专题复习--线段之和最短的问题
- 格式:ppt
- 大小:246.00 KB
- 文档页数:10
B CD AL 中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化) 三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。
请在图中找出点P 的位置,并计算PA+PB 的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。
四、练习题(巩固提高)张村李庄ABCD 图(2)EBDACP图(3)D OP(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。
4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN的最小值为 。
第4题 第5题 第6题 第7题5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
2020数学中考冲刺专项练习专题19线段的最值问题【难点突破】着眼思路,方法点拨, 疑难突破;两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.【名师原创】原创检测,关注素养,提炼主题;【原创】如图,抛物线y=ax2+bx+c与y轴交于点A(0,2),与x轴交于一点(-2+ 2,0),对称轴为直线x=﹣2,抛物线上存在B、C两点,点B在对称轴左侧,点C在对称轴右侧,BC=6且平行于x轴。
(1)求此抛物线的解析式.(2)求△ABC的面积.(3)点P在x轴负半轴上,且PA+PB的最小值为,求点P的坐标.直线CP将线段AB分成1:3两部分,试求点P的坐标。
【解答】解:(1)由题意得:x=﹣=﹣2,b=4a,c=2,又∵过点(-2+2,0),代入y=ax 2+4ax+2,解得a=1,故b=4则此抛物线的解析式为y=x 2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B 横坐标为﹣5,C 横坐标为1, 把x=1代入抛物线解析式得:y=7,又∵点A 的坐标为(0,2),故点A 到BC 的距离为7-2=5, ∴△ABC 的面积=5×6÷2=15. (3)由(2)题可知B (﹣5,7),C (1,7), 设直线PC 解析式为y=kx+b ,交AB 与点D , 过点A 作AE//BC ,交PC 于点E ,① 当AD :BD=1:3时,则有AE :BC=1:3又∵BC=6,故AE=2,从而得到点E 的坐标为(-2,2) 则代入PC 解析式可得:722k b k b +=⎧⎨-+=⎩解得:53163k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=53x+163,则可得点P 的坐标为(0,165-) ②当AD :BD=3:1时,则有AE :BC=3:1 同理可得到点E 的坐标为(-18,2) 则代入PC 解析式可得:7182k b k b +=⎧⎨-+=⎩解得:51912819k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=519x+ 12819,则可得点P 的坐标为(0,1285-) 综上所述可得点P 的坐标为(0,165-)或(0,1285-).【典题精练】典例精讲,运筹帷幄,举一反三;【例题1】如图1,菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段B C 、CD 、BD 上的任意一点,求PK +QK 的最小值.图1【解析】如图2,点Q 关于直线BD 的对称点为Q ′,在△KPQ ′中,PK +QK 总是大于PQ ′的.如图3,当点K 落在PQ ′上时,PK +QK 的最小值为PQ ′.如图4,PQ ′的最小值为Q ′H ,Q ′H 就是菱形ABCD 的高,Q ′H=3.这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图2 图3 图4【例题2】如图1,已知A (0, 2)、B (6, 4)、E (a , 0)、F (a +1, 0),求a 为何值时,四边形ABEF 周长最小?请说明理由.图1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图2,将线段BF 向左平移两个单位,得到线段ME .如图3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图2 图3【例题3】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【最新试题】名校直考,巅峰冲刺,一步到位。
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
中考专题复习教学目标知识与技能1.建立数学模型,能利用轴对称变换找对称点,并用两点之间线段最短的方法来求最短路径。
2.借助特殊四边形、一次函数、反比例函数以及二次函数的图像等这些基本图形,运用对称变换的方法,能清晰的抓住求最短路径问题的本质。
3.在探索最短路径的过程中,体会轴对称、“桥梁”作用,感悟转化思想,一题多解,一题多变的思想。
过程与方法经历探索最短路径过程,在操作、观察、分析过程中发展学生思维意识,培养学生的解题技能技巧。
情感态度与价值观体验数学活动来源于生活又服务于生活,体会异侧直接连,同侧找对称点,提高学生的学习兴趣。
重点利用轴对称数学知识,将最短路径问题转化为“两点之间线段最短”问题,增强解决实际问题的能力。
掌握解决问题的方法和技巧。
难点综合运用轴对称数学知识,将同侧的两定点通过轴对称变换转化到已侧,从而借助两点之间线段最短解决线段和(周长)最小值问题。
活动一:旧知回顾师生行为设计意图问题1 A,B是路边两个新建小区,要在路边增设一个公共汽车站C。
