122某C1,某11某1又F(某)须处处连续,有F(某),F(某)某C2,1某2C3,某1212某C1),即1C2122则必存在原函数某1lim(某C2)lim(某112C1,某1lim(12某C3)lim(某C2),即某12C31C2,.联立并令C1C,可得C212+C,C31C.122某C,某11故ma某{1,某}d某某C,1某1.212某12某1C,2.解:设所求曲线方程为yf(某),其上任一点(某,y)处切线的斜率为从而ydyd某某3,某d某314某C4由y(0)0,得C0,因此所求曲线方程为y3.解:因为1in2214某4.1某in某co某,co22某co某in某11co2某in2某in某co某24所以in2某、2112co2某、14co2某都是in某co某的原函数.习题4-21.填空.(1)1某2d某=d(1某+C)(2)d某=d(ln某+C)某1(3)e某d某=d(e某+C)(4)ec2某d某=d(tan某+C)(5)in某d某=d(co某+C)(6)co某d某=d(in某+C)(7)11某2d某=d(arcin某+C)(8)某1某1某122d某=d(1某2+C)(9)tan某ec某d某=d(ec某+C)(10)d某=d(arctan某+C)2(11)1(某1)某d某=d(2arctan某+C)(12)某d某=d(某22+C)2.求下列不定积分:(1)解:某某412d某1某42d(某422)12(某4)212d(某4)2(某24)2Cln42某4C(2)解:某某1d某ln1某4某d(ln某)ln5某5C(3)解:e某某2d某ed(1某1)e某C13e3某(4)解:(e2某2e3某2)e某d某(e2某2e3某2)d(e某)d某49某212e4某2eC某(5)解:d某21(3某2)213d(3某2))2131(3某2arcin3某2C(6)解:(7)解:(8)解:1ln某(某ln某)12d某(某ln1某)2d(某ln某)1某ln某C1d(lnln某)lnlnln某C某ln某lnln某1ee4某某d某ln12某1某lnln某某d(ln某)lnln某某d某e1d(e)arctaneC2(9)解:co某d某((41co2某2co2某42)d某212co2某co2某41co4某2d某1co2某2)d某某in2某4d某3某in2某4in4某4C12(10)解:3in某co某in某co某3d某3in某co某d(in某co 某)2(in某co某)3C(11)解:co某d某co某co某d某1in某d(in某)in某22in3某3C 3(12)解:10arcco某d某10arcco某1某210arcco某d(arcco某)ln10C(13)解:arcin某2某1某2darcin某d(arcin某)arcin某2C(14)解:co某1in某d某in 某d(in某)2in某C(15)解:arctan某d某2某某某(1某)arctan1某d某2arctan1(某)2d(某)2arctan某d(arctan某)(arctan某)2C(16)解:in3某co5某d某in2某co5某dco某(1co2某)co5某dco 某118co8某6co6某C(17)解:tan3某ec5某d某tan2某ec4某dec某(ec2某1)ec4某dec某117ec某7某55ec某C(18)解:co5某in4某d某in9某in某2d某118co9某12co某C(19)解:tan3某ec4某d某tan3某ec2某dtan某tan3某(tan2某1)dtan某16156tan某某4tan某C(20)解:令6某t,则某t6,d某6t5dt,代入原式得21某(13某)d某15t3(1t2)6tdt6t11t21dt6t6arctantC=66某6arctan6某C(21)解:令某ect,t[0,2],d某ecttantdt,则1tdt某某2d某11ecttantecttandttC=arcco1某C1(22)解:1某21某2d某1d(1某d(1)某(12某)某)1(1)2某某142112()1某d((1某)1)2()12某2121某某2C习题4-3求下列不定积分(1)解:某in2某d某某2co2某1214某d(co2某)某2co2某1co2某d某2in2某C(2)解:某e某d某某de某某e某e某d某某e某e某C(3)解:某ln某d某ln某d(2某33)某33ln某某33d(ln某)某33ln某某23d某某33ln某某39C(4)略.(5)解:某2co某d某某2din某某2in某in某d某2某2in某2某in某d某某in某222某dco某某in某2某co某2co某d某2某in某2某co某2in某C(6)解:因为e某in2某d某in2某de 某e某in2某e某d(in2某)ee某in2某2co2某d(ein2某2e某某)e某in2某2e某co2某2e某d(co2某)某某co2某4ein2某d某某C于是e某in2某d某e某in2某2e5某3co2某(7)解:某arctan 某d某arctan某d23某33arctan某某33darctan某某33某3arctan某131某2某32d某某33arctan某13某某某1某23d某3arctan某13某ln(1某)C25(8)解:某co某d某某21co2某2d某12(某某co2某)d某1某241某co2某d某2某24某214某din2某某2414某in2某in42某d某414某in2某18co2某C(9)解:1某arcin某d某2arcin某d某2某arcin某2某darcin某2某arcin某111某d某2某arcin某21某C(10)解:某ed某23某3某de23某某e33某23某23e3某某e3某d某某e323某某de923某某e323某29某e227C(11)解:因为coln某d某某coln某某dcoln某某coln某inln某d某某coln某某inln某某dinln某coln某d某C某coln某某inln某于是coln某d某某coln某某inln某2(12)解:某f(某)d某某df(某)某f(某)f(某)d某某f(某)f(某)C 习题4-4求下列不定积分(1)解:某3某3某1某2d某某11某13d某(某某1)d某2某1d某1325某ln某1C(2)解:某某8某某34d某(某2某1)d某某某8某某32d某6(某某1)d某(某328某4某13某1)d某3某222某8ln某4ln某13ln某1C(3)解:2某2某13(某2)(某1)122d某某2121d某某2某132d某(某23某421)2d某ln某22d(某1)某1222某1d某2(某d(某1)221)(某421)2d某ln某212ln(某1)2arctan某232(某1)22某某122arctan某C(上式最后一个积分用积分表公式28)(4)解:6某11某4某(某1)22d某1[4某2某11(某1)22]d某1某14ln某2ln某1某某某某11432某1C2ln某(某1)C12(5)解:12d某(某1)(某12某21)d某12某1d某某某121d某ln某1d某3in2ln(某1)2d某2arctan某Cdu(6)解:某7co2某utan某34u213du1(23u)2123arctan2tan某3C(7)解:(8)解:d某131某t31某3tdt1t23(t111t)dt32ttlnt1C2 1某某1某d某t1某1某(t4t2221)(t1)dt(1t11t12t12)dtlnt1t12arctantC习题4-5利用积分表计算下列不定积分:7(1)d某54某某2解:因为d某d(某2)54某某21(某2)2在积分表中查得公式(73)d某22C某2a2ln(某某a)现在a1,某某2,于是d某ln(某54某某22)C54某某2(2)ln3某d某lnn某d某某(ln某)nnlnn1某d某现在n3,重复利用此公式三次,得ln3某d某某ln3某3某ln2某6某ln某6某C.(3)1(1某2)2d某解:在积分表中查得公式(28)11d某(ba某2)2d某某2b(a某2b)2ba某2b于是现在a1,b1,于是11d某某(1某2)2d某某2(某21)2某212(某2某1)arctanC(4)d某某某2 1解:在积分表中查得公式(51)1d某1a某某2aaarcco某C于是现在a1,于是d某1某某2arcco1某C8(5)某2某22某d某解:令t某1,因为某2某22某d某某2(某1)21d某(t22t1)t21dt由积分表中公式(56)、(55)、(54)某2某2a2d某某2222a2228(2某a)某a8ln某某aC某某2a2d某12233(某a)C某2a2d某某222某2aa22ln某某2aC于是某2某22某d某某12228[2(某1)a)(某1)a225a1(某1)2a2128ln某3[(某1)a2]3C(6)d某某22某1解:在积分表中查得公式(16)、(15)d某a某bad某某2a某bb某2b某a某bd某2arctana某ba某bbbC某于是现在a2,b1,于是d某某122某1d某某2某1某某2某12某2arctan2某1C(7)co6某d某con某d某1n1nco某in某n1n2nco某d某现在n6,重复利用此公式三次,得co6某d某153in某15(1某6co某in某524co某244in2某2)C.(8)e2某in3某d某.9解:在积分表中查得公式(128)eea某inb某d某1ab22ea某(ainb某bcob某)C现在a2,b3,于是2某113e113a某in3某d某(2in3某3co3某)Ca某.e(2in3某3co3某)C本章复习题A一、填空.(1)已知F(某)是in某某的一个原函数,则d(F(某))=22in某某2d某.(2)已知函数yf(某)的导数为y2某,且某1时y2,则此函数为y某1.2(3)如果f(某)d某某ln某C,则f(某)=ln某1.(4)已知f(某)d某in某某C,则e某f(e某1)d某=in(e某1)e某1C.(5)如果f(in某)co某d某in2某C,则f(某)=2某.二、求下列不定积分.1co2(1)解:某1co2某d某12co1co22某某1d某121coco22某某d某(1ec2某)d某某tan某Ce某(2)解:d某1e某1ed某某d(e某1)某1eln(e1)C某3某2()某某某某223523某145Cd某2()d某5()d某(3)解:某42ln3ln4ln24(4)解:(arcin某)2d某某arcin2某2arcin某某1某2d 某10某arcin2某2arcin某d1某2某arcin2某21某2arcin某21某2darcin某某arcin2某21某2arcin某2某C(5)解:令t某1,则某t21,于是d某2tdt2dt1)dtlnt1某某1(t21)tt21(1t1t1t1C3(6)解:某某(1某2)2d某[某某1某2(1某2)2]d某1某2d某某(1某2)2d某1ln(1某2)122(1某2)C(7)解:d某1C(arcin某)21某2(arcin某)2d(arcin某)arcin某(8)解:1某某1d某d某94某2d94某2某94某23132d(2某)114某2)1(223894某2d(93某)12arcin2某13494某2C(9)解:tan5某ec4某d某tan4某ec3某dec某(ec2某1)2ec3某dec某86(ec7某2ec5某ec3某)dec某ec某8ec某ec4某34C(10)解:令某int,t(π2,π2),于是d某cotdt1dtd(t11某21cot1cot1cotdtt1cott2)co2t211ttant22inCarcin某2co2t2tinint2Carcin某1t21某某某22C(11)解:某3e某d某1某de2某22212某21某ee某d某21某e21e某2C22222(12)解:lnln某某d某lnln某dln某lnln某C1,某0三、设f(某)某1,0某1,求f(某)d某.2某,某1解:f(某)在(,)上连续,则必存在原函数F(某),使得某C1,某0F(某)12某2某C2,0某1,某1某2C3,又F(某)须处处连续,有lim1(某C1)lim某2某C,即C某00(某22)1C2,lim某2Clim12C3某1(3)(某某某122),即1C32C2联立并令C11C,可得C22+C,C31C.某C,.某0故f(某)d某12某2某C,0某1.某1某212C,四、若Intann某d某,n2,3,,证明:I1n1nn1tan某In2.证明:因为12Intantan1n某d某某ec2tann2某tan2某d某tann2某(ec2某1)d 某n2某d某tann2某d某tann2某dtan某tann2某d某n1tann1某In2故In1n1tann1某In2.本章复习题B一、填空.(1)12e某1某;(2)某213某c;(3)34155某2433某2c1某c2(4)(2某21)e某c二、求下列不定积分.arctanee2某某(1)d某解:arctanee2某某d某12arctanede某2某=[e2某arctane某2111(e)某e2某1e2某d某]=[e212某arctane某(1e某e某2某1e)d某]=12(e2某arctanee某某arctane)C某。
习题11-11.答案:略.2.答案:略.3. 答案(1).发散,(2) 收敛,(3) 收敛, (4) 收敛.4.答案(1)发散(2)发散(3)收敛 (4)发散(5)发散 (6)收敛(7)发散 (8)发散5.证略.习题 11-21. (1)收敛(2)收敛(3)发散 (4)收敛 (5)发散 (6)收敛 (7)收敛(8)当1≤a 时,发散;当1>a 时收敛2.(1)收敛(2)收敛(3)发散 (4)收敛(5)收敛(6)收敛(7)发散 (8)收敛3. (1) 收敛(2) 收敛(3) 收敛(4)当1<a b ,收敛;当1>a b ,发散;1=ab ,即a b =时,可能收敛也可能发散.4. (1).绝对收敛;(2).条件收敛;(3) 绝对收敛;(4).条件收敛;(5)绝对收敛.(6)发散.(7)绝对收敛.(8) 条件收敛;.5. [1,1)-.6.当1p ≤时,原级数条件收敛, 当1p >时,原级数绝对收敛.习题11.3一、(1)22<≤-x (2)0≠x (3)2121≤≤-x (4)2121<<-x (5)e x e <<-(6)2=x (7)02≤≤-x (8)02≤<-x (9)) , (∞+∞-二、(1).()()2111x x x x f -='⎪⎭⎫ ⎝⎛-=,1||<x . (2).)1ln()1(11x n x n n n +=-∑∞=-).11(≤<-x (3).1221(1)2arctan ln(1)(21)n n n x x x x n n -∞=-=-+-∑(||1).x <(4).3)1(1)(x x x s -+=).1||(<x 三、(1)92 ;(2)⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛311ln 31s .23ln = (3)2711 ;(4)12. 习题11-41.(1)x 2sin ),(,)!2(2)2()1(121∞+-∞∈-=∑∞=-x n x n n n (2)]1,1(,)1()1()1ln()1(111-∈+-+=++∑∞=++x x n n x x x n n n(3)=+21x x ∑∞=+⎪⎭⎫ ⎝⎛-+11222)!()!2(2)1(n n n x n n x ,)1,1(-∈x(4))3,3(,3)1()(21211-∈-=-ℵ=-∑x x x f n n n n 2.(1)=3x 2220)1()!)(2)(1(2)!2(3)1()1(231++∞=-++⋅-+-+∑n n n n x n n n n x ,]2,0[∈x (2)=x lg ∑∞=+∈-+-01]2,0(,)1(11)1(10ln 1n n n x x n 3. =x cos ∑∞=+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛π+++⎪⎭⎫ ⎝⎛π+-01223)!12(33)!2(1)1(21n n n n x n x n ,),(∞+-∞∈x 4.(1)1101111()(1)()(1),(13)1223n n n n n f x x x x x ∞++==-=----<<++∑ (2)21(1)21ln(23)ln 22ln3[()](3),(15)92n n n n n x x x x n ∞=-+-=+++-<≤∑习 题 11-5答案:1. ︒9sin 000646.0157080.0-≈,156434.0≈其误差不超过.105-2. .9926.22405≈3 .⎰10sin dx x x !551!3311⋅+⋅-≈.9461.0≈ 4.据欧拉公式有i e π=-1 .习题11-61.答案:略2. (1) ∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞). (2) }sin 2cos 21cos ]2sin 2)1(1{[41)(1x n n n x n n n n x f n n πππππ-++--+-=∑∞= (x ≠2k , 212+≠k x , k =0, ±1, ±2, ⋅ ⋅ ⋅). 3.(1).()∑∞=+--+=12114cos 1422cos n n n nx x ππ,()ππ≤≤-x 。
高等数学方明亮版第九章曲线积分与曲面积分习题详解习题9.11 计算下列对弧长的曲线积分:(1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A 到11(,)22B -之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2422cos (sin )cos I d ππθθθθ-=-+⎰241cos (1)2d ππθθ-==+⎰.(2)(1)Lx y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)L x y ds ++⎰(1)OA x y ds=++⎰(1)ABx y ds +++⎰(1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是2222()()10dx dy ds dx dx dx dx dx=+=+=,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA , 而:AB 1y x =-,01x ≤≤,于是2222()()1(1)2dx dy ds dx dx dx dx dx=+=+-=. 故10(1)[(1)1]222AB x y ds x x dx ++=+-+=⎰⎰,xyo(1,0)A (0,1)B xyoABC同理可知:BO 0x =(01y ≤≤),ds dy ===,则 13(1)[01]2BO x y ds y dy ++=++=⎰⎰.综上所述33(1)322L x y ds -+=+=+⎰. (3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Lx y ds d πθθ+=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示,2222 L AB BC CD x yzds x yzds x yzds x yzds =++⎰⎰⎰⎰. 线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故31220020BC x yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t ===+)10(≤≤t ,则2220215ds dt dt =++=,故11220812(2)525)53CDx yzds t t dt t t dt =⋅⋅+⋅=+=⎰⎰⎰ 2 (2,所以2222 853L AB BC CDx yzds x yzds x yzds x yzds =++=⎰⎰⎰⎰.(5)2Lx ds ⎰,L 为球面2221x y z ++=与平面0x y z ++=的交线。
