钢箱梁桥面铺装典型结构
- 格式:doc
- 大小:901.50 KB
- 文档页数:10
钢桥面铺装应用技术简介1、钢桥面之铺装特性1.1钢桥面物理特性钢桥一般在桥面板的底面设有纵肋和横肋等加劲梁起结构补强作用,加劲梁、横肋、纵肋在垂直方向相互交织,形成网络状承重结构物,是一种效率很高的结构。
钢桥面的物理力学性质与普通混凝土桥面不同,对桥面铺装呈现出许多复杂与不利的因素。
首先,钢桥面形变程度大、受力复杂。
钢材本身柔度大,在车辆荷载作用下容易发生形变,这种形变受到钢面板以下的纵横加劲肋及纵横隔板的限制。
在车辆荷载作用下,加劲肋、隔板所围面积中央出现较大的下沉形变,铺装层底面产生很大拉应力;同时,加劲肋与隔板顶部的位置则相应出现反向弯矩,该部位铺装层表面出现相当大的拉应力和拉应变。
钢桥一般建在大江、大河之上,跨度很大。
桥梁结构在风力、微地震等各种不利因素的影响下产生振动作用,导致桥面铺装也跟随桥梁整体结构发生复杂的不规律应变。
可见,与普通混凝土桥面相比,钢桥面形变程度更大,受力状态也远为复杂。
其次,钢桥面温度变化剧烈。
钢桥面板的导热系数要比其他土工材料大,且桥梁架设于空中,不像普通道路下方存在路基的保温作用,因此钢桥面板的温度波动比一般公路路面更加极端,所以钢桥面铺装材料必须经受相当严苛的温度变化。
1.2钢桥面铺装病害根据对我国正交异性板钢箱梁桥面铺装层破坏的调查分析,总结我国钢桥面铺装的常见病害及产生原因如下:纵横向开裂钢桥面在轮胎荷载作用下产生较大的形变,在肋板顶面产生负弯矩,肋板所围面积中部产生正弯矩,导致铺装层受到很大的拉应力。
在钢面板较薄、肋板间距较大时尤为如此。
铺装层反复经受变形后,极易在特定位置产生疲劳开裂,往往首先表现为肋板顶部沿肋板方向出现的裂缝。
图1 钢桥面铺装纵横向裂缝车辙钢桥面铺装层车辙属于失稳性车辙,主要是由于钢桥温度波动大,在极端高温时间,受重载车辆作用,极易发生车辙。
此外,出于防水考虑,钢桥面往往采用偏密实、空隙率小的沥青混凝土材料,增加了发生车辙的可能性。
钢箱梁桥面铺装施工工法钢箱梁桥面铺装施工工法一、前言钢箱梁桥面铺装施工工法是一种常用于桥梁结构的路面铺装工法。
它具有结构简单、施工效率高、使用寿命长等特点,被广泛应用于公路、铁路和城市桥梁等工程领域。
本文将对钢箱梁桥面铺装施工工法进行详细介绍,包括工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等内容。
二、工法特点钢箱梁桥面铺装施工工法具有以下特点:1. 结构简单:钢箱梁桥面铺装结构采用箱梁形式,具有简洁的结构形式,不占用桥面空间。
2. 施工效率高:采用预制钢箱梁进行铺装,工期明确、施工速度快。
3. 使用寿命长:钢箱梁桥面铺装采用金属材料,具有较好的耐久性和承载能力,能够满足长期使用要求。
三、适应范围钢箱梁桥面铺装施工工法适用于公路、铁路和城市桥梁等工程中的路面铺装,尤其适用于大跨度桥梁。
四、工艺原理钢箱梁桥面铺装施工工法的工艺原理是通过预制好的钢箱梁进行路面铺装,使桥梁的路面得到加固和保护。
具体工艺原理如下:1. 预制钢箱梁:根据设计要求,制作形状规整的预制钢箱梁。
2. 桥面处理:对桥面进行清理和处理,确保表面平整。
3. 预制钢箱梁安装:将预制钢箱梁安装在桥面上,通过焊接和螺栓连接固定。
4. 精确调整:对预制钢箱梁进行精确调整,使其与桥梁结构紧密贴合。
5. 铺装:在预制钢箱梁上进行铺装,选用适合的路面材料进行铺装施工。
6. 整体验收:对铺装完成的桥面进行整体验收,确保施工质量达到设计要求。
五、施工工艺钢箱梁桥面铺装施工工艺包括以下各个施工阶段:1. 桥面处理:清理桥面的灰尘和污垢,修复损坏部分,确保桥面平整。