使两个小区到车站的路程最短,该公共汽车站应建在什么地方?问题2相传,古希腊亚历山大城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?师生集体宣誓师:提出问题。
生:讨论交流,板书作图过程师:提出问题导入课题。
师:请思考问题1和问题2的相同点是解决的那类问题?不同点是什么?解决问题的方法和技巧是什么?1、活跃课堂气氛,使学生在轻松愉快的环境中学习。
2、复习两点之间线段最短,从而引出课题3、渗透转化思想,了解解题方法和解题技巧。
4、建立数学模型:将军饮马问题5、探究解题方法:异侧直接连,同侧找对称点6、发现解题技巧活动二:典题赏析类型一:四边形中的最短路径问题培养学生善于思考、善于观察的良好习惯例1 生:一生读题一生解答师:配合学生完成审题过程师:提出新问题若本题其它条件不变。
2024成都中考数学二轮复习微专题利用两点之间线段最短解决最值问题模型一“一线两点”型(一个动点+两个定点)类型一线段和最小值问题模型分析问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB的值最小.解题思路:根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.模型演变问题:两定点A、B位于直线l同侧,在直线l上找一点P,使PA+PB的值最小.解题思路:将两定点同侧转化为异侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′,与直线l交于点P.注:也可以作点A关于直线l的对称点A′,连接A′B,与直线l交于点P′.模型应用1.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AC=63,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为________.第1题图S矩形ABCD,2.如图,在矩形ABCD中,AB=5,AD=3,点P是矩形内一动点,满足S△P AB=13则PA+PB的最小值为________.第2题图模型迁移3.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(3,5)、B(a,-3)两点,与x轴交于点C.第3题图(1)求反比例函数和一次函数的表达式;(2)若点P为y轴上的动点,当PB+PC取最小值时,求△BPC的面积.4.如图,已知抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值.第4题图类型二线段差最大值问题模型分析问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:根据两边之差小于第三边,|PA-PB|最大值即AB的长,连接AB并延长,与直线l交于点P,点P即为所求.模型演变问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:将两定点异侧转化为同侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′并延长与直线l交于点P.模型应用5.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,点P是EF上的动点,则|PA-PB|的最大值为________.第5题图6.如图,在等边△ABC中,AB=4,AD是中线,点E是AD的中点,点P是AC上一动点,则BP-EP的最大值为________.第6题图7.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6,P为对角线BD上一动点,则PM-PN的最大值为________.第7题图模型迁移8.已知抛物线y=x2-2x-8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,P 是抛物线对称轴上的一个动点,当|PB-PC|有最大值时,求点P的坐标.模型二“一点两线”型(两个动点+一个定点)类型一两条线段的和最小值问题模型分析问题:点P是∠AOB的边OB上一定点,在OA上找一点M,在OB上找一点N,使得PM +MN的值最小.解题思路:要使PM+MN的值最小,设法将PM、MN转化到同一条直线上,利用垂线段最短即可解决.作点P关于OA的对称点P′,过点P′作OB的垂线,分别与OA,OB交于点M、N.模型应用9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q 分别是AD,AC上的动点,则PC+PQ的最小值为________.第9题图10.如图,在菱形ABCD中,AB=6,∠A=120°,点M,N分别为BD,CD上的动点,则CM+MN的最小值为________.第10题图类型二周长最小值问题模型分析问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN 的周长最小.解题思路:要使△PMN的周长最小,即PM+MN+PN的值最小,根据两点之间线段最短,将三条线段转化到同一直线上即可解决.分别作点P关于OA、OB的对称点P′、P″,连接P′P″交OA、OB于点M、N.模型应用11.如图,在△ABC中,AB=AC,∠BAC=90°,点D为AB上一定点,点E,F分别为边AC,BC上的动点,当△DEF的周长最小时,则∠FDE=________.第11题图12.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上,且AD=4,点E,F分别为边AC,AB上的动点,则△DEF周长的最小值为________.第12题图模型三“一定长+两定点”型类型一异侧线段和最小值问题(“造桥”问题)模型分析问题:已知l1∥l2,l1,l2之间距离为d,在l1,l2上分别找M,N两点,使得MN⊥l1,且AM +MN+NB的值最小.