11.3.2 直线与平面平行课程标准1.借助长方体,通过直观感知,了解空间中直线与平面的平行关系,归纳出以下性质定理,并加以证明.◆假如一条直线与一个平面平行,且经过这条直线的平面与这个平面相交,那么这条直线就与两平面的交线平行.2.从上述定义和基本领实动身,借助长方体,通过直观感知,了解空间中直线与平面的平行关系,归纳出以下判定定理.◆假如平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行.3.能用已获得的结论证明空间基本图形位置关系的简洁命题.4.重点提升直观想象、逻辑推理、数学运算和数学抽象素养.新知初探·自主学习——突出基础性教材要点学问点一直线与平面平行的定义位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点________公共点____________公共点________公共点符号表示________ ________ ________图形表示学问点二直线与平面平行的判定及性质定理条件结论图形语言符号语言判定____________的一条直线和________的一条直线平行这条直线和这个平面____________ l⇒l∥a性质一条直线和一个平面______,且经过这条直线的平面和这个平面______这条直线和这两平面的____平行⇒l∥m基础自测1.在正方体ABCD - A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D ②EF∥平面BC1D1③FG∥平面BC1D1④EG∥平面BC1D1其中推断正确的序号是( )A.①③B.①④C.②③D.②④2.若一条直线同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定3.如图,在正方体中ABCD - A1B1C1D1,E是棱CC1的中点.证明:AC1∥平面BDE.4.如图,在三棱锥S - ABC中,E,F分别是SB, SC上的点,且EF∥平面ABC,则( ) A.EF与BC相交B.EF∥BCC.EF与BC异面D.以上均有可能课堂探究·素养提升——强化创新性题型1 直线与平面的位置关系例1 下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的多数条直线.其中说法正确的个数为( )A.0个B.1个C.2个D.3个方法归纳空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在推断直线与平面的位置关系时,这三种情形都要考虑到,避开疏忽或遗漏.另外,我们可以借助空间几何图形,把要推断关系的直线、平面放在某些详细的空间图形中,以便于正确作出推断,避开凭空臆断.跟踪训练1 下列说法中,正确的个数是( )①假如两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②经过两条异面直线中的一条直线有一个平面与另一条直线平行;③两条相交直线,其中一条与一个平面平行,则另一条肯定与这个平面平行.A.0 B.1 C.2 D.3题型2 直线与平面平行的判定例2 如图,在棱长为a的正方体ABCD - A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.(1)求证:PQ∥平面DCC1D1.(2)求证:EF∥平面BB1D1D.状元随笔(1)充分借助于P,Q为中点这一条件,用三角形中位线的性质证明直线与直线平行.(2)要证明EF∥平面BB1D1D,须要在平面BB1D1D内找到与EF平行的直线,此直线与EF 构成平行四边形.方法归纳直线与平面平行的判定方法(1)利用定义:证明直线a与平面α没有公共点.这一点干脆证明是很困难的,往往借助图形说明或者依据语言叙述进行推断.(2)利用直线和平面平行的判定定理:a⊄α,a∥b,b⊂α,则a∥α.运用定理时,肯定要说明“不在平面内的一条直线和平面内的一条直线平行”,若不注明和平面内的直线平行,证明过程就不完整.应用判定定理证明线面平行的步骤上面的第一步“找”是证题的关键,其常用方法有:①空间直线平行关系的传递性法;②三角形中位线法;③平行四边形法;④成比例线段法.状元随笔线面平行判定定理应用的误区(1)条件排列不全,最易遗忘的条件是“直线在平面外”.(2)不能利用题目条件顺当地找到两平行直线.跟踪训练2 如图所示,P是▱ABCD所在平面外一点,E,F分别在PA,BD上,且PE∶EA =BF∶FD.求证:EF∥平面PBC.题型3 直线与平面平行的性质【思索探究】 1.如图,一块矩形木板ABCD的一边AB在平面α内,把这块木板绕AB 转动,在转动过程中,AB的对边CD(不落在α内)是否都和平面α平行?[提示] 平行.2.若直线l∥平面α,则l平行于平面α内的全部直线吗?[提示] 不是.3.若a∥α,过a与α相交的平面有多少个?这些平面与α的交线与直线a有什么关系?[提示] 若a∥α,则过a且与α相交的平面有多数个.这些平面与α的交线与直线a之间相互平行.例3 (1)如图,在正方体ABCD- A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________;(2)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ 是平行四边形.方法归纳判定定理与性质定理经常交替运用,即先通过线线平行推出线面平行,再通过线面平行推出线线平行,困难的题目还可以接着推下去,我们可称它为平行链,如下:线线平行线面平行线线平行.跟踪训练 3 (1)证明:若两个相交平面分别过两条平行直线,则它们的交线和这两条平行直线平行;(2)P为平行四边形ABCD所在平面外一点,M,N分别为AB,PC的中点,平面PAD∩平面PBC=l.①推断BC与l的位置关系,并证明你的结论;②推断MN与平面PAD的位置关系,并证明你的结论.状元随笔(1)由BC∥AD,可得BC∥平面PAD,再利用线面平行的性质定理可得BC∥l;(2)取PD的中点Q,连接AQ,NQ,可证四边形AMNQ为平行四边形,由线面平行的判定定理可得线面平行.教材反思1.本节课的重点是直线与平面平行的判定与性质.难点是运用直线与平面平行判定定理与性质定理证明有关问题.2.本节课要驾驭的规律方法(1)推断直线与平面的位置关系.(2)推断与证明直线与平面平行.3.本节课的易错点是运用直线与平面平行的推断与性质进行证明时条件排列不全面致错.11.3.2 直线与平面平行新知初探·自主学习[教材要点]学问点一有多数个有且只有一个没有a⊂αa=A a∥α学问点二平面外平面内平行l⊄αl∥m平行相交交线l⊂βα=m[基础自测]1.答案:A2.答案:C3.证明:连接AC交BD于O,连接OE,因为ABCD是正方形,所以O为AC的中点,因为E 是棱CC1的中点,所以AC1∥OE.又因为AC1⊄平面BDE,OE⊂平面BDE,所以AC1∥平面BDE.4.解析:因为平面SBC∩平面ABC=BC,又因为EF∥平面ABC,所以EF∥BC.答案:B课堂探究·素养提升例1 【解析】对于①,直线a在平面α外包括两种状况:a∥α或a与α相交,∴a和α不肯定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a 不肯定平行于α,∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的多数条直线平行,∴③说法正确.【答案】 B跟踪训练1 解析:易知①正确,②正确.③中两条相交直线中一条与平面平行,另一条可能平行于平面,也可能与平面相交,故③错误.选C.答案:C例2 【证明】(1)连接AC,D1C,因为四边形ABCD是正方形,所以Q是AC的中点,又P是AD1的中点,所以PQ∥D1C,因为PQ⊄平面DCC1D1,D1C⊂平面DCC1D1,所以PQ∥平面DCC1D1.(2)连接D1Q,QE,因为Q,E分别是BD,BC的中点,所以QE∥DC, QE=DC,因为F是C1D1的中点,四边形DCC1D1是正方形,所以D1F∥DC, D1F=DC,所以QE∥D1F, QE=D1F,所以四边形QEFD1是平行四边形,所以EF∥QD1,因为EF⊄平面BB1D1D,QD1⊂平面BB1D1D,所以EF∥平面BB1D1D.跟踪训练2 证明:连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DFA.∴==,∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.例3 【解析】(1)因为EF∥平面AB1C,EF⊂平面DABC,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又因为E为AD的中点,所以F为CD的中点,所以EF=AC,因为正方体的棱长为2.所以AC=2,所以EF=.(2)证明:因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面MNPQ是平行四边形.【答案】(1)(2)见解析跟踪训练3 解析:(1)证明:如图所示,因为a∥b,b⊂β,a⊄β,所以a∥β.因为a⊂α,α=l,所以a∥l.因为a∥b,所以a∥b∥l.(2)①BC∥l.证明如下:因为BC∥AD,CB⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD,又因为BC⊂平面PBC,平面PAD∩平面PBC=l,所以BC∥l.②MN∥平面PAD.证明如下:取PD的中点Q,连接NQ,AQ,则NQ∥CD,NQ=CD,又CD綊AB,所以NQ綊AM,所以四边形AMNQ为平行四边形,所以MN∥AQ,又因为AQ⊂平面PAD,MN⊄平面PAD,所以MN∥平面PAD.。
高等数学方明亮版第十章习题10.11. 写出下列级数的前五项:(1)∑∞=+12)2(n n n ; (2)∑∞=⋅-⋅1)2(42)12(31n n n ; (3)∑∞=--1110)1(n n n; (4)∑∞=+1)1(!n nn n . 解 (1) +++++222227564534231(2) +⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+1086429753186427531642531423121(3) -+-+-501401*********(4) +++++543216!55!44!33!22!1.2. 写出下列级数的一般项:(1) +++614121; (2)+⋅+⋅+⋅+⋅117957351132a a a ; (3) -+-+-+-36132511169974513;(4) +⋅⋅⋅+⋅⋅+⋅+86426424222x x x x x (0x >).解(1)因为21121⋅=,22141⋅=, 23161⋅=,因此一般项nu n 21=(2) 因为 )312()112(5110+⋅⋅-⋅=⋅a ,)322()122(731+⋅⋅-⋅=⋅a a )332()132(9522+⋅⋅-⋅=⋅a a 因此一般项)32)(12(1+-=-n n a u n n (3) 因为 11)112()1(131⋅+⋅-=-,222)122()1(45+⋅-=, 233)132()1(97+⋅-=- 因此一般项2)12()1(n n u n n +-=(4)因为21221⋅=xx ,424222⋅=⋅x x ,64264223⋅⋅=⋅⋅x x x , 因此一般项!2)321(2)2(642222n xn x n x u n n n n nn =⋅⋅=⋅⋅=.3. 判定下列级数的敛散性:(1)∑∞=-+1)1(n n n ; (2)∑∞=+-1)12)(12(1n n n ;(3)++++⋅+⋅)1(1321211n n ; (4) ++++6πsin 6π2sin 6πsin n ;(5)∑∞=++-+1)122(n n n n ; (6) ++++4331313131; (7)22111111()()()323232n n -+-++-+;(8) ++-+++++121297755331n n ;(9))(12112-∞=+-∑n n n a a (0a >);(10)+++++++++n n)11(1)311(1)211(1111132. 解(1)因为11)1()34()23()12(-+=-+++-+-+-=n n n S n 当∞→n 时,∞→n S ,故级数发散. (2)因为)121121(21)12)(12(1+--=+-n n n n)12)(12(1751531311+-++⋅+⋅+⋅=n n S n )]121121()5131()311[(21+--+-+-=n n ]1211[21+-=n ,当∞→n 时,21→n S ,故级数收敛. (3) 因为111)1(1+-=+n n n n ,)1(1431321211+++⋅+⋅+⋅=n n S n 111)111()3121()211(+-=+-+-+-=n n n 当∞→n 时,1→n S ,故级数收敛.(4)因为 6sin63sin 62sin 6sinπ++π+π+π=n S n )6sin 12sin 263sin 12sin 262sin 12sin 26sin 12sin 2(12sin21ππ++ππ+ππ+πππ=n )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin21π+-π-++π-π+π-ππ=n n ]12)12(cos 12[cos 12sin21π+-ππ=n由于 π+∞→1212cos lim n n 不存在,所以n n S ∞→lim 不存在,因而级数发散.(5)因为)1()12(122n n n n n n n -+-+-+=++-++---+---+---=)34()45()23()34()12()23[(n S )]1()12(n n n n -+-+-++)12(121)12()12(--+++=--+-+=n n n n当∞→n 时,21-→n S ,故级数收敛. (6) 该级数的一般项)(013311∞→≠→==-n u nnn ,故由级数收敛的必要条件可知,该级数发散.(7) ∑∑∞=∞=-=-++-+-+-1133222131)2131()2131()2131()2131(n n n n n n∑∞=131n n 该级数为公比131<=q 的等比级数,该级数收敛,而∑∞=121n n该级数为公比121<=q 的等比级数,该级数也收敛,故∑∑∞=∞=-112131n n n n 也为收敛级数.(8) 该级数的一般项)(0112211212∞→≠→+-=+-=n n n n u n ,故由级数收敛的必要条件可知,该级数发散.(9) 因为 a a a a a a a a S n n n n -=-++-+-=+-+121212353)()()( 当∞→n 时,a S n -→1,故该级数收敛. (10) 该级数的一般项)(01])11[()11(11∞→≠→+=+=-n e n nu n nn ,故由级数收敛的必要条件可知,该级数发散. 4. 证明下列级数收敛,并求其和:++-++⋅+⋅+⋅)13)(23(11071741411n n . 证 )13()23(11071741411+⋅-++⋅+⋅+⋅=n n S n )1311(31)]131231()7141()411[(31+-=+--++-+-=n n n 当∞→n 时,31→n S ,故该级数收敛,且31)13()23(11=+⋅-∑∞=n n n . 5.若级数∑∞=1n n u 与∑∞=1n n v 都发散时,级数∑∞=±1)(n n n v u 的收敛性如何?若其中一个收敛,一个发散,那么,级数∑∞=±1)(n n n v u 收敛性又如何?解 若级数分别为+-+-+-=-∞=∑11)1(111n n nu;(发散)+-++-+-=∑∞=n n nv)1(1111;(发散)则级数∑∞=+1)(n n n v u 显然收敛;但是如果另外有级数∑∑∞=∞==11n n n n u w ,则级数∑∞=+1)(n n nw u显然发散。
学习资料第十一章立体几何初步11.2平面的基本事实与推论课后篇巩固提升基础达标练1。
空间中,可以确定一个平面的条件是()A。
两条直线B。
一点和一条直线D.三个点2.(2020黑龙江牡丹江一中高一月考)下列命题正确的是()A。
三点确定一个平面B。
圆心和圆上两个点确定一个平面C。
如果两个平面相交有一个交点,则必有无数个公共点,则这两条直线平行,故A错误;当圆上的两个点恰为直径的端点时,不能确定一个平面,故B错误;如果两个平面相交有一个交点,则这两个平面相交于过该点的一条直线,故C正确;如果两条直线没有交点,则这两条直线平行或异面,故D错误。
3.若平面α和平面β有三个公共点A,B,C,则平面α和平面β的位置关系为()A。
平面α和平面β只能重合B。
平面α和平面β只能交于过A,B,C三点的一条直线C。
若点A,B,C不共线,则平面α和平面β重合;若点A,B,C共线,则平面α和平面β重合或相交于过A,B,C的一条直线A,B,C共线与不共线两种情况讨论.4(多选题)(2020江苏响水中学高一月考)已知A,B,C表示不同的点,l表示直线,α,β表示不同的平面,则下列推理正确的是()A。
如果A∈l,A∈α,B∈l,B∈α,则l⊂αB。
如果l⊄α,A∈l,则A∉αC。
如果A∈α,A∈l,l⊄α,则l∩α=AA∈α,A∈β,B∈α,B∈β,则α∩β=ABA,由A∈l,A∈α,B∈l,B∈α,根据平面的基本事实2,可得l⊂α,所以A正确;对于B,由l⊄α,A∈l,根据直线与平面的位置关系,则A∉α或A∈α,所以B不正确;对于C,由A ∈α,A∈l,l⊄α,根据直线与平面位置关系,则l∩α=A,所以C正确;对于D,由A∈α,A∈β,B∈α,B∈β,根据平面的基本事实3,可得α∩β=AB,所以D正确.5。
如图所示,在正方体ABCD—A1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是()A。
高等数学方明亮版习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3) 12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D = ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。