2. 预制钢箱梁安装:将预制好的钢箱梁按照设计要求进行安装,通过焊接或螺栓连接固定。
3. 精确调整:使用专业的测量工具对钢箱梁进行精确调整,确保与桥梁结构紧密贴合。
4. 铺装施工:根据设计要求,选择适合的路面材料进行铺装施工,包括沥青混凝土、水泥混凝土等。
江苏省高速公路中、小跨径钢箱梁桥面铺装结构形式的选择【摘要】中、小跨径钢箱梁桥在江苏省高速公路中有广泛的应用,但相应的桥面铺装技术研究较少。
为降低造价及便于施工质量控制,中、小跨径钢箱梁桥面铺装结构形式的选择问题亟待解决。
本文就该问题进行分析并谈几点粗浅的认识。
【关键词】中小跨径钢箱梁;桥面铺装;结构形式;施工工艺国内外对长大桥主要为跨江和跨海大桥的桥面铺装形式做了较多研究,而对于中、小跨径的钢桥研究较少。
中、小跨径钢桥跨径一般在50~60m左右,主要用于跨越高等级公路和铁路。
为保证下穿公路或铁路行车安全,钢箱梁桥一般选择三跨一联,主跨为一跨跨越的桥梁形式。
对于中、小跨径钢箱梁,若利用长大桥桥面铺装技术,不仅面临造价高,施工技术难度大,工序复杂质量不易控制,还需要采用特定施工设备等问题。
因此需就中、小跨径钢桥桥面铺装自身特点研究,从而得出经济适用的桥面铺装结构形式。
1 钢箱梁桥面铺装结构需考虑的因素钢桥面板以焊接形式固定在正交异性结构梁和纵肋上,由于钢桥面体系柔性大、易挠曲,在车辆荷载、温度荷载共同作用下的受力和变形特点与普通水泥混凝土桥梁具有非常明显的区别,在同一桥梁的不同部位,受力和变形也具有非常明显的差异。
基于钢箱梁特殊的受力和变形特点,必须采用异于水泥混凝土桥及长大桥桥面铺装结构形式,合理选择中、小跨径钢箱梁桥面铺装结构形式,应优先分析其结构形式影响因素。
1.1 交通量和交通组成交通量和交通组成是钢箱梁桥面铺装结构形式的决定性因素。
过去对钢桥面铺装技术的研究是建立在路面标准轴载(100 kN)及桥梁设计荷载(130 kN)基础上的。
我国实际交通荷载情况则更加严重,轴载达到150 kN、180 kN 的现象非常普遍,甚至有达到250 kN 轴载的情况发生。
对于这种特殊的交通组成,要求钢桥面铺装具有较高的强度,较好的稳定性和耐久性。
1.2 钢箱梁的结构体系钢箱梁桥的正交异性桥面板分为3 个基本结构体系:第一体系为正交异性钢桥面板作为主梁的上翼缘参与主梁的作用;第二体系为支撑于主梁上的正交异性桥面板的作用;第三体系为支撑于纵、横加劲肋(或横隔板)上的桥面盖板的作用。
中信国安.北海第一城3号桥(经十三路)桥梁工程桥面铺装施工方案四川晟茂建设有限公司3号桥(经十三路)桥梁工程项目部二零一七年十二月一日目录一、工程概况………………………………………………………………(一)、工程位置(二)、钢箱梁布置情况二、编制依据及原则………………………………………………………(一)、编制依据(二)、编制原则三、结构组成及施工流程图………………………………………………(一)、结构组成(二)、施工流程图四、施工工艺及要求………………………………………………………(一)、抗剪栓钉(二)、钢筋制安(三)、混凝土浇筑(四)、沥青混凝土五、质量保证措施及安全注意事项………………………………………(一)、质量保证措施(二)、安全注意事项一、工程概况(一)、工程位置3号桥(经十三路)桥梁工程为中信国安.北海第一城项目之一,项目位于北海市银海区大冠沙区域。
(二)、钢箱梁布置情况3号桥为单幅桥梁,桥梁起点桩号J13K1+658.693,终点桩号J13K1+738.693。
该桥梁按道路定线桥跨布置为(50+30)米,总长80米,桥宽25米,梁高1.5米。
主体结构采用下承式梁拱组合体系,主梁采用多箱钢箱梁,拱肋断面采用矩形钢箱。