解题思路:要求AM+MN+NB的最小值,MN为定值,即要求AM+NB的最小值,通过平移构造平行四边形,将AM、NB转化到同一条直线上.将点A向下平移d个单位到点A′,连接A′B交直线l2于点N,过点N作MN⊥l1于点M.模型应用13.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=241.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且PA +AB+BQ最小,则PA+BQ=________.第13题图类型二同侧线段和最小值问题(平移型问题)模型应用14.如图,菱形ABCD的边长为3,∠BAD=60°,点E,F在对角线AC上(点E在点F的左侧),且EF=1,则DE+BF的最小值为________.第14题图15.如图,四边形ABCD是平行四边形,AB=4,BC=12,∠ABC=60°,点E、F是AD边上的动点,且EF=2,则四边形BEFC周长的最小值为________.第15题图模型迁移16.如图,已知点A(3,1),B(1,0),PQ是直线y=x上的一条动线段,且PQ=2(点Q在点P的下方),当AP+PQ+QB取得最小值时,求点Q的坐标.第16题图参考答案1.33【解析】如解图,连接DE ,则PD +PE ≥DE ,设DE 交AC 于点M ,当点P 与点M 重合时PD +PE 取得最小值,且最小值为DE .∵在菱形ABCD 中,AC =63,BD =6,∴AO =33,OD =3,AC ⊥BD ,∴AD =OA 2+OD 2=6,∴AD =BD =AB ,∴∠BAD =60°,∵点E 为AB 的中点,∴DE ⊥AB ,∴DE =AD ·sin60°=3 3.第1题解图2.41【解析】如解图,设△PAB 底边AB 上的高为h ,∵S △P AB =13S 矩形ABCD ,∴12AB ·h =13AB ·AD ,∴h =2,即h 为定值,在AD 上截取AE =2,作EF ∥AB ,交CB 于点F ,故点P 在直线EF 上运动,作点A 关于直线EF 的对称点A ′,连接A ′B ,交直线EF 于点P ,此时PA +PB 最小,即为A ′B 的长.由对称得AA ′=2AE =4,∴A ′B =AA ′2+AB 2=42+52=41,即PA +PB 的最小值为41.第2题解图3.解:(1)把点A (3,5)代入y =m x可得m =3×5=15,∴反比例函数的表达式为y =15x,把点B (a ,-3)代入y =15x,可得a =-5,∴B (-5,-3).把点A (3,5),B (-5,-3)代入y =kx +b k +b =55k +b =-3=1=2,∴一次函数的表达式为y =x +2;(2)∵一次函数的表达式为y =x +2,令y =0,则x =-2,∴C (-2,0),如解图,作点C 关于y 轴的对称点C ′,则C ′(2,0),即CC ′=4,连接BC ′交y 轴于点P ,此时PC +PB 有最小值,最小值为BC ′,设直线BC ′的表达式为y =k ′x +b ′,5k ′+b ′=-3k ′+b ′=0,′=37′=-67,则BC ′的表达式为y =37x -67,∴P (0,-67),即OP =67,此时S △BPC =S △BCC ′-S △PCC ′=12×4×3-12×4×67=307.第3题解图4.解:当y =0时,-x 2-2x +3=0,解得x 1=-3,x 2=1,∴点A 坐标为(-3,0),点B 坐标为(1,0).当x =0时,y =3,∴点C 坐标为(0,3).∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴当PB +PC 最小时,△PBC 的周长最小.∵点A ,点B 关于抛物线的对称轴l 对称,∴连接AC ,交l 于点P ,点P 即为所求的点.∵AP =BP ,∴PB +PC +BC =AC +BC .∵A (-3,0),B (1,0),C (0,3),∴AC =32,BC =10,∴△PBC 周长的最小值为32+10.5.3【解析】如解图,延长BA 交EF 于P ′,当点P 位于P ′处时|PA -PB |的值最大,∴|PA -PB |的最大值为AB =3.第5题解图6.7【解析】如解图,连接BE 并延长交AC 于点P ′,此时BP -EP 取得最大值为BE ,在等边△ABC 中,AD 是中线,∴BD =DC =2,∴AD =BD ·tan60°=2×3=23,∵E 为AD的中点,∴DE =12AD =3.∴在Rt △BDE 中,BE =BD 2+DE 2=22+(3)2=7,∴BP -EP 的最大值为7.第6题解图7.2【解析】如解图,以BD 为对称轴作点N 的对称点N ′,连接MN ′并延长交BD 于点P ,连接NP ,根据轴对称性质可知PN =PN ′,∴PM -PN =PM -PN ′≤MN ′,当P ,M ,N ′三点共线时,PM -PN 取得最大值,最大值为MN ′的长,∵正方形的边长为8,∴AC =2AB =82,∵O 为AC 中点,∴AO =OC =42,∵N 为OA 中点,∴ON =22,∴ON ′=CN ′=22,∴AN ′=62,∵BM =6,∴CM =AB -BM =8-6=2,∴CM BM =CN ′AN ′=13,∵∠MCN ′=∠BCA ,∴△CMN ′∽△CBA ,∴∠CMN ′=∠CBA =90°,∵∠N ′CM =45°,∴△N ′CM 为等腰直角三角形,∴MN ′=CM =2,即PM -PN 的最大值为2.第7题解图8.解:如解图,连接PA ,则PA =PB ,当x =0时,y =x 2-2x -8=-8,则C (0,-8),当y =0时,x 2-2x -8=0,解得x 1=-2,x 2=4,则A (-2,0),B (4,0),∴抛物线的对称轴为直线x =1,∴|PB -PC |=|PA -PC |≤AC (当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P ′,设直线AC 的解析式为y =mx +n (m ≠0),把A (-2,0),C (0,-8)代入得2m +n =0=-8=-4=-8,∴直线AC 的解析式为y =-4x -8,当x =1时,y =-4-8=-12,即P ′(1,-12),∴当|PB -PC |有最大值时,点P 的坐标为(1,-12).