1. (x 2+x +y )5的展开式中,x 5y 2的系为( )点击观看解答视频A .10B .20C .30D .60答案 C解析 由二项展开式通项易知T r +1=C r 5(x 2+x )5-r y r ,令r =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t ·x t =C t 3x 6-t,令t =1,所以x 5y 2的系为C 25C 13=30,故选C.2.已知⎝⎛⎭⎪⎫x -a x 5的展开式中含x23的项的系为30,则a =( ) A. 3 B .- 3 C .6 D .-6答案 D解析 由二项展开式的通项可得3.二项式(x +1)n (n ∈N +)的展开式中x 2的系为15,则n =( ) A .7 B .6 C .5 D .4答案 B解析由(x+1)n=(1+x)n=1+C1n x+C2n x2+…+C n n x n,知C2n=15,∴n n -2=15,解得n=6或-5(舍去).故选B.4.已知(1+x)n的展开式中第4项与第8项的二项式系相等,则奇项的二项式系和为( )点击观看解答视频A.212B.211C.210D.29答案 D解析因为(1+x)n的展开式中第4项与第8项的二项式系相等,即C m n=C n-m n,所以C3n=C7n,解得n=10,所以二项式(1+x)10的展开式中奇项的二项式系和为1 2×210=29.5.在x(1+x)6的展开式中,含x3项的系为( )A.30 B.20C.15 D.10答案 C解析在(1+x)6的展开式中,含x2的项为T3=C26·x2=15x2,故在x(1+x)6的展开式中,含x3的项的系为15.6.设m为正整,(x+y)2m展开式的二项式系的最大值为a,(x+y)2m+1展开式的二项式系的最大值为b,若13a=7b,则m=( )A.5 B.6C.7 D.8答案 B解析由题意知a=C m2m,b=C m+12m+1,∴13C m2m =7C m+12m+1,即m !m !m !=m +!m +!m !, 解得m =6.7.(a +x )(1+x )4的展开式中x 的奇次幂项的系之和为32,则a =________. 答案 3解析 解法一:直接将(a +x )(1+x )4展开得x 5+(a +4)x 4+(6+4a )x 3+(4+6a )x 2+(1+4a )x +a ,由题意得1+(6+4a )+(1+4a )=32,解得a =3.解法二:(1+x )4展开式的通项为T r +1=C r 4x r ,由题意可知,a (C 14+C 34)+C 04+C 24+C 44=32,解得a =3.8.在(2x -1)5的展开式中,含x 2的项的系是________.(用字填写答案). 答案 -40解析 由二项展开式的通项T r +1=C r 5(2x )5-r(-1)r (r =0,1,…,5)知,当r =3时,T 4=C 35(2x )5-3(-1)3=-40x 2,所以含x 2的项的系是-40. 9.(x -y )(x +y )8的展开式中x 2y 7的系为________.(用字填写答案) 答案 -20解析 (x +y )8的通项公式为T r +1=C r 8x 8-r y r(r =0,1,…,8,r ∈Z ). 当r =7时,T 8=C 78xy 7=8xy 7,当r =6时,T 7=C 68x 2y 6=28x 2y 6,所以(x -y )(x +y )8的展开式中含x 2y 7的项为x ·8xy 7-y ·28x 2y 6=-20x 2y 7,故系为-20.10.若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系为20,则a 2+b 2的最小值为________.答案 2解析 ⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式的通项为T r +1=C r 6(ax 2)6-r ·⎝ ⎛⎭⎪⎫b x r =C r 6a 6-r·b r x 12-3r , 令12-3r =3,得r =3.由C r 6a 6-r b r =C 36a 3b 3=20,得ab =1.所以a 2+b 2≥2ab =2×1=2.11.⎝⎛⎭⎪⎫xy -y x 8的展开式中x 2y 2的系为________.(用字作答) 答案 70解析 设⎝⎛⎭⎪⎫x y -y x 8的第r +1项中含有x 2y 2,则T r +1=C r8⎝ ⎛⎭⎪⎫x y 8-r ⎝⎛⎭⎪⎫-y x r=C r 8·(-1)r·x8-r -r 2yr - 8- r2,因此8-r -r 2=2,r -8-r2=2,即r =4.故x 2y 2的系为C 48×(-1)4=8×7×6×54×3×2×1=70.。
高等数学同济第五版第11章答案习题11?11.写出以下系列的前五个术语?(1)? 1.N21? nn?11? n1?11? 21? 31? 41?5.2222221? 11? 21? 31? 41? 5n?11? n1?n3456?1.251026371? nn?11? 3.(2n?1)2?4.2n解决方案解决方案(2)n?1解?n?1?1?3(2n?1)2?42n1?3(2n?1)2?42n?11?31?3?51?3?5?71?3?5?7?9?? .22?42?4?62?4?6?82?4?6?8?101315105945??.28483843840解?n?1??(3)?n?1?(?1)n?15n(?1)n?15n?解决方案N1.11111? 2.3.4.5.55555? 解决方案N1.(?1)n?15n?11111. 5251256253125(4)? N嗯?1n!1.2.3.4.5.1.2.3.4.5.nn12345n?1.解决方案解决方案N12624120. n14272563125nn?12? 写出以下系列的一般术语?(1)113151 7.解决方案的一般术语是un?1.2n?1(2)? 213456 2345解决方案的一般术语是un?(?1)n?1n?1.Nxxxx2(3)22?42?4?62?4?6?8解一般项为un?(4)nx22n!。
a2a3a4a53579n?1解一般项为un?(?1)an?1.2n?13?根据级数收敛与发散的定义判定下列级数的收敛性?(1) (n?1?n)?n?1解因为sn?(2?1)? (3?2)? (4?3) (n?1?n)?(n?1?1)??(n??)?那么级数散度呢?(2)11111?33?55?7(2n?1)(2n?1)1111???????1?33?55?7(2n?1)(2n?1)111111111 111(?)?(?)?(?)(?)21323525722n?12n?1111111111(?)21335572n?12n?11 11(1?)?(n??)?22n?122?3?n??sinsin?666解因为sn所以级数收敛?(3)sin?6?sin解sn?sin?12sin?6?sin(2sin2?3?n??sinsin666?12?12sin?6?2sin?12sin2??n??2si nsin)6126?12sin?12[(cos?12?cos3?3?5?2n?12n?1)?(cos?cos)(cos??cos?)]121212 1212?12sin?12(cos?12?cos2n?1?).12因为limcosn??2n?1?不存在?所以limsn不存在?因而该级数发散?N12n8283n8(?1); 23n9994?确定下列序列的收敛性?(1)?? 这是等比级数吗?常见的比率是q??(2)? 13111; 693n88?那么| Q |??1.那么这个系列会聚了吗?99.这个系列有分歧吗?这是因为这样的级数收敛吗?那么阶段的数量是??11111? 3() n3693nn?1.还有收敛?矛盾(3)? 1313? 3131n3;1n?1n解决方案因为通用术语UN?3.3.1.0(n?所以由级数收敛的必要条件可知?此级数发散?332333n(4)?2.3.N2222解这是一个等比级数?公比q?(5)(?)?(?3?1?所以此级数发散?21213111111?)?(?)(?)????.223223332n3n?11解因为?n和?n都是收敛的等比级数?所以级数N12n?13?? (n?11111111?n)?(?)? (2?2)? (3?3) (n?n)N3232323是否收敛?习题11?21.用比较收敛法或极限形式比较收敛法确定下列级数的收敛性?(1)113151?????(2n?1)1?112n?1.因为Lim??还有连续剧?发散那么给定的序列会出现分歧?12n??N1nn(2)1?1.21? 31? N1.221? 321? 氮气?1.n1?N11解决方案,因为UN??那么级数发散度呢n1?n2n?n2nn?1.因此,给定的序列发散?(3)1112?53?6(n?1)(n?4)1?(n?1)(n?4)n21?lim2?1?而级数?2收敛?解因为lim1n??n??n?5n?4n?1n2n故所给级数收敛?(4)sin?2?sin?22?sin?23sin?2n罪2n??画罪因为LiMn??12n12n序列收敛了吗??N2n?1n2?那么给定的级数收敛了吗?(5)? 1(a?0)?n1?一1.解决原因00a11n1an1alimlimla1n12nn1aan1a111.什么时候开始?1小时系列?N收敛?什么时候?A.1小时系列?N散度?n?1an?1a1当a?1时收敛?当0?a?1时发散?nn?11?a所以级数?2?用比值审敛法判定下列级数的收敛性?332333n(1)1?22?223?23n?2n解级数的一般项为un?limn??3n?因为nn?2un?1un?lim3n?1n?2n3n3??lim1?n?1n2n?12n??(n?1)?2n??3所以级数发散?n2(2)?Nn?13un?1un(n?1)23n1n?121?lim??lim?()??1?n?123n3n??3n??n?解因为limn??所以级数收敛?2n?N(3)? Nn?1nun?1un2n?1?(n?1)!(n?1)n?1nnnn2?2lim()??1?nn?1en??2?n!?解因为limnlimn所以级数收敛?(3) 恩坦恩?1.2n?1.解因为limn??un?1un(n?1)tan?limn??2n?2?limn?1?2n?2?1?1?2n??丹恩?122n?那么级数收敛呢?3?用根值审敛法判定下列级数的收敛性?(1) (n?1nn)?2n?1n溶液,因为limn??联合国?画n1??1.那么级数收敛呢?2n?12(2)? 1.n[ln(n?1)]n?1n?因为limn??联合国?lim1?0 1? 那么级数收敛呢?n??ln(n?1)。
习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。
习 题 1-11.求下列函数的自然定义域:(1)211y x =- 解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x x y -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x=解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-;当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +;当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+;当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫=- ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,112||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1,1.x x f f x x +<-⎧=⎨≥-⎩ 证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证. 6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同.(2)()()f x g x ==;是.(3)22()2,()sec tan f x g x x x ==-;不是,因为对应法则不同.(4)2()2lg ,()lg f x x g x x ==;不是,因为定义域不同.7.确定下列函数在给定区间内的单调性:(1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞. 解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1xy x-=-是单调递减的. 8. 判定下列函数的奇偶性.(1)lg(y x =+;解:因为1()lg(lg(lg(()f x x x x f x --=-+=+=-=-,所以lg(y x =+是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-;解:因为2()2cos sin 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22cos sin 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数;(2)()f x 可表示成偶函数与奇函数之和的形式.证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证. 10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界.证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期:(1)|sin |y x =;周期函数,周期为π.(2)1sin πy x =+;周期函数,周期为2.(3)tan y x x =;不是周期函数.(4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1y x y =-,所以反函数为 13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-. (2)()ax by ad bc cx d+=≠+; 解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =+;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32y x =,所以反函数1arccos3(),[0,3]2xf x x -=∈. 13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-.解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈. 15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2,4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以 (3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+L , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-=1022121||||,331393a -=-= 100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε->取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-<成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=.解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使221|2n ε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε-<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim ||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim ||||n n x a →∞=. 同理可证0a <时,lim ||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =, 显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +,求lim n n x →∞.解: 因为0x =, (3)π|cos|12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<, 只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥.3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|3|x x --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+. (4) 由于0|-=,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有0|ε-<,故lim0x =.4.用X ε-或εδ-语言,写出下列各函数极限的定义:(1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=;(3)lim ()x a f x b +→=; (4)3lim ()8x f x -→=-.解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<;(4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<.5.证明:0lim ||0x x →=.证明: 由于00lim ||lim 0x x x x ++→→==, 00lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=.6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则lim ()x f x A →∞=.证明: 由于lim ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x=为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大. 证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+. (2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有 1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以013limx xx→+=∞.2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+ 且()n x n →+∞→∞,πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,取[]01N M =+,00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的. 3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦L ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭L ; (4)1132lim 32n nn n n ++→∞+-;(5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h →+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦L = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦L = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭L =21(1)12lim 2n n n n →∞+=.(4) 1132lim32n nn n n ++→∞+-=21()13lim 2332()3nn n →∞+=-⋅.(5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--. (6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) lim x →+∞=limx=limx=111lim 2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim11x xx x →+=++.(11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞. (15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩ 问当a 为何值时,极限0lim ()x f x →存在.解:因为0000lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当00lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限.解:因为11211111lim lim(1)0,1x x x x x e x e x ----→→-=+=-所以12111lim 1x x x e x -→--不存在。