竖曲线R=1900米,J13K1+658.693-J13K1+708.693段纵坡为2.238%,J13K1+708.693-J13K1+738.693段纵坡为2.866%。
该桥横桥向为散水坡,散水中心线为桥梁中心线,横坡均为1.5%。
详见布置图如下:二、编制依据及原则(一)编制依据《城市桥梁设计规范》(CJJ 11-2011)《公路桥涵设计通用规范》(JTG D60-2015)《公路桥涵施工技术规范》(JTG/T F50-2011)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路钢结构桥梁设计规范》(JTG D64-2015)《广西建筑工地文明施工标准》及地方相关安全生产规定《城市桥梁工程施工与质量验收标准》(CJJ 2-2008)《道桥用防水涂料》(JC/T 975-2005)(二)编制原则1、安全第一、预防为主的原则安全、文明生产是施工企业管理的重要环节,也是关系本工程形象及企业的头等大事。
摘要:随着我国经济建设的飞速发展,省、市、区之间各级路网的进一步完善,各类大跨径钢箱梁桥由于其自重轻、跨越能力大、施工简便等优点,在各级城市路网建设中被越来越多的广泛应用。
但随之由于钢箱梁桥面板自身刚度较小,易随桥面荷载变形的特点,很容易造成铺装层因与桥面之间因粘结层抗剪力不足而整体或局部滑移、脱落。
因此钢箱梁面铺装一直以来是大跨径钢箱梁桥施工的技术难题。
关键词:钢箱梁桥面、双层SMA、改性沥青、桥面防水苏州市人民路北延钢箱梁桥面铺装工程采用双层4cm细粒式沥青混凝土(SMA-13)结构有效地满足了钢箱梁桥面铺装层的结构材料必须与钢板变形同步性能好,同钢板粘结性强,高温稳定,低温抗裂,耐疲劳,不透水,便于施工,易于维修等基本要求本文以笔者亲身参与的苏州市人民路北延钢箱梁桥面铺装工程为例,着重介绍双层SMA钢箱梁桥面铺装施工工艺。
一、材料及配比1、材料选用钢桥面铺装所选用的0~4.75mm细集料为石灰岩轧制而成,4.75~9.5mm、9.5~13.2mm的粗集料为玄武岩轧制而成,且符合JTG F40-2008《公路沥青路面施工技术规范》要求;矿粉采选用石灰岩中的强基性岩石经磨细制成,质量符合《JTG F40-2008》规范;稳定剂选用聚酯纤维,沥青结合料选用8.2%RST改性70号壳牌道路石油沥青2、SMA-13配合比设计钢桥面SMA-13级配范围与推荐级配范围见表2.1-1所示,其中4.75mm筛孔的通过率应在27%-28%。
表1.2-1 SMA-13级配范围表1.2-2 SMA-13混合料技术要求按照上述集料验收指标要求组织原材料进场,取样进行集料合成级配试验,并按照传统的SMA-13沥青混凝土配合比设计方法进行目标配合比和生产配合比设计。
用生产配合比在生产拌和机上进行试拌,取样进行检验,改性沥青SMA-13技术指标满足要求后,由此确定正式生产用的标准配合比。
二、桥面防腐层、防水联结层施工1、钢箱梁桥面板除锈钢桥面表面应平整清洁,钢箱梁桥面板除锈前,应仔细检查桥面板表面情况,主要检查桥面焊缝打磨是否平整、钢箱梁吊装处的吊环钢筋切割面是否突起,如发现焊缝不平整或钢筋突起应重新进行打磨至与钢桥面板高度差±3mm以内齐平。
浦东建设特种双层SMA钢箱梁桥面铺装技术钢箱梁桥面铺装特点:由于钢桥面板是焊接固定在正交异性结构梁和纵肋上,并且钢桥面体系柔性大、易挠曲,在车辆荷载、温度荷载作用下的变形和受力特点与普通水泥混凝土桥梁具有非常明显的区别,在同一桥梁的不同部位,变形和受力也具有非常明显的区别。
因此,由于钢桥面铺装使用条件更为严酷,钢桥面铺装性能要求的程度与普通路面铺装及水泥混凝土桥面铺装是完全不同的。
主要表现在以下几个方面:①钢桥面铺装受力状况更为复杂,铺装中产生的应力也更大。