第8题解图9.245【解析】如解图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC 于点Q,∵AD是∠BAC的平分线.∴PQ=PM,∴PC+PQ=PC+PM=CM,根据垂线段最短可知,此时PC+PQ有最小值,即为CM,∵AC=6,BC=8,∠ACB=90°,∴AB=AC2+BC2=62+82=10,∵S△ABC=12AB·CM=12AC·BC,∴CM=AC·BCAB=6×810=245.第9题解图10.33【解析】如解图,过点A作CD的垂线,垂足为N,与DB的交点记为M,∵四边形ABCD为菱形,∴点A与点C关于对角线BD对称,∴AM=CM,∴CM+MN=AM+MN =AN,根据垂线段最短可知,此时CM+MN有最小值,最小值为AN.∵AB=6,∠A=120°,∴∠ADC=60°,AD=6,∴AN=AD·sin60°=33,∴CM+MN的最小值为3 3.第10题解图11.90°【解析】如解图,作D关于AC的对称点D′,关于BC的对称点D″,连接D′D″交AC于点E,交BC于点F,此时,△DEF的周长最小,最小为D′D″,∵AB=AC,∠BAC =90°,∴∠B=45°,DD′⊥AC,DD″⊥BC,∴∠BDD′=45°,∴∠D′DD″=135°,∴∠D′+∠D″=45°,∵ED′=ED,DF=D″F,∴∠D′=∠D′DE,∠D″=∠D″DF,∴∠D″DF+∠D′DE=45°,∴∠FDE=90°.第11题解图12.4【解析】如解图,作点D关于直线AC的对称点D′,点D关于直线AB的对称点D″,连接D′D″交AC于点E,交AB于点F,此时△DEF的周长最小,最小值为D′D″的长,连接AD′、AD″,在Rt△ABC中,∵∠C=90°,∠B=60°,∴∠BAC=30°,∵∠DAB=∠D″AB,∠DAC=∠D′AC,∴∠D′AD″=2∠BAC=60°,∵AD′=AD,AD″=AD,∴AD′=AD″,∴△AD′D″是等边三角形,∴D′D″=AD′=AD=4,∴△DEF的周长的最小值为4.第12题解图13.10【解析】如解图,过点P作PF⊥b交a于点E,交b于点F,在PF上截取PC=4,连接QC交b于点B,过点B作BA⊥a于点A,此时PA+AB+BQ最短.过点Q作QD⊥PF 于点D.在Rt△PQD中,∵∠D=90°,PQ=241,PD=10,∴DQ=PQ2-PD2=8,CD =PD-PC=6,∵AB=PC=4,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,∴PA +BQ=CB+BQ=QC=DQ2+CD2=10.第13题解图14.10【解析】如解图,作DM∥AC,使得DM=EF=1,连接BM交AC于点F,连接BD,∵DM∥AC,∴∠BDM=90°,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM=12+32=10,∴DE+BF的最小值为10.第14题解图15.14+237【解析】如解图,将点B沿BC向右平移2个单位长度得到点B′,作点B′关于AD的对称点B″,连接CB″,交AD于点F,在AD上截取EF=2,连接B′F,四边形EBB′F为平行四边形,则BE=B′F,B″F=B′F,此时四边形BEFC的周长为BE+EF+FC+BC=B″F+EF+FC+BC=B″C+EF+BC,当点C、F、B″三点共线时,四边形BEFC的周长最小.∵AB=4,BB′=2,∠ABC=60°,∴B′B″经过点A.∴AB′=2 3.∴B′B″=4 3.∵BC=12,∴B ′C =10.∴B ″C =B ′B ″2+B ′C 2=237.∴B ″C +EF +BC =14+237.∴四边形BEFC 周长的最小值为14+237.第15题解图16.解:如解图,过点A 作直线MN ∥直线y =x ,将点A (3,1)沿MN 向下平移2个单位后得到A ′(2,0),作点B (1,0)关于直线y =x 的对称点B ′(0,1),连接A ′B ′交直线y =x 于点Q .∵AA ′=PQ =2,AA ′∥PQ ,∴四边形APQA ′是平行四边形,∴AP =A ′Q .∴AP +PQ +QB =A ′Q +PQ +B ′Q ,且PQ =2,∴当A ′Q +B ′Q 值最小时,AP +PQ +QB 值最小,根据两点之间线段最短,即A ′,Q ,B ′三点共线时A ′Q +B ′Q 值最小.∵B ′(0,1),A ′(2,0),∴直线A ′B ′的解析式y =-12x +1,=x=-12x +1,=23=23,∴点Q 的坐标为(23,23).第16题解图。
两点之间线段最短和垂线段最短综合1.如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是()A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释2.自习课上,老师出示这样一道题目:如图,AB是一条河流.要铺设管道将河水引到C、D两个用水点,现有两种铺设管道的方案.方案一:分别过点C、D画AB的垂线,垂足为E、F,沿CE、DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?总结学生的回答,有以下几种答案,你认为正确的答案是()A.方案一节省材料,理由是两点之间线段最短B.方案二节省材料,理由是两点之间线段最短C.方案一节省材料,理由是垂线段最短D.方案二节省材料,理由是两点确定一条直线3.下列三个日常现象:其中,可以用“垂线段最短”来解释的是_____ (填序号).4.