第二章 导数与微分习题2-11.解:当自变量从x 变到1x 时,y 相应地从()=8f x x 变到11()=8f x x ,所以导数111111()()8()limlim 8x xx x f x f x x x y x x x x→→--'===--. 2.解:由导数的定义可知022020()()()lim()()() lim 2 lim 2h h h f x h f x f x ha x hb x hc ax bx c haxh h bhax bh →→→+-'=++++-++=++==+。
3.解:0022()22()limlimx x x x xsinsin cos x x cos xcos x xx∆→∆→+∆∆-⋅+∆-'==∆∆ 0022lim lim22x x x sinx x -sin sin x x ∆→∆→∆+∆=⋅=-∆ 4. 解:(1)不能,(1)与()f x 在0x 的取值无关,当然也就与()f x 在0x 是否连续无关,故是0()f x '存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价.5. 解:(1)45x ; (2)3212x --; (3)157227x ;(4)11ln 3x ; (5)5616x -; (6)22x e .6. 解:物体在t 时刻的运动速度为:2()()3()V t S T t m /s '==,故物体在2t s =时的速度为:22()3212()t V t m /s ==⋅=. 7.证明:由导数定义,知:00()(0)()(0)(0)limlim0x x f x f f x f f x x→→---'==- 00()(0)()(0)lim lim (0)0t x t t f t f f t f f t t =-→→--'==-=---所以,(0)0f '=。
高等数学方明亮版第七章习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠; (2){}22(,)14x y x y <+≤; (3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+=U .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=U2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫== ⎪⎝⎭,则()f x =. 5.求下列各函数的定义域:(1)2222x y z x y +=-; (2)ln()arcsinyz y x x=-+; (3)ln()z xy =; (4)z =(5)z = (6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭;(5)定义域为{}2(,)0,0,x y x y x y ≥≥≥; (6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠. 6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →;(3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim(2,0)22x y x xy y f x y →++===+; (2)(,)(0,0)00112limlim 2x y u u u u →→→===; (3)因为22(,)(0,0)lim ()0x y x y →+=,且1sin1xy≤有界,故22(,)(0,0)1lim ()sin0x y x y xy→+=;(4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e++++<<, 而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y x x y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点;(2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ-=≤=@(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<0ε<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)lim h f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim (,)x h f x h y f x y z x y A h→+-==;(2)000000000000(,)(,)(,)(,)lim lim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-;(3)0000000000(,2)(,)(,2)(,)lim lim 222h h f x y h f x y f x y h f x y B h h →→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y =+; (2)ln tan x z y=; (3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z xx y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y-⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy ze y ye x∂=⋅=∂,xy xy z e x xe y ∂=⋅=∂;(4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂; (5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++,22222222z x x y y y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂,1z x y xy ∂=⋅=∂; (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z z u z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln zu x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,求(1,0)x f ,(1,0)y f .解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+ ⎪⎝⎭,所以11(1,)212y f y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)f x x x =+-=,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y yx x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=.(2)按偏导数的几何意义,(1,1)y z就是曲线在点处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =,求22zx∂∂和2z x y ∂∂∂;(4)arctan y z x =求22zx∂∂、22z y ∂∂、2z x y ∂∂∂和2z y x ∂∂∂.解(1)233sin cos z x y y x x∂=+∂,2223cos 3cos z x y y x x y ∂=+∂∂; (2)ln ln 1ln ln x xz y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂=+=∂==()232222zxx xy∂-==∂+,()23222zyx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x yy x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xy y x y ∂-=∂+, ()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1)xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22esin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x-∂=∂,2222e sin kn t y n nx x -∂=-∂ 所以()2222esin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x xr ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭,由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s t u s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin (0)x z y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yz u x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--,()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xex y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x ey y xy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsin d d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x yx y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪⎪⎝⎭⎝⎭⎣⎦; (5)()2222222221d d ln()d u x y z x y z x y z⎡⎤=++=++⎣⎦++ 2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z ++==++++++;(6)()1d d d ln d ln d yz yz yz yz u x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x yx y ⎡⎤=++=++=+⎣⎦++++所以12112d (2d 4d )d d 633x y z x y x y ===+=+;(2)因为22221d d arctan d 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分. 解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y =-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy yxyx y -----==--所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-4 1.设2e x y u -=,sin x t =,3y t =,求d d ut.解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=.3.设22z u v uv =-,cos u x y =,sin v x y =,求zx∂∂,z y ∂∂.解()()222cos 2sin z z u z vuv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求zx ∂∂,z y ∂∂.解 222ln 3z z u z v u y u v x u x v x vx ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,e x y u +=,求zx∂∂,z y ∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x yx y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x yx y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanx z y =,x u v =+,y u v =-,求z u ∂∂,zv∂∂,并验证: 22z z u vu v u v∂∂-+=∂∂+. 解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1)22()z f x y =-; (2),x y u f y z ⎛⎫= ⎪⎝⎭;(3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()zxf x y x∂'=-∂,222()z yf x y y ∂'=--∂;(2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭,2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23u xf xzf y ∂''=+∂,3uxyf z ∂'=∂; (4)12312xy u xf ye f f x x∂'''=++∂,122xy u yf xe f y ∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂. 证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()y x y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,k z y u x F x x ⎛⎫= ⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证:u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂.13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z z xy x y∂∂+=∂∂. 证cos zf x x∂'=∂,cos (cos )z y y f y ∂'=+-∂,sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22zx∂∂,2z x y ∂∂∂,22z y ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+; (3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z sf yf x x∂∂''=⋅=∂∂,1212d d z s t f f xf f y y y ∂∂''''=⋅+⋅=+∂∂.因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y y y y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z sf xf x x∂∂''=⋅=∂∂,2z s f yf y y ∂∂''=⋅=∂∂.因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s tf f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s t f f xyf x f y y y ∂∂∂''''=⋅+⋅=+∂∂∂.()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++.