钢桥的桥面为正交异性板结构,钢板的变形及受纵横加筋梁的限制及刚度差异,在车辆荷载的作用下,钢桥面在不同部位产生不同的变形,铺装层在不同部位的受力也不同,铺装的疲劳开裂问题更为严重。
②钢板吸热及传热能力强,夏季炎热时,桥面板的温度较水泥砼桥面板高20℃以上。
由于钢板吸热及传热快,因此在太阳直射及环境温度较高时,铺装底面、钢板表面最高温度可达60℃以上,加上铺装层所承受的太阳辐射热的积累,桥面铺装最高温度在60~70℃甚至更高的使用温度下,要求铺装层有极佳的热稳性。
与传统水泥砼桥面不同的是钢板温度高,对铺装层与钢板间粘接层在高温下的结合力要求也较高,否则在高温下,桥面铺装也会因层间结合力不足而产生横向移动、推拥等病害。
这也成为钢桥面铺装一个最为主要病害。
③由于钢板的反复变形,对铺装层与刚板的结合力要求也更高。
在反复弯曲变形及振动作用下,因钢板的材料特性与铺装材料特性的不一致,界面上易产生法向应力(易引起脱层)及纵、横向剪切应力(易引起脱层及变形),这要求粘接层材料不只确保有较高的结合力而且要有良好韧性,以适应荷载的反复作用。
④由于钢板极易快速生锈等原因,钢桥面铺装防护及防排水系统要求更加完善。
水渗透到钢板会使钢板腐蚀、生锈,既会损害桥面板,也会引起铺装脱层;同时,铺装层防腐涂层失效,也会导致铺装的损坏。
⑤由于钢板变形量大,铺装层对桥面板应具有相适应的变形的追从性。
钢箱梁桥面铺装层专项施工方案批准:校核:编制:项目经理部年月日目录一、编制依据 (1)二、适用范围 (1)三、工程概况 (1)四、施工区气候条件 (1)五、施工方案 (1)5.1施工工艺 (1)5.2 质量标准 (4)5.3 成品保护 (5)5.4 强制要求 (5)六、质量保证措施 (5)七、安全保证措施 (7)7.1施工用电安全措施 (7)7.2钢筋工程安全措施 (8)7.3高空作业人员安全保证措施 (8)7.4安全违章处罚措施 (9)八、应急预案 (9)8.1 预案对象 (9)8.2适用范围 (9)8.3 组织保障 (9)8.3.1 组织机构 (9)8.3.2 职责 (10)8.4 应急预案处置原则 (10)8.5 应急处理工作流程 (10)8.6高空坠落、物体打击应急救援预案 (11)8.7机械伤害应急救援预案 (12)8.8应急救援程序 (12)8.9 应急反应联络电话 (13)九、施工机械及人员配置 (13)9.1施工人员配置 (13)9.2施工机械配置 (14)钢箱梁桥面铺装层专项施工方案一、编制依据1、《城镇道路工程施工与质量验收规范》CJJ1-20082、《城镇桥梁工程施工与质量验收规范》CJJ2-20083、《公路桥涵施工技术规范》(JTG/TF50-2011);4、《钢筋焊接及验收规程》(JGJ18-2003);5、《工程建设标准强制性条文》(公路、市政工程部分);6、施工组织设计;7、设计图纸。
二、适用范围本施工方案适用于48-50联内所有钢箱梁桥面铺装(C50钢纤维混凝土)施工。
三、工程概况工程全线高架桥采用双幅形式,分南北两向,单幅桥梁宽度 13米,两桥之间间距16.75米,桥梁基础采用钻孔灌注桩基础,下部结构桥墩采用花瓶墩接承台的结构形式。
上部构根据跨径采用等截面预应力混凝土连续箱梁和钢箱梁两种结构形式。
四、施工区气候条件地区属暖温带大陆性气候,四季分明,冬春干冷多风,极端最低气温-15.8℃,一月最冷,平均温度0.2℃,最大冻结深度18cm。
钢桥面铺装典型结构建议重庆鹏方路面工程技术研究院重庆中交科技股份有限公司钢桥面铺装典型结构一、前言1.1 钢桥面铺装的特性1)正交异性钢桥面铺装受力模式独特;2)钢桥面板对防腐要求极高;3)钢桥面铺装的使用条件往往更加恶劣。