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段AC 直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.5.在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.6.如图,汽车站、高铁站分别位于A、B两点,直线a和b分别表示公路与铁路.(1)从汽车站到高铁站怎样走最近?画出图形,理由是.(2)从高铁站到公路怎样走最近?画出图形,理由是.7.如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.8.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索【回顾】(1)如图①,A、B是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由【探索】(2)如图②,在B村庄附件有一个生态保护区,现要在公路l上修建一个垃圾站C,使它到A、B 两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置(3)如图③,A、B是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置(保留画图痕迹)9.在如图所示的方格中,每个小正方形的边长为1,点A、B、C、D在方格纸中小正方形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P,使AP DP CP EP+++最短,理由是.10.(1)如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置,并保留作图痕迹.【探索】(2)如图,C、B两个村庄在一条笔直的马路的两端,村庄A在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置.(3)如图,现有A、B、C、D四个村庄,如果要建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.11.如图,A、B、C是平面内三点.(1)按要求作图:①作射线BC,过点B作直线l,使A、C两点在直线l两旁;②点P为直线l上任意一点,点Q为直线BC上任意一点,连结线段AP、PQ;(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间+的最小值为_______,依据是_______.的距离为8,点A、C之间的距离为6,则AP PQ12.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,()1不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.()2另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.13.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.14.如图,直线l是某天然气公司的主输气管道,点A、B是在l异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设支管道,有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短,在图中画出点P的位置,依据是.方案二:取两个连接点M和N,使得点M到A小区铺设的支管道最短,使得点N到B小区铺设的管道最短,在图中画出M、N的位置,依据是.设方案一中铺设的支管道总长度为m,方案二中铺设的支管道总长度为n,则m与n的大小关系为:m n(填“>”、“=”或“<”).15.我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在A、B两个村庄间修一条公路,再从村庄B修一条公路到河n,如图所示,如何修路才能使公路最短?画出图形并说明理由.16.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.(1)设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,离村庄N最近,请你在AB 上分别画出P,Q两点的位置.(2)设汽车行驶到R点位置时,离村庄M与村庄N的距离和最短,请你在AB上分别画出R点的位置.17.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.18.如图所示,火车站,码头分别位于A,B两点,直线a,b分别表示铁路与河流.(1)从火车站到码头怎样走最近?请画图并说明理由.(2)从码头到铁路怎样走最近?请画图并说明理由.答案与解析1.如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是()A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释【答案】C【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:现象1:测量运动员的跳远成绩时,皮尺与起跳线保持垂直,可用“垂线段最短”来解释;现象2:把弯曲的河道改直,可以缩短航程可用“两点之间线段最短”来解释,故选:C.【点睛】此题主要考查了线段的性质,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.自习课上,老师出示这样一道题目:如图,AB是一条河流.要铺设管道将河水引到C、D两个用水点,现有两种铺设管道的方案.方案一:分别过点C、D画AB的垂线,垂足为E、F,沿CE、DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?