(4)令sin u x =,cos v y =,x y w e +=,则1313d cos d x y z u wf f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y +∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x x x ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x y x y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x y x y e f xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 121333233d d cos d d x y x y v w v w x f f e f e f f y y y y ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x y x y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x y x y x y e f x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x y x y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x y x y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x--=-=-=--+.2.设ln ln 1xy y x ++=,求1d d x y x=.解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x y x==-.3.设ln arctany x =,求d d y x. 解设(,)arctan yF x y x =,则2222222222211d 111d 1x yy x x y y F yx y x y x y x y y x x F x y xx y x y y x ⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭. 4.设222cos cos cos 1x y z ++=,求zx∂∂,z y ∂∂. 解 设222(,,)cos cos cos 1F x y z x y z =++-,则2cos sin sin 22cos sin sin 2x z F z x x x x F z z z ∂-=-=-=-∂-,2cos sin sin 22cos sin sin 2y z F z y y yy F z z z ∂-=-=-=-∂-. 5.设方程(,)0F x y z xy yz zx ++++=确定了函数(,)z z x y =,其中F 存在偏导函数,求zx∂∂,z y ∂∂. 解1212()()x z F F y z F z x F F y x F ''++∂=-=-∂''++,1212()()y z F F x z F z y F F y x F ''++∂=-=-∂''++. 6.设由方程(,,)0F x y z =分别可确定具有连续偏导数的函数(,)x x y z =,(,)y y x z =,(,)z z x y =,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证 因为y xF xy F ∂=-∂,z y F y z F ∂=-∂,x z F z x F ∂=-∂,所以 1y xzx yz F F F x y z y z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=- ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭. 7.设(,)u v ϕ具有连续偏导数,证明由方程(,)0cx az cy bz ϕ--=所确定的函数(,)z f x y =满足z zab c x y∂∂+=∂∂. 证 令u cx az =-,v cy bz =-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v v c y ϕϕϕ∂=⋅=∂,z u v u v u va b z zϕϕϕϕϕ∂∂=⋅+⋅=--∂∂.x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)z F x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x z z F z yz x F e xy∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=- ()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y z z F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=- ()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y ∂=∂∂. 10.求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=-∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x;(2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,vx ∂∂,v y ∂∂;(3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,v y ∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d z y x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y x y x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x y J x y yx-==+≠的条件下,22u yv x u xu yv x y x x y y x---∂+==--∂+, 22x uy v v yu xv x y x x y y x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y ∂-=∂+,22v xu yv y x y∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v ---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu u e v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处;(2)1t x t =+,1t y t+=,2z t =在1t =的对应点处; (3)sin x t t =-,1cos y t =-,4sin2t z =在点1,1,2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t-+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,1,2π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=.法平面方程为402x y π+--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y xy z xy x y x yz z y z-===. (1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 11,1,3⎛⎫=- ⎪⎝⎭T .故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭.3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处;(3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处.解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n , (1,1,ln 4)1,1,12⎛⎫=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫ ⎪⎝⎭处的切平面方程为202x y z π-+-=.法线方程为114112z x y π---==-.4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程. 解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=.解得 1z =±,则12x =±,1y =±.所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭.所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n .7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.解按题意,方向l =,12l ⎛= ⎝⎭e .又2zx x∂=∂,2z y y ∂=∂,(1,2)2z x ∂=∂,(1,2)4zy ∂=∂, 故(1,2)124122z l ∂=⋅+⋅=+∂. 2.求函数22ln()z x y =+在点(1,1)处沿与x 轴正向夹角为60o 的方向的方向导数.解 依题意,12l ⎛= ⎝⎭e .又222z x x x y ∂=∂+,222z y y x y∂=∂+,(1,1)1z x ∂=∂,(1,1)1zy ∂=∂,。
高等数学方明亮版第六章习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ).由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形. 证: AM =MC ,BM =MD ,∴AD =AM +MD =MC +BM =BC与 平行且相等, 结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式. 解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0} 4、 求平行于a ={1,1,1}的单位向量. 解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-=222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标.解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 222αβγ===-,从而 π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模; (2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:o a =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76c o s -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角. 解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |,=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b - 解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z xyzij k c a b a a a b b b 324112=--i j k =105+j k,22||10==c0||∴=c c c=.⎫±⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=A S ||||21,5)3(4||22BD AC S AC ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a. 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b . 其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式: (1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程. 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x yz C M Az ∈⇔=亦即 z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x (3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=;(5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+y x ;(3)122=-y x ;(4)22x y =. 解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面; (4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x 解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z 0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,021≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x xz y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.10 、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723z y x =-=与8723=+-z y x ;(3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上. (4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角.解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y t x 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-.(2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程:(1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; (4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--=(3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-.9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:(1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离.过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )图6-1 空所流动与飞机飞行速度的关系解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ;解 =⨯b a b a sin()a,b π2=2,=⋅b a b a cos()a,bπ2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为 z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kji1,3}5,{--=.(b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=; (3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P .3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kji ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即=a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪⎨⎪=⎩由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k ji b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程. 解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩.同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1) 在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-ij kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即(15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y⎛⎫+=+-- ⎪⎝⎭即0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x . 解法2: 用一般式,即先求出过L 的两个平面,将其方程联立便得L 的方程.。