1.2钢桥面铺装的基本性能要求1)优良的使用性能,包括安全性和行车舒适性;2)优良的防锈、防水性能,保护桥面板;3)优良的层间结合状态;4)优良的抗疲劳开裂性能;5)优良的抗车辙性能;6)对桥面变形有良好的追从性;7)优良的抗老化能力;8)优良的抗水损害能力。
1.3合理的钢桥面铺装结构桥面铺装结构层设计与桥梁结构类型受力的特点、交通量与组成、气候环境条件密切相关。
合理的钢桥面铺装结构应如图1.1所示。
图1.1 钢桥面铺装典型结构1.4钢桥面铺装各层的作用和要求1.4.1防腐层位于钢板表面,由涂料或热喷金属类材料等组成,能起到防止钢板生锈腐蚀的作用。
1.4.2防水层保护钢板不受路表水的侵害,并与钢板及相邻铺装层形成抗剪连接功能的各层组合体,一般由具有防水、粘结性能的层次组成。
根据体系的需要还可设置缓冲层。
1.4.3底涂层用于某层次下面以增强该层次与下卧层粘结力的涂层。
1.4.4粘结层在相邻层间起粘结作用的层次,需具有良好的粘结性能。
1.4.5缓冲层用于防水层与铺装下层之间的层次,起到防水、隔热、缓冲荷载、提供施工平台等作用,可采用橡胶沥青砂胶或者橡胶沥青应力吸收层等。
1.4.6防水体系由相互协调一致,相互匹配的防水层(粘结层、缓冲层)和铺装下层组成,起到防水隔离的作用。
1.4.7保护层(铺装底层)保护层(铺装底层)不只是要有良好的承重和传递荷载的性能,需要有良好的热稳性、抗水损害性能、适应桥梁结构变形的能力等,还要有良好的密水性。
一般情况下,保护层应采用空隙率小,抗渗水性好的混合料类型。
1.4.8磨耗层(铺装面层)磨耗层(铺装面层)直接与车辆轮胎及大气接触,需提供平整、抗滑、耐久的行驶表面。
因此,铺装表面层应粗糙,有足够的纹理以提供长期的抗滑功能。
铺装表面层也是在高温天气直接承受阳光照射,温度也最高,也直接与雨水、酸雾等接触,因此要有足够的热稳性、抗老化性能、抗水损害性能、抗裂性能等。
二、推荐的钢桥面铺装方案根据《钢箱梁桥面铺装设计与施工技术指南》,提出以下钢桥面铺装建议方案。
2.1采用AMP-100二阶反应型防水粘结材料作为防水层的铺装结构2.1.1铺装结构采用AMP-100二阶反应型防水粘结材料作为防水层的铺装结构如图2.1所示。
图2.1 AMP-100二阶反应型防水粘结材料作为防水层的铺装结构2.1.2方案说明1 钢板喷砂除锈到规定等级,并采用环氧富锌漆或无机富锌漆等作防腐层。
2 采用AMP-100二阶反应型防水粘结材料作为防水层,可分两层实施。
3 采用橡胶沥青砂胶作缓冲层,厚度宜为3~8mm。
4 下层采用SMA时,厚度宜为30~40mm,相应面层厚度宜为30~40mm,铺装下层和面层之间应使用AMP-PS普适反应型防水粘结材料或改性乳化沥青作粘层。
注:铺装上下层之间,也可采用橡胶沥青应力吸收层取代粘层材料(AMP-PS普适反应型防水粘结材料或改性乳化沥青),有利于增强铺装层的抗裂性。
缓冲层也可采用橡胶沥青应力吸收层,厚度宜为1cm,其施工设备较橡胶沥青砂胶简单。
2.1.3 方案特点该方案的特点:粘接层是通过化学过程实现与钢板的有效粘接,该化学过程一般是不可逆的;粘接层材料不会随着温度的升高而出现软化或者融化,粘接层一旦形成,就具有相对独立性和稳定性,对温度显示出良好的惰性。
2.1.4方案适用领域该方案适用于降雨量较小区域、跨径较小的桥梁桥面铺装。
2.2采用AMP反应性树脂作为下封闭层的铺装结构(1)2.2.1铺装结构采用AMP反应性树脂作为下封闭层的铺装结构如图2.2所示图2.2 AMP反应性树脂作为下封闭层的铺装结构2.2.2方案说明1 钢板喷砂除锈到规定等级,并采用环氧富锌漆或无机富锌漆等作防腐层。
2 采用AMP反应性树脂作下封层,一般分两层实施。