总结学生的回答,有以下几种答案,你认为正确的答案是()A.方案一节省材料,理由是两点之间线段最短B.方案二节省材料,理由是两点之间线段最短C.方案一节省材料,理由是垂线段最短D.方案二节省材料,理由是两点确定一条直线【答案】C【分析】垂线段的性质:垂线段最短,根据垂线段的性质解答即可.【详解】解:∵CE⊥AB,根据垂线段的性质可知,CE<CP,同理,DF<DP,∴方案一更节省材料.故选:C.【点睛】本题考查了垂线段的性质,垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.3.下列三个日常现象:其中,可以用“垂线段最短”来解释的是_____ (填序号).【答案】①【分析】根据垂线的性质:垂线段最短即可得到结论.【详解】解:可以用“垂线段最短”来解释①,可以“两点之间线段最短” 来解释②,可以用“两点确定一条直线” 来解释③,故答案为:①.【点睛】本题考查了垂线段最短以及直线、线段的相关知识,熟练掌握垂线的性质是解题的关键.4.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段AC 直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.【答案】两点之间,线段最短;垂线段最短【分析】根据两点之间线段最短以及垂线段最短即可判断.【详解】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.【点睛】本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.5.在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.【答案】两点之间线段最短【分析】根据两点之间线段最短即可得到答案.【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.三、解答题6.如图,汽车站、高铁站分别位于A、B两点,直线a和b分别表示公路与铁路.(1)从汽车站到高铁站怎样走最近?画出图形,理由是.(2)从高铁站到公路怎样走最近?画出图形,理由是.【答案】(1)连接AB,两点之间,线段最短;(2)过B作BC⊥a,垂线段最短.【分析】(1)连接AB,根据两点之间,线段最短;(2)过B作BC⊥a,根据垂线段最短.【详解】解:如图所示:(1)沿AB走,两点之间线段最短;(2)沿BC走,垂线段最短.【点睛】此题主要考查了应用与设计作图,关键是掌握线段的性质和垂线段的性质.7.如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.【答案】(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.8.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索【回顾】(1)如图①,A、B是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由【探索】(2)如图②,在B村庄附件有一个生态保护区,现要在公路l上修建一个垃圾站C,使它到A、B 两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置(3)如图③,A、B是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置(保留画图痕迹)【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)连接AB交直线l于点C,点C即为所求作.(2)根据两点之间线段最短解决问题.(3)作AA′//CD,且AA′=1,连接BA′得到点C,作线段CD⊥河岸即可.【详解】(1)如图,点C即为所求作.理由:两点之间,线段最短.(2)如图,点C即为所求作.(3)如图,线段CD可即为所求作.【点睛】本题考查作图−应用与设计作图,垂线段最短,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.在如图所示的方格中,每个小正方形的边长为1,点A、B、C、D在方格纸中小正方形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P,使AP DP CP EP+++最短,理由是.【答案】(1)图见解析;(2)图见解析,点到直线的距离垂线段最短;(3)图见解析,两点之间线段最短.【分析】(1)根据题意画图即可;(2)①借助网格作CE⊥AB,根据点到直线距离垂线段最短可得符合条件的E点;+++=+.②连接AD和CE交于P点,根据两点之间线段最短可得AP DP CP EP AD CE【详解】(1)连接AB如下图所示;(2)①如图所示CE为最短路径,理由是点到直线的距离垂线段最短,故答案为:点到直线的距离垂线段最短;②如图所示P点为AP DP CP EP+++最短,理由是:两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题考查两点之间的距离,垂线段最短和根据要求画线段.理解点到直线的距离垂线段最短和两点之间线段最短是解题关键.10.(1)如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置,并保留作图痕迹.【探索】(2)如图,C、B两个村庄在一条笔直的马路的两端,村庄A在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置.(3)如图,现有A、B、C、D四个村庄,如果要建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短,连接AB,交l于点C即可;(2)根据BO+CO=BC为定长,故需保证AO最小即可,根据垂线段最短,过点A作AO⊥BC于O 即可;(3)根据两点之间线段最短,故连接AC、BD交于点O即可.