【创新方案】2017届高考数学一轮复习第十一章计数原理、概率、随机变量及其分布第五节古典概型课后作业理[全盘巩固]一、选择题1.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( )A.112B.110C.325D.11252.4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A.12B.13C.23D.343.同时抛掷两个骰子,则向上的点数之差的绝对值为4的概率是( )A.118B.112C.19D.164.(2016·合肥模拟)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.7125.(2016·亳州质检)已知集合M={1,2,3,4},N={(a,b)|a,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是( )A.12B.13C.14D.18二、填空题6.从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于________.7.从1,2,3,4这四个数字中依次取(不放回)两个数a,b,使得a2≥4b的概率是________.8.将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.三、解答题9.(2016·西安模拟)移动公司在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.(1)求从中任选1人获得优惠金额不低于300元的概率;(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.10.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次即终止的概率; (3)求甲取到白球的概率.[冲击名校]1.从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A.16B.13C.14D.122.(2016·郑州模拟)在二项式⎝⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A.16B.14C.13D.5123.锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为________.答 案 [全盘巩固]一、选择题1. 解析:选D 小正方体三面涂有油漆的有8种情况,故所求概率为81 000=1125.2. 解析:选B 因为从四张卡片中任取出两张的情况为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.其中两张卡片上数字和为偶数的情况为(1,3),(2,4)共2种,所以两张卡片上的数字之和为偶数的概率为13.3. 解析:选C 同时抛掷两个骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4个,故P (A )=436=19.4. 解析:选A 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1 12种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2 4种情况,则发生的概率为P =412=13,故选A.5. 解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为416=14.二、填空题6. 解析:设2名男生为A ,B,3名女生为a ,b ,c ,则从5名同学中任取2名的方法有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,而这2名同学刚好是一男一女的有(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),共6种,故所求的概率P =1-610=25.答案:257. 解析:基本事件为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),…,(4,3),共12个,符合条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6个,因此使得a 2≥4b 的概率是12.答案:128. 解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.答案:712三、解答题9. 解:(1)设事件A 为“从中任选 1 人获得优惠金额不低于300元”,则P (A )=150+10050+150+100=56.(2)设事件B 为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为a 1,b 1,b 2,b 3,c 1,c 2从中选出2人的所有基本事件如下:a 1b 1,a 1b 2,a 1b 3,a 1c 1,a 1c 2,b 1b 2,b 1b 3,b 1c 1,b 1c 2,b 2b 3,b 2c 1,b 2c 2,b 3c 1,b 3c 2,c 1c 2,共15个.其中使得事件B 成立的有b 1b 2,b 1b 3,b 2b 3,c 1c 2,共4个.则P (B )=415.10. 解:(1)设袋中原有n 个白球,从袋中任取2个球都是白球的结果数为C 2n ,从袋中任取2个球的所有可能的结果数为C 27.由题意知从袋中任取2球都是白球的概率 P =C 2n C 27=17, 则n (n -1)=6,解得n =3(舍去n =-2),即袋中原有3个白球.(2)设事件A 为“取球2次即终止”.取球2次即终止,即乙第一次取到的是白球而甲取到的是黑球,P (A )=C 14×C 13C 17×C 16=4×37×6=27.(3)设事件B 为“甲取到白球”,“第i 次取到白球”为事件A i ,i =1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.所以P (B )=P (A 1∪A 3∪A 5)=P (A 1)+P (A 3)+P (A 5)=37+4×3×37×6×5+4×3×2×1×37×6×5×4×3=37+635+135=2235. [冲击名校]1. 解析:选A 由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.因为m ⊥n ,即m ·n =0,所以a ×1+b ×(-1)=0,即a =b , 满足条件的有(3,3),(5,5)共2个, 故所求的概率为16.2. 解析:选 D 注意到二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式的通项是T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫124x r=依题意有C 0n +C 2n 2-2=2C 1n 2-1=n ,即n 2-9n +8=0,(n -1)(n -8)=0(n ≥2),因此n =8.∵二项式⎝⎛⎭⎪⎪⎫x +124x 8的展开式的通项是其展开式中的有理项共有3项,所求的概率等于A 66A 37A 99=512,选D.3. 解析:P =C 26C 15C 14+C 16C 25C 14+C 16C 15C 24C 415=15×20+6×40+6×3015×13×7=4891. 答案:4891。
高等数学方明亮版第十一章答案习 题 11-11.判断下列方程是几阶微分方程?(1)23d tan 3sin 1d ⎛⎫=++ ⎪⎝⎭y y t t t t ; (2)(76)d ()d 0-++=x y x x y y ;(3)2()20''''-+=x y yy x ; (4)422()0'''''++=xy y x y .解 微分方程中所出现的未知函数的导数(或微分)的最高阶数,叫做微分方程的阶.所以有,(1)一阶微分方程; (2)一阶微分方程; (3)三阶微分方程; (4)三阶微分方程. 2.指出下列各题中的函数是否为所给微分方程的解: (1)2'=xy y ,25=y x ;(2)0''+=y y ,3sin 4cos =-y x x ; (3)20'''-+=y y y ,2e =x y x ;(4)2()()20'''''-++-=xy x y x y yy y ,ln()=y xy .解 (1)将10'=y x 代入所给微分方程的左边,得左边210=x ,而右边=22(5)x 210=x =左边,所以25=y x 是2'=xy y 的解.(2)将3cos 4sin '=+y x x ,3sin 4cos ''=-+y x x 代入所给微分方程的左边,得左边(3sin 4cos )(3sin 4cos )0=-++-==x x x x 右边,所以3sin 4cos =-y x x 是所给微分方程0''+=y y 的解.(3)将2e =x y x ,22e e '=+x x y x x ,22e 4e e ''=++x x x y x x 代入所给微分方程的左边,得左边222(2e 4e e )2(2e e )e 2e 0=++-++=≠x x x x x x x x x x x x (右边),所以2e =x y x 不是所给微分方程20'''-+=y y y 的解. (4)对ln()=y xy 的两边关于x 求导,得1''=+y y x y, 即 ''=+xyy y xy . 再对x 求导,得2()''''''''++=++yy x y xyy y y xy ,即 2()()20'''''-++-=xy x y x y yy y ,所以ln()=y xy 是所给微分方程2()()20'''''-++-=xy x y x y yy y 的解.3.确定下列各函数关系式中所含参数,使函数满足所给的初始条件. (1)22-=x y C , 05==x y ; (2)2120()e ,0==+=x x y C C x y ,01='=x y . 解 (1)将0=x ,5=y 代入微分方程,得220525=-=-C所以,所求函数为2225-=y x .(2)222212122e 2()e (22)e '=++=++x x x y C C C x C C C x ,将00==x y ,01='=x y 分别代入212()e =+x y C C x 和2122(22)e '=++x y C C C x ,得10=C ,21=C ,所以,所求函数为2e =x y x .4.能否适当地选取常数λ,使函数e λ=x y 成为方程90''-=y y 的解.解 因为e λλ'=x y ,2e λλ''=x y ,所以为使函数e λ=x y 成为方程 90''-=y y 的解,只须满足2e 9e 0λλλ-=x x ,即 2(9)e 0λλ-=x .而e 0λ≠x ,因此必有290λ-=,即3λ=或3λ=-,从而当3λ=,或3λ=-时,函数33e ,e -==x x y y 均为方程90''-=y y 的解.5.消去下列各式中的任意常数12,,C C C ,写出相应的微分方程. (1)2y Cx C =+; (2)()tan y x x C =+; (3)12e e x x xy C C -=+; (4)212()y C C x -=.解 注意到,含一个任意常数及两个变量的关系式对应于一阶微分方程;含两个独立常数的式子对应于二阶微分方程. (1)由2=+y Cx C 两边对x 求导,得'=y C ,代入原关系式2y Cx C =+,得所求的微分方程为2()''+=y xy y .(2)由tan()=+y x x C 两边对x 求导,得2tan()sec ()'=+++y x C x x C ,即2tan()tan ()'=++++y x C x x x C . 而tan()=+yx C x,故所求的微分方程为2⎛⎫'=++ ⎪⎝⎭y y y x x x x ,化简得22'=++xy y x y .(3)由12e e -=+x x xy C C 两边对x 求导,得12e e -'+=-x x y xy C C ,两边再对x 求导,得12e e -''''++=+x x y y xy C C ,这样便可得所求的微分方程为2'''+=xy y xy .(4)由212()-=y C C x 两边对x 求导,得122()'-⋅=y C y C ,将212()-=y C C x代入上式,并化简得12'=-xy y C ,对上式两边再对x 求导,得22''''+=y xy y ,故所求的微分方程为20'''+=xy y .习 题 11-21.求下列微分方程的通解或特解:(1)ln 0xy y y '-=; (2)cos sin sin cos 0x ydx x ydy +=; (3)22()y xy y y '''-=+; (4)(1)d ()d 0x y x y xy y ++-=; (5)23yy xy x '=-,01x y==; (6)22sin d (3)cos d 0x y x x y y ++=,16x y=π=. 解 (1)分离变量,得11d d ln =y x y y x, 两端积分,得ln(ln )ln ln =+y x C ,即ln =y Cx ,所以原方程的通解为e =Cx y .注 该等式中的x 与C 等本应写为||x 与||C 等,去绝对值符号时会出现±号;但这些±号可认为含于最后答案的任意常数C 中去了,这样书写简洁些,可避开绝对值与正负号的冗繁讨论,使注意力集中到解法方面,本书都做这样的处理.(2)原方程分离变量,得cos cos d d sin sin =-y xy x y x, 两端积分,得ln(sin )ln(sin )ln =-+y x C ,即ln(sin sin )ln ⋅=y x C ,故原方程的通解为sin sin ⋅=y x C .(3)原方程可化成2d (1)2d -+=yx y x, 分离变量,得212d d 1=-+y x y x , 两端积分,得 12ln(1)-=-+-x C y,即12ln(1)=++y x C是原方程的通解.(4)分离变量,得d d 11=+-y x y x y x , 两边积分,得ln(1)ln(1)ln -+=+-+y y x x C ,即e (1)(1)y x C y x -=+-是原方程的通解.(5)分离变量,得2d d 31=-y y x x y ,两端积分,得2211ln(31)ln 62-=+y x C , 即211262(31)ex y C -=.由定解条件01==x y ,知16(31)-=C ,即162=C ,故所求特解为21112662(31)2x y e-=,即223312e -=x y .(6)将方程两边同除以2(3)sin 0+≠x y ,得22cos d d 03sin +=+x yx y x y, 两端积分,得122cos d d 3sin +=+⎰⎰x yx y C x y ,积分后得2ln(3)ln(sin )ln ++=x y C (其中1ln =C C ),从而有2(3)sin +=x y C ,代入初始条件16=π=x y,得 4sin26π==C . 因此,所求方程满足初始条件的特解为2(3)sin 2+=x y ,即2arcsi 3n2y x =+. 2.一曲线过点0(2,3)M 在两坐标轴间任意点处的切线被切点所平分,求此曲线的方程.解 设曲线的方程为()y y x =,过点(,)M x y 的切线与x 轴和y 轴的交点分别为(2,0)A x 及(0,2)B y ,则点(,)M x y 就是该切线AB 的中点.于是有22'=-yy x ,即xy y '=-,且(2)3=y , 分离变量后,有11d d =-y x y x, 积分得ln ln ln =-y C x ,即=C y x. 由定解条件23==x y ,有6=C ,故6=y x为所求的曲线.3.一粒质量为20克的子弹以速度0200v =(米/秒)打进一块厚度为10厘米的木板,然后穿过木板以速度180v =(米/秒)离开木板.若该木板对子弹的阻力与运动速度的平方成正比(比例系数为k ),问子弹穿过木板的时间.解 依题意有2d d =-vmkv t ,0200==t v , 即21d d -=kv t v m, 两端积分得,10.02=+=+k kt C t C v m (其中20克=0.02千克), 代入定解条件0200==t v ,得1200=C , 故有200100001=+v kt .设子弹穿过木板的时间为T 秒,则02000.1d 100001=+⎰Tt kt 0200ln(100001)10000=+Tkt k 1ln(100001)50=+kT k, 又已知=t T 时,180==v v 米/秒,于是20080100001=+kT ,从而,0.00015=kT ,为此有0.1ln(1.51)500.00015=+⨯T,所以0.10.0075ln 2.5=⨯T 0.000750.00080.9162≈=(秒), 故子弹穿过木板运动持续了0.0008=T (秒).4.求下列齐次方程的通解或特解:(1)0xy y '-=; (2)22()d d 0x y x xy y +-=; (3)332()d 3d 0x y x xy y +-=; (4)(12e )d 2e (1)d 0xx yyx x y y++-=;(5)22d d yx xy y x=-,11x y ==; (6)22(3)d 2d 0y x y xy x -+=, 01x y==.解 (1)原方程变形,得'=+y y x令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为'+=u xu u ,分离变量,得1d =u x x ,两端积分得ln(ln ln +=+u x C ,即u Cx ,将=yu x代入上式并整理,得原方程的通解为2y Cx .(2)原方程变形,得22d d +=y x y x xy,即21d d x xy y xy ⎛⎫+ ⎪⎝⎭=.令=y u x,即=y ux ,有''=+y u xu ,则原方程可进一步化为21+'+=u u xu u, 即1d d =u u x x,两端积分,得211ln 2=+u x C , 将=yu x代入上式并整理,得原方程的通解为22(2ln )=+y x x C (其中12=C C ).(3)原方程变形,得332d d 3+=y x y x xy ,即32d 1()d 3()+=y y x x y x , 令=y ux ,有d d d d =+y uu x x x,则原方程可进一步化为 32d 1d 3++=u u u x x u, 即3231d d 12u u x u x=-, 两端积分,得311ln(12)ln ln 22--=-u x C , 即23(12)-=x u C ,将=yu x代入上式并整理,得原方程的通解为332-=x y Cx .(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以xy为变量的函数,故令=xu y,即=x uy ,有d d d d =+x uu yy y,则原方程可化为 d ()(12e )2e (1)0d +++-=u u uu y u y, 整理并分离变量,得2e 11d d 2e +=-+u u u y u y, 两端积分,得ln(2e )ln ln +=-+u u y C ,即2e +=u C u y. 将=xu y代入上式并整理,得原方程的通解为2e +=x yy x C .(5)原方程可化为2d d ⎛⎫=- ⎪⎝⎭y y y x x x . 令=y u x,有d d d d =+y uu x x x,则原方程可进一步化为 2d d +=-uu x u u x,即211d d -=u x u x, 两端积分,得1ln =+x C u, 将=y u x代入上式,得ln =+xx C y, 代入初始条件11==x y,得1ln11=-=C .因此,所求方程满足初始条件的特解为1ln =+xy x. (6)原方程可写成22d 1320d -+=x x x y y y.令=x u y,即=x uy ,有d d d d =+x uu y y y ,则原方程成为2d 132()0d -++=uu u u y y,分离变量,得221d d 1=-u u y u y, 两端积分,得2ln(1)ln ln -=+u y C ,即21-=u Cy ,代入=xu y并整理,得通解223-=x y Cy .由初始条件01==x y,得1=-C .于是所求特解为322=-y y x .5.设有连结原点O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成图形的面积为2x ,求曲线弧OA 的方程.解 设曲线弧的方程为()=y y x ,依题意有201()d ()2-=⎰xy x x xy x x ,上式两端对x 求导,11()()()222'--=y x y x xy x x , 即得微分方程4'=-yy x,令=y u x ,有d d d d =+y uu x x x,则微分方程可化为d 4d +=-u u x u x ,即d 4d =-u x x,积分得4ln =-+u x C ,因=yu x,故有(4ln )=-+y x x C .又因曲线过点(1,1)A ,故1=C .于是得曲线弧的方程是(14ln )=+y x x .6.化下列方程为齐次方程,并求出通解:(1)(1)d (41)d 0--++-=x y x y x y ; (2)()d (334)d 0+++-=x y x x y y . 解 (1)原方程可写成d 1d 41-++=+-y x y x y x , 令10410x y y x --=+-=⎧⎨⎩,解得交点为1=x ,0=y .作坐标平移变换1=+x X ,=y Y ,有d d d d d(1)d ==+y Y Y x X X, 所以原方程可进一步化为d d 4-=+Y Y XX Y X(*)这是齐次方程.设=Y u X ,则=Y uX ,d d d d =+Y u u X X X,于是(*)式可化为 1d d 41Y Y X Y X X-=⋅+, 即d 1d 41-+=+u u u XX u , 变量分离,得2411d d 41+=-+u u X u X, 两端积分,得2111ln(41)arctan(2)ln 22++=-+u u X C , 即22ln (41)arctan(2)⎡⎤++=⎣⎦X u u C 1(2)=C C ,将1==-Y yu X x 代入上式,得原方程的通解为 222ln 4(1)arctan1⎡⎤+-+=⎣⎦-yy x C x . (2)原方程可写成d d 43()+=-+y x yx x y , 该方程属于d ()d =++yf ax by c x类型,一般可令=++u ax by c . 令=+u x y ,有d d 1d d =-y ux x,则原方程可化为d 1d 43-=-u ux u, 即34d 2d 2-=-u u x u , 积分得32ln 22+-=+u u x C ,将=+u x y 代入上式,得原方程的通解为32ln 2+++-=x y x y C .习 题 11-31.求下列微分方程的通解:(1)22e -'+=x y xy x ; (2)23'-=xy y x ; (3)d tan 5d -=yxy x; (4)1ln '+=y y x x ; (5)2(6)d 2d 0-+=y x y y x ; (6)d 32d ρρθ+=. 解(1)()d ()d e ()e d -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰p x x p x x y q x x C ()222d 2d e e e d e d ---⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x x x x x x x C x x C 2221e e 2--=+x x C x .(2)原方程可化为3'-=y y x x, 故通解为33d d 3321e e d ---⎡⎤⎛⎫⎰⎰=+=-=-⎢⎥ ⎪⎝⎭⎣⎦⎰x x x x y x x C x C Cx x x . (3)原方程可化为d cos 5cos d sin sin -=y x xy x x x, 故通解为cos cos d d sin sin 5cos e e d sin ⎛⎫- ⎪⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x x y x C x25cos sin d sin 5sin ⎡⎤=+=-⎢⎥⎣⎦⎰x x x C C x x . (4)所给方程的通解为()11d d ln ln 1e e d ln d ln -⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰x xx x x x y x C x x C x 1(ln )ln ln -=-+=+C xx x x C x x x. (5)方程可化为2d 6d 2-=x x y y y, 即d 31d 2-=-x x y y y , 故通解为33d d 1e e d 2-⎡⎤⎰⎰=-+⎢⎥⎢⎥⎣⎦⎰y y yyx y y C3211d 2⎛⎫=-+ ⎪⎝⎭⎰y y C y312⎛⎫=+ ⎪⎝⎭y C y .(6) ()3d 3d 33e 2e d e 2e d θθθθρθθ--⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰C C 33322e e e 33θθθ--⎛⎫=+=+ ⎪⎝⎭C C . 2.求下列微分方程的特解:(1)d tan sec d yy x x x -=,00x y ==; (2)cos d cot 5e d +=x y y x x ,24π==-x y ;(3)23d 231d y xy x x -+=,10x y ==.解(1)tan d tan d e sec e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x x x x y x x C ()lncos lncos e sec e d -=+⎰xx x x C ()1sec cos d cos =⋅+⎰x x x C x cos +=x Cx, 代入初始条件0,0==x y ,得0=C .故所求特解为cos =xy x. (2) cot d cot d cos e 5e e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x x x x x y x C ()cos 15e sin d sin =⋅+⎰x x x C x ()cos 15e sin =-+x C x, 代入初始条件,42π==-x y ,得1C =,故所求特解为cos 15e sin -=xy x, 即cos sin 5e 1+=x y x .(3) 332323d d ee d ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x xx x x x y x C 22113ln 3ln e e d ⎛⎫-++ ⎪⎝⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎰x x x x x C 222211113332e 11e d ee d 2--⎛⎫⎡⎤⎛⎫ ⎪=+=-+⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎣⎦⎝⎭⎰⎰x x x x x x C x C x x2221133311e e e 22x x x x x C Cx -⎛⎫=+=+ ⎪ ⎪⎝⎭,代入初始条件1,0==x y ,得12e=-C ,故所求特解为 21311e 2-⎛⎫=- ⎪ ⎪⎝⎭x x y . 3.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2+x y .解 设曲线方程为()=y y x ,依题意有2'=+y x y ,即2'-=y y x .从而()d de 2e d e 2e d --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x x xy x x C x x Ce (2e 2e )22e --=--+=--+x x x x x C x C .由0=x ,0=y ,得2=C .故所求曲线的方程为2(e 1)=--x y x .4.设曲线积分2()d [2()]d +-⎰L yf x x xf x x y 在右半平面(0>x )内与路径无关,其中()f x 可导,且(1)1=f ,求()f x .解 依题意及曲线积分与路径无关的条件,有2[2()][()]0∂-∂-=∂∂xf x x yf x x y,即2()2()2()0'+--=f x xf x x f x .记()=y f x ,即得微分方程及初始条件为112'+=y y x,11==x y . 于是,)11d d22e e d -⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰x xx x y x C x C23⎫==+⎪⎭C x 代入初始条件1,1==x y ,得13=C ,从而有2()3=f x x . 5.求下列伯努利方程的通解:(1)2d d +=yx y xy x; (2)42323'+=y y x y x ;(3)4d 11(12)d 33+=-y y x y x ; (4)3d [(1ln )]d 0-++=x y y xy x x .解(1)方程可以化为21d 11d --+=y y y x x. 令1-=z y ,则2d d d d -=-z y y x x ,即2d d d d -=-y zy x x.代入上面的方程,得d 11d -+=z z x x, 即d 11d -=-z z x x, 其通解为11d de (e )d ln -⎛⎫⎰⎰=-+=- ⎪⎝⎭⎰x xx x z x C Cx x x ,所以原方程的通解为1ln =-Cx x x y. (2)原方程化为41233d 23d --+=y y y x x x . 令13-=z y ,则43d 1d d 3d -=-z y y x x ,即43d d 3d d -=-y zy x x.代入上面的方程,得 2d 233d -+=z z x x x, 即2d 2d 3-=-z z x x x, 其通解为22d d 233e (e )d -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰x x x xz x x C2433()d ⎡⎤=-+⎢⎥⎣⎦⎰x x x C273337⎛⎫=- ⎪⎝⎭x C x .所以原方程的通解为12733337-=-yCx x .(3)原方程化为4311(12)33--'+=-y y y x .令3-=z y ,则43-''=-z y y ,于是原方程化为21z x z '-=-,其通解为d d 21e ()e d e ()e 21d x x x x z x C x x x C --⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣--⎦⎰⎰ e (21)e 21e -⎡⎤=--+=--+⎣⎦x x xx C x C ,所以原方程的通解为321e -=--+x y x C .(4)原方程化为31(1ln )'-=+y y x y x ,即3211ln --'-=+y y y x x. 令2-=z y ,则32-''=-z y y ,则原方程化为22(1ln )'+=-+z z x x, 其通解为22d de 2(1ln )e d -⎡⎤⎰⎰=-++⎢⎥⎣⎦⎰x xx x z x x C222(1ln )d -⎡⎤=-++⎣⎦⎰x x x x C 233221(1ln )d 33-⎡⎤=-++⋅+⎢⎥⎣⎦⎰x x x x x C x 23322(1ln )39-⎡⎤=-+++⎢⎥⎣⎦x x x x C222(1ln )39-=-+++x x x Cx , 所以原方程的通解为2222(1ln )39--=-+++y x x x Cx ,或写成233242ln 93=--+x x x x C y . 习 题 11-41.求下列全微分方程的通解:(1)21d ()d 02xy x x y y ++=; (2)3222(36)d (46)d 0x xy x y x y y +++=;(3)223423d d 0x y x x y y y -+=.解 (1)易知,=P xy ,21()2=+Q x y .因为∂∂==∂∂P Qx y x, 所以原给定的方程为全微分方程.而2001(,)0d ()d 2=++⎰⎰xyu x y x x y y 22221111()2224=+=+x y y x y y ,故所求方程的通解为221124+=x y y C . (2)易知,2236=+P x xy ,3246=+Q y x y .因为12∂∂==∂∂P Qxy y x, 所以原给定的方程为全微分方程.而2320(,)3d (46)d =++⎰⎰xyu x y x x y x y y34223=++x y x y ,故所求方程的通解为34223++=x y x y C .(3)易知,32=xP y,2243-=y x Q y .因为46∂∂=-=∂∂P x Qy y x, 在0≠y 的区域内为全微分方程,故2240111(,)2d 3d ⎛⎫=+-⋅ ⎪⎝⎭⎰⎰x y u x y x x x y yy 231222311yx y y x y x y ⎡⎤-+⎢-=⎥⎣⎦+=+. 所求方程的通解为22131-+=x y C y ,(或223-=x y C y ), 即223-=x y Cy .2.用观察法求出下列方程的积分因子,并求其通解:(1)2()d d 0+=-x y x y x ; (2)22(3)d (13)d 0y x y x xy y -+-=. 解(1)用21x 乘方程,便得到了全微分方程211d d 0⎛⎫+-= ⎪⎝⎭y x y x x , 即2d d d d 0-⎛⎫+=-= ⎪⎝⎭y x x y y x x x x . 故通解为-=yx C x. (2)原方程可化为232d 3d d 3d 0xy x y x y xy y -+-=即232d d 3(d d )0xy x y y x xy y +-+=用21y 乘方程,便得到了全微分方程 21d d 3(d d )0+-+=x x y y x x y y,211d d 3d()02⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭x xy y , 211d 302⎛⎫--= ⎪⎝⎭x xy y ,故原方程的通解为21132--=x xy C y. 3.用积分因子法解下列一阶线性方程:(1)24ln xy y x '+=; (2)tan y y x x '-=. 解 (1)将原方程写成24ln '+=xy y x x, 此方程两端乘以2d 2e μ⎰==xx x 后变成224ln '+=x y xy x x , 即2()4ln '=x y x x ,两端积分,得2224ln d 2ln ==-+⎰x y x x x x x x C ,故原方程的通解为22ln 1=-+Cy x x .(2)方程两端乘以tan d e cos μ-⎰==x xx ,则方程变为cos sin cos '-=y x y x x x ,即(cos )cos '=y x x x ,两端积分,得cos cos d sin cos ==++⎰y x x x x x x x C ,故原方程的通解为tan 1cos =++Cy x x x. 习 题 11-51.求下列微分方程的通解:(1)211y x ''=+; (2)e x y x '''=; (3)(5)(4)10y y x-=.解(1)1121d arctan 1'=+=++⎰y x C x C x ,()12arctan d =++⎰y x C x C 2121arctan ln(1)2=-+++x x x C x C .(2)11e d e e ''=+=-+⎰x x x y x x C x C ,1212(e e )d e 2e '=-++=-++⎰x x x x y x C x C x C x C , 123(e 2e )d =-+++⎰x x y x C x C x C 2123e 3e 2=-+++x x C x x C x C . (作为最后的结果,这里12C 也可以直接写成1C ). (3)令(4)=z y ,则有d 10d -=z z x x,可知=z Cx ,从而有 44d d =yCx x , 再逐次积分,即得原方程的通解53212345=++++y C x C x C x C x C .2.求下列微分方程的通解:(1)y y x '''=+; (2)0xy y '''+=; (3)310y y ''-=; (4)()3y y y ''''=+.解 (1)令'=y p ,则'''=y p ,且原方程化为'-=p p x .利用一阶线性方程的求解公式,得()d d 11e e d eed --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x xxp x x C x x C()11e e e 1e --=--+=--+x x x x x C x C . 即11e x p x C =--+,再积分,得通解21121(1e )d e 2x x y x C x x x C C =--+=--++⎰.(2)令'=y p ,则'''=y p ,且原方程化为0'+=xp p ,分离变量,得d d =-p x p x, 积分得11ln ln ln =+p C x,即1=C p x, 再积分,得通解112d ln ==+⎰C y x C x C x. (3)令'=y p ,则d d ''=py py,且原方程化为 3d 10d -=py p y, 分离变量,得31d d =p p y y , 积分得2121=-+p C y , 故'===y p 再分离变量,得d =±x .由于||sgn()=y y ysgn()d =±⎰y x,即12sgn(=±+y C x C ,两边平方,得()221121-=+C y C x C .(4)令'=y p ,则d d ''=p y py ,且原方程化为3d d =+pp p p y ,即 2d (1)0d ⎡⎤-+=⎢⎥⎣⎦p p p y 若0≡p ,则≡y C .≡y C 是原方程的解,但不是通解.若0≡p ,由于p 的连续性,必在x 的某区间有0≠p .于是2d (1)0d -+=pp y, 分离变量,得2d d 1=+py p, 积分得1arctan =-p y C ,即()1tan =-p y C ,亦即()1cot d d -=y C y x .积分得()12ln sin ln -=+y C x C .即()12sin e -=x y C C ,也可写成()21arcsin e =+x y C C .由于当20=C 时,1=y C ,故前面所得的解≡y C 也包含在这个通解之内. 3.