【详解】解:(1)连接AB,交l于点C,此时AC+BC=AB,根据两点之间线段最短,AB即为AC+BC的最小值,如下图所示:点C即为所求;(2)∵点O在BC上∴BO+CO=BC∴AO+BO+CO=AO+BC,而BC为定长,∴当AO+BO+CO最小时,AO也最小过点A作AO⊥BC于O,根据垂线段最短,此时AO最小,AO+BO+CO也最小,如下图所示:点O 即为所求;(3)根据两点之间线段最短,若使AO+CO最小,连接AC,点O应在线段AC上;若使BO+DO 最小,连接BD,点O应在线段BD上,∴点O应为AC和BD的交点如下图所示:点O即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.11.如图,A、B、C是平面内三点.(1)按要求作图:①作射线BC,过点B作直线l,使A、C两点在直线l两旁;②点P为直线l上任意一点,点Q为直线BC上任意一点,连结线段AP、PQ;(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间+的最小值为_______,依据是_______.的距离为8,点A、C之间的距离为6,则AP PQ【答案】(1)见解析;(2)5;两点之间,线段最短;垂线段最短.【分析】(1)根据直线、射线、线段的特点按要求作图即可;(2)根据两点之间,线段最短和点到直线的距离垂线段最短回答即可.【详解】(1)如图所示.+的最小值为点A到直线BC的距离,所以是5.(2)AP PQ依据是:两点之间,线段最短;垂线段最短.【点睛】本题考查直线、射线、线段以及两点之间,线段最短,点到直线的距离,解题关键是掌握直线、射线、线段的特点,牢记两点之间,线段最短,垂线段最短.12.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,()1不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.()2另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.【答案】(1)作图见解析;(2)垂线段最短.【分析】(1)线段AC和BD的交点即是水厂的位置.(2)过点H作直线EF的垂线段即可.【详解】解:()1连接AC和BD,线段AC和BD的交点H点就是水厂的位置.()2理由是:垂线段最短.【点睛】本题主要考查了两点之间线段最短和垂线段最短在生活中的应用,解题时要注意它们的综合应用.13.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.【答案】垂线段最短两点之间,线段最短【分析】(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.【详解】(1)过A作AC⊥MN,根据垂线段最短,故答案为垂线段最短;(2)连接AB交MN于D,根据是两点之间线段最短,故答案为两点之间线段最短.【点睛】本题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.14.如图,直线l是某天然气公司的主输气管道,点A、B是在l异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设支管道,有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短,在图中画出点P的位置,依据是.方案二:取两个连接点M和N,使得点M到A小区铺设的支管道最短,使得点N到B小区铺设的管道最短,在图中画出M、N的位置,依据是.设方案一中铺设的支管道总长度为m,方案二中铺设的支管道总长度为n,则m与n的大小关系为:m n(填“>”、“=”或“<”).【答案】两点之间,线段最短;垂线段最短;>【分析】根据题目要求直接连接AB,以及分别过A,B向直线l作垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可.【详解】解:方案一、连接AB交直线l于点P,依据是两点之间,线段最短;方案二、分别过A,B向直线l作垂线即可,如图,AM、BN即为所求,依据是垂线段最短;方案一中m=AP+PB,方案二中n=AM+BN,在Rt∆AMP与Rt∆BNP中,AM<AP,BN<BP,∴AM+BN<AP+BP,即m>n,故答案为:两点之间,线段最短;垂线段最短;>.【点睛】题目主要考查两点之间线段最短及垂线段最短,直角三角形斜边大于直角边等,理解题意,综合运用这些知识点是解题关键.15.我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在A、B两个村庄间修一条公路,再从村庄B修一条公路到河n,如图所示,如何修路才能使公路最短?画出图形并说明理由.【答案】见解析;两点之间线段最短;垂线段最短【分析】由两点之间线段最短;垂线段最短即可作出图形:连接AB;过点B作l的垂线段.【详解】解:如图所示:AB、BC为所求.作图理由:两点之间线段最短;垂线段最短.【点睛】此题考查了作图能力,掌握:两点之间线段最短、垂线段最短是解题的关键.16.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.(1)设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,离村庄N最近,请你在AB 上分别画出P,Q两点的位置.(2)设汽车行驶到R点位置时,离村庄M与村庄N的距离和最短,请你在AB上分别画出R点的位置.【答案】(1)见解析;(2)见解析【分析】(1)作MP⊥AB垂足为P,NQ⊥AB垂足为Q,点p、Q就是所求的点;(2)连接MN交直线AB于点R,点R就是所求.【详解】(1)作MP⊥AB垂足为P,NQ⊥AB垂足为Q,点p、Q就是所求的点.