求下列初值问题的解:(1)sin ''=+y x x ,(0)1=y ,(0)2'=-y ; (2)2(1)2'''+=x y xy ,(0)1=y ,(0)3'=y ; (3)2e y y ''=,(0)0=y ,(0)0'=y ; (4)()21'''+=y y ,(0)0=y ,(0)0'=y .解 (1)易知,211cos 2'=-+y x x C ,3121sin 6=-++y x x C x C ,由初值条件(0)2'=-y ,知1201-=-+C ,得11=-C ;由(0)1=y ,知21000=-++C ,得21=C .故特解为31sin 16=--+y x x x . (2)令'=y p ,则'''=y p ,且原方程化为2(1)2'+=x p xp ,变量分离,得212d d 1=+x p x p x , 两端积分,得21(1)'==+y p C x ,再两端积分,得3121()3=++y C x x C ,由初值条件(0)3y '=,有213(10)=+C ,解得,13=C ,由初值条件(0)1y =,有22113(00)3=+⋅+C解得,21=C ,故所给初值条件的微分方程的特解为331=++y x x .(3)令'=y p ,则d d ''=py py ,且原方程化为 2d e d y p p y=,即2d e d y p p y =, 积分得,22111e 22yp C =+, 代入初始条件(0)0=y ,(0)0y '=,得112C =-,从而有22111e 222y p =-,即22e 1y p =-, 亦即'=y 分离变量后积分d=±⎰x,即d-=⎰yx,得2arcsin(e)-=+y x C,代入初始条件(0)0y=,得2π=2C.于是得符合所给初值条件的特解为e sin-π⎛⎫= ⎪2⎝⎭y x,即lncos lnsec=-=y x x.(4)令'=y p,则dd''=py py,且原方程化为2d1d+=pp py,分离变量,得2d d1=-pp yp,两端积分,得211ln(1)2--=+p y C,代入初始条件(0)0y=,(0)0y'=,得1=C.从而,21ln(1)2=--y p,即'==y p再分离变量,得d=±y x d=±yy x 两端积分,得2arch(e)=±+y x C,代入初始条件(0)0=y ,得20=C ,从而有满足所给初始条件的特解为arch(e )=±y x ,即e ch()ch()=±=y x x或写成ln ch()=y x .4.试求''=y x 的经过点(0,1)M 且在此点与直线112=+y x 相切的积分曲线. 解 由于直线112=+y x 在(0,1)M 处的切线斜率为12,依题设知,所求积分曲线是初值问题''=y x ,01==x y ,012='=x y 的解.由''=y x ,积分得2112'=+y x C , 再积分,得21216=++y x C x C , 代入初始条件01==x y ,012='=x y ,解得112=C ,21=C , 于是所求积分曲线的方程为211162=++y x x . 5.对任意的0>x ,曲线()=y f x 上的点(,())x f x 处的切线在y 轴上的截距等于1()d ⎰xf t t x ,求()f x 的表达式. 解 设曲线的方程为()=y f x ,其中()=y f x 有二阶导数,则在点(,())M x f x 处的切线方程为()()()'-=-Y f x f x X x ,令0=X ,知切线在y 轴上的截距为()()'=-Y f x xf x ,据题意,有1()d ()()'=-⎰x f t t f x xf x x ,即20()()()d '-=⎰x xf x x f x f t t . 两端求导,得2()()2()()()''''+--=f x xf x xf x x f x f x ,即[]()()0,'''+=x f x xf x已知0>x ,故有()()0,'''+=f x xf x令'=y p ,则'''=y p ,且原方程化为d 0,d +=pp xx分离变量,得11d d =-p x p x, 两端积分,得1ln ln ln =-p C x ,即1'==C y p x. 再对两端积分,得12ln =+y C x C ,即12()ln =+f x C x C .习 题 11-61.下列函数组中,在定义的区间内,哪些是线性无关的.(1)e x ,e x -; (2)23sin x ,21cos x -; (3)cos2x ,sin 2x ; (4)ln x x ,ln x . 解 (1)因为1e x y =,2e x y -=满足:212e e exx x y y -==≠常数, 所以函数组e x ,e x -是线性无关的.(2)因为213sin y x =,221cos y x =-满足:21223sin 31cos y x y x==-, 所以函数组23sin x ,21cos -x 是线性相关的.(3)因为1cos2y x =,2sin 2y x =满足:12cos2cot 2sin 2y x x y x==≠常数, 所以函数组cos2x ,sin 2x 是线性无关的.(4)因为1ln y x x =,2ln y x =满足:12ln ln y x x x y x==≠常数, 所以函数组ln x x ,ln x 是线性无关的.2.验证1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解,并写出该方程的通解.证明 由1cos y x ω=,得1sin y x ωω'=-,21cos y x ωω''=-; 由2sin y x ω=,得1cos y x ωω'=,21sin y x ωω''=-. 可见,2sin 0i y x ωω''+= (1,2)i =,故1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解.又因为12cot y x y ω=≠常数,故1cos y x ω=与2sin y x ω=线性无关.于是所给方程的通解为1212cos sin y y y C x C x ωω=+=+.3.验证21e x y =及22e x y x =都是方程24(42)0y xy x y '''-+-=的解,并写出该方程的通解.证明 由21e x y =,得212e x y x '=,221(24)e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,232(64)e x y x x ''=+. 因为2222221114(42)(24)e 42e (42)e 0x x x y xy x y x x x x '''-+-=+-⋅+-=; 22223222224(42)(64)e 4(12)e (42)e 0x x x y xy x y x x x x x x '''-+-=+-⋅++-= 所以21e x y =及22e x y x =都是方程24(42)0y xy x y '''-+-=的解.又因为21y x y =≠常数,故21e x y =与22e x y x =线性无关,于是所给方程的通解为 21212()e x y y y C C x =+=+.4.若13y =,223y x =+,22e 3x y x =++都是方程()()()y P x y Q x y f x '''++=(()0f x ≠)当()P x ,()Q x ,()f x 都是连续函数时,求此方程的通解.解 因为221y y x -=,32e x y y -=,所以2x 及e x 都是方程()()()y P x y Q x y f x '''++=对应齐次方程的特解.又因为32221e xy y y y x -=≠-常数,所以21y y -与32y y -线性无关.因此,所给方程()()()y P x y Q x y f x '''++=的通解为212e 3x y C x C =++.习 题 11-71.求下列微分方程的通解.(1)40'''-=y y ; (2)3100'''--=y y y ; (3)960'''++=y y y ; (4)0''+=y y ;(5)6250'''-+=y y y ; (6)(4)5360''+-=y y y . 解 (1)所给方程对应的特征方程为240r r -=,解之,得10r =,24r =,所以原方程的通解为412e x y C C =+.(2)所给方程对应的特征方程为23100r r --=解之,得15r =,22r =-,所以原方程的通解为5212e e x x y C C -=+.(3)所给方程对应的特征方程为29610r r ++=解之,得1213r r ==-,所以原方程的通解为1312()ex y C C x -=+.(4)所给方程对应的特征方程为210r +=,解之,得1i r =,2i r =-,所以原方程的通解为12cos sin y C x C x =+.(5)所给方程对应的特征方程为26250r r -+=,解之,得134i r =-,234i r =+,所以原方程的通解为312e (cos 4sin 4)x y C x C x =+.(6)所给方程对应的特征方程为425360r r +-=,即22(9)(4)0r r +-=解之,得1,22r =±,3,43i r =±, 所以原方程的通解为221234e e cos3sin3x x y C C C x C x -=+++.2.求下列微分方程满足所给初始条件的特解: (1)00430,6,10==''''-+===x x y y y y y ; (2)00440,2,0==''''++===x x y y y y y ; (3)00250,2,5=='''+===x x y y y y ; (4)004130,0,3==''''-+===x x y y y y y . 解 (1)所给方程对应的特征方程为2430r r -+=,解之,得11r =,23r =,所以原方程的通解为312e e x x y C C =+,从而,312e 3e x x y C C '=+,代入初始条件006,10x x y y =='==,得12126,310,C C C C +=⎧⎨+=⎩ 解得,124,2,C C =⎧⎨=⎩ 故所求特解为34e 2e x x y =+.(2)所给方程对应的特征方程为24410r r ++=,解之,得1,212r =-,所以原方程的通解为1212()ex y C C x -=+,从而,12211221211e ee 22x x x C C C x y ----'=-, 代入初始条件002,0x x y y =='==,得1122,10,2C C C =⎧⎪⎨-+=⎪⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为12(2)ex y x -=+.(3)所给方程对应的特征方程为2250r +=,解之,得1,25i r =±,所以原方程的通解为12cos5sin5y C x C x =+,从而,125sin55cos5y C x C x '=-+,代入初始条件002,5x x y y =='==,得122,55,C C =⎧⎨=⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为2cos5sin5y x x =+.(4)所给方程对应的特征方程为24130r r -+=,解之,得1,223i r =±,所以原方程的通解为212e (cos3sin 3)x y C x C x =+,从而,21221e [(23)cos3(23)sin3]x y C C x C C x '=++-,代入初始条件000,3x x y y =='==,得1120,233,C C C =⎧⎨+=⎩ 解得,120,1,C C =⎧⎨=⎩ 故所求特解为2e sin3x y x =.3.设圆柱形浮筒,直径为0.5米,铅直放在水中,当稍向下压后突然放开,浮筒在水中上下振动的周期为2秒,求浮筒的质量.解 设x 轴的正向铅直向下,原点在水面处.平衡状态下浮筒上一点A 在水平面处,又设在时刻t ,点A 的位置为()x x t =,此时它受到的恢复力的大小为21000||gV g R x ρ=π排水(R 是浮筒的半径),恢复力的方向与位移方向相反,故有21000mx g R x ''=-π,其中m 是浮筒的质量.记221000g R mωπ=,则得微分方程20x x ω''+=.解其对应的特征方程220r ω+=,得1,2i r ω=±,故12cos sin sin()x C t C t A t ωωωϕ=+=+,A 1sin C Aϕ=. 由于振动周期22T ωπ==,故ω=π,即221000g R mπ=π, 从中解出浮筒的质量为21000195gR m =≈π(千克). 习 题 11-81.求下列微分方程的特解*y 的形式(不必求出待定系数). (1)2331''-=+y y x ; (2)y y x '''+=;(3)2e '''-+=x y y y ; (4)23e -'''--=x y y y ;(5)32e '''-+=xy y y x ; (6)22(3)e '''-=+-x y y x x ; (7)276e sin '''++=x y y y x ; (8)245e sin x y y y x '''-+=; (9)2222e cos '''-+=x y y y x x ; (10)22e sin x y y y x x '''-+=. 解 (1)2()31f x x =+是e ()λx m P x 型(其中,2()31m P x x =+,0λ=),对应齐次方程的特征方程为230r -=.易知,0λ=不是特征方程的根,所以特解*y 的形式为*2y Ax Bx C =++ (这里A 、B 和C 为待定系数).(2)()f x x =是e ()λx m P x 型(其中,()m P x x =,0λ=),对应齐次方程的特征方程为20r r +=.易知,0λ=是特征方程的一个单根,所以特解*y 的形式为*2()y x Ax B Ax Bx =+=+ (这里A 和B 为待定系数).(3)()e x f x =是e ()λx m P x 型(其中,()1m P x =,1λ=),对应齐次方程的特征方程为2210r r -+=,易知,1λ=是特征方程的二重根,所以特解*y 的形式为*2e x y Ax = (其中A 为待定系数).(4)()e x f x -=是e ()λx m P x 型(其中,()1m P x =,1λ=-),对应齐次方程的特征方程为2230r r --=,易知,1λ=-是特征方程的一个单根,所以特解*y 的形式为*e x y Ax -= (其中A 为待定系数).(5)()e x f x x =是e ()λx m P x 型(其中,()m P x x =,1λ=),对应齐次方程的特征方程为2320r r -+=,易知,1λ=是特征方程的一个单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx =+=+ (其中A 和B 为待定系数). (6)2()(3)e x f x x x =+-是e ()λx m P x 型(其中,2()3m P x x x =+-,1λ=),对应齐次方程的特征方程为220r r -=,易知,1λ=是不是特征方程的根,所以特解*y 的形式为*2()e x y Ax Bx C =++ (其中A 、B 和C 为待定系数).(7)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2760r r ++=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e (cos sin )x y A x B x =+ (其中A 、B 为待定系数).(8)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为 2450r r -+=,易知,i 2i λω+=+是特征方程的根,所以应设其特解为 *2e [cos sin )]x y x A x B x =+ (其中A 和B 为待定系数).(9)2()2e cos x f x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()2l P x x =,()0n P x =).对应齐次方程的特征方程为 2220r r -+=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e [()cos ()sin )]x y Ax B x Cx D x =+++ (其中A 、B 、C 和D 为待定系数). (10)()e sin x f x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中1λ=,1ω=,()0l P x =,()n P x x =).对应齐次方程的特征方程为 2220r r -+=,易知,i 1i λω±=±是特征方程的根,所以应设其特解为[]*2e ()cos ()sin )x y x Ax B x Cx D x =+++ (其中A 、B 、C 和D 为待定系数). 2.求下列各微分方程的通解.(1)22e '''+-=x y y y ; (2)323e -'''++=x y y y x ; (3)369(1)e '''-+=+x y y y x ; (4)e cos ''+=+x y y x . 解 (1)()2e x f x =是e ()λx m P x 型(其中,()2m P x =,1λ=),对应齐次方程的特征方程为2210r r +-=,解得112r =,21r =-, 故对应齐次方程的通解为1212e e x x Y C C -=+.因为1λ=不是特征方程的根,所以特解*y 的形式为*e x y A =,代入原方程得2e e e 2e x x x x A A A +-=.消去e x ,有1A =,即*e x y =,故原方程的通解为1*212e e e x x x y Y y C C -=+=++.(2)()3e x f x x -=是e ()λx m P x 型(其中,()3m P x x =,1λ=-),对应齐次方程的特征方程为2320r r ++=,解得11r =-,22r =-,故对应齐次方程的通解为212e e x x Y C C --=+.因为1λ=-是特征方程的单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx --=+=+,代入原方程并消去e x -,得2(2)3Ax A B x ++=.比较系数,得32A =,3B =-, 即*233e 2x y x x -⎛⎫=- ⎪⎝⎭,故原方程的通解为*22123e e 3e 2x x x y Y y C C x x ---⎛⎫=+=++- ⎪⎝⎭.(3)3()(1)e x f x x =+是e ()λx m P x 型(其中,()1m P x x =+,3λ=),对应齐次方程的特征方程为2690r r -+=,解得1,23r =, 故对应齐次方程的通解为312()e x Y C C x =+.因为3λ=是特征方程的二重根,所以特解*y 的形式为*23323()e ()e x x y x Ax B Ax Bx =+=+,代入原方程并消去e x ,得621Ax B x +=+.比较系数,得16A =,12B =,。