如图所示:(2)连接MN交AB于点R,点R就是所求的点.如图所示:.【点睛】本题考查了两点之间线段最短、垂线段最短,记住这两个性质是解题的关键.17.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.【答案】见解析【分析】根据两点之间线段最短,点到直线的距离垂线段最短即可得到答案.【详解】解;如图所示:连接AB,是两点之间线段最短;作BC垂直于河岸,是垂线段最短.【点睛】本题主要考查了两点之间线段最短,点到直线的距离垂线段最短,解题的关键在于能够熟练掌握相关知识进行求解.18.如图所示,火车站,码头分别位于A,B两点,直线a,b分别表示铁路与河流.(1)从火车站到码头怎样走最近?请画图并说明理由.(2)从码头到铁路怎样走最近?请画图并说明理由.【答案】(1)沿线段AB走,见解析,两点之间,线段最短;(2)沿垂线段BD走,见解析,垂线段最短【分析】(1)根据两点之间线段最短解决问题即可.(2)根据垂线段最短解决问题即可.【详解】解:(1)如图,沿线段AB走,理由:两点之间,线段最短.(2)如图,沿垂线段BD走,理由:垂线段最短.【点睛】本题考查了“两点之间,线段最短”和“垂线段最短”两个知识,熟知两个知识点并正确作图是解题关键.。
2012中考专题复习——线段和的最小值问题复习目标: 1、理解两点一线和两点两线类型的线段和最小值问题的解决方法。
2、学会分析问题,利用两种基本类型解决以几何背景和函数背景的线段和最小值问题。
3、体会在解决问题中体现出来的数学思想方法。
复习重点:两点一线和两点两线型的线段和最小值问题。
复习难点:分析问题,确定问题类型对学生能力要求较高,是本节课的难点。
复习过程:一、两点一线型的线段和最小值问题通过书本八上P42原题来复习两点一线型的基本解决方法。
基本图形:方法:作对称,依据:两点之间,线段最短,数学思想:化折为直变式:已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得P A +PQ +QB 的值最小.(1)点A 、B 在直线m 两侧: (2)点A 、B 在直线m 同侧:例1:例1、如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.练习:练习1,2,3,4二、两点两线型基本图形:已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点,使P A+PQ+QA周长最短.例2、如图,矩形OABC顶点O位于原点,OA,OC分别在x轴、y轴上.B点坐标为(3,2),E为AB中点,F为BC边的三等分点.在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.练习:5,6,7三、课堂小结1、基本题型:两点一线型,两点两线型2、基本方法:作对称,作平移3、基本思想:化折为直(转化思想)四、课后作业见讲义作业部分(附:练习及作业)练习:1、如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5, BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________.2、(温州中考)如图,AB 是⊙O 的直径,AB=2,OC 是⊙O 的半径,OC ⊥AB ,点D 在AC 上,AD=2CD ,点P 是半径OC 上一个动点,那么AP+PD 的最小值是 .3、已知在对抛物线的对称轴上存在一点P ,使得△PBC 的周长最小,请求出点P 的坐标 .4、如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a =______时,四边形ABDC 的周长最短.D CB5、如图,抛物线y=35x2-185x+3和y轴的交点为A,M为OA的中点,若有一动点P,自M点处出发,沿直线运动到x轴上的某点(设为点E),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F 的坐标.6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.变式:如图,∠AOB=45°,P是∠AOB内一点,PO=10,若∠ AOP=30°. Q、R分别是OA、OB上的动点,PR+QR的最小值.7、如图,在锐角△ABC中,AB=24,∠BAC=45°,∠BAC的平分线交BC 于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.课后作业:1、如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.则PB +PE 的最小值是 .2、已知A (-2,3),B (3,1),P 点在x 轴上,若PA +PB 长度最小,则最小值为 .3、.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m =______,n = ______(不必写解答过程);若不存在,请说明理由. 4、求代数式4)4(122+-++x x (0≤x ≤4)的最小值.5、(2010•宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为3+1时,求正方形的边长.6、如图,已知点A (-4,8)和点B (2,n )在抛物线y =ax2上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2)平移抛物线y =ax2,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点. ① 当抛物线向左平移到某个位置时,A ′C +CB′最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第1题 第2题。