下层AMP反应性树脂干膜厚度0.2~0.4mm,下层未完全固化前铺筑上层,上层反应性树脂干膜厚度0.8~1.2mm,其上撒布机制中砂。
3 采用橡胶沥青砂胶作缓冲层,厚度宜为3~8mm。
为保证该层与防水层的粘结,宜使用AMP-100二阶反应型防水粘结材料作为底涂层,用量宜为300~600g/m2。
4 下层采用SMA时,厚度宜为30~40mm,相应面层厚度宜为30~40mm,铺装下层和面层之间应使用AMP-PS普适反应型防水粘结材料或改性乳化沥青作粘层。
注:铺装上下层之间,也可采用橡胶沥青应力吸收层取代粘层材料(AMP-PS普适反应型防水粘结材料或改性乳化沥青),有利于增强铺装层的抗裂性。
缓冲层也可采用橡胶沥青应力吸收层,厚度宜为1cm,其施工设备较橡胶沥青砂胶简单。
2.2.3 方案特点该铺装结构的特点是以AMP反应性树脂材料为防水层,一方面AMP反应性树脂材料撒砂固化后形成粗糙面以利于铺装层与钢板的粘结,另一方面隔绝水和空气,防止钢板锈蚀;同时,采用了橡胶沥青砂胶或橡胶沥青应力吸收层作为缓冲层,可起到防水、隔热、粘结和缓冲铺装表面应力、增强铺装的抗裂性及提供摊铺机等机械行驶平台等作用。
SMA的骨架密实结构,使得它有较小的空隙率,其密水性较好,沥青膜与空气接触的面积较小,因此它的抗水损害性能,抗老化性能都较好,但SMA不能保证完全密水,可能产生水损害。
2.2.4方案适用领域该方案适用于降雨量较小、结构刚度大、超载车不严重的桥梁桥面铺装工程。
2.3采用AMP反应性树脂作为下封闭层的铺装结构(2)2.3.1铺装结构采用AMP反应性树脂作为下封闭层的铺装结构如图2.3所示图2.3 AMP反应性树脂作为下封闭层的铺装结构2.3.2方案说明1 钢板喷砂除锈到规定等级,并采用环氧富锌漆或无机富锌漆等作防腐层。
2 采用AMP反应性树脂作下封层,一般分两层实施。
下层AMP反应性树脂干膜厚度0.2~0.4mm,下层未完全固化前铺筑上层;上层反应性树脂干膜厚度0.8~1.2mm,其上撒布机制中砂。
3 采用橡胶沥青砂胶作缓冲层,厚度宜为3~8mm。
为保证该层与防水层的粘结,宜使用AMP-100二阶反应型防水粘结材料作为底涂层,用量宜为300~600g/m2。
4 下层采用GA,厚度宜为25~40mm,其上须撒布适宜粒径的预拌沥青碎石。
面层厚度宜为30~40mm,铺装下层和面层之间应使用AMP-PS普适反应型防水粘结材料或改性乳化沥青作粘层。
注:缓冲层也可采用橡胶沥青应力吸收层,厚度宜为1cm,其施工设备较橡胶沥青砂胶简单。
2.3.3 方案特点该铺装结构的特点是以AMP反应性树脂材料为防水层,一方面AMP反应性树脂材料撒砂固化后形成粗糙面以利于铺装层与钢板的粘结,另一方面隔绝水和空气,防止钢板锈蚀;同时,采用了橡胶沥青砂胶或橡胶沥青应力吸收层作为缓冲层,可起到防水、隔热、粘结和缓冲铺装表面应力及增强铺装的抗裂性等作用。
浇筑式沥青混合料结构型式为完全悬浮型,密实且不透水(空隙率几乎为0),整体上具有很好的抗疲劳性能和耐久性,由于结合料含量较高,抵抗低温开裂的能力较强。
2.3.4方案适用领域该方案适用于降雨量较大、冬季寒冷区的桥梁桥面铺装工程。
2.4 浇筑式沥青混凝土作防水层(下层)的铺装结构2.4.1铺装结构浇筑式沥青混凝土作防水层(下层)的铺装结构如图2.4所示。
图2.4 浇筑式沥青混凝土作防水层(下层)的铺装结构图2.4.2方案说明1 钢板喷砂除锈到规定等级。
2 AMP-100二阶反应型防水粘结材料作为钢板喷砂除锈后的封闭层,涂布两层。
该层同时也作为钢板与浇筑式沥青混凝土层之间的粘结层。
3 下层采用GA,同时兼具防水层的作用。
下层厚度宜为25~40mm,相应面层厚度宜为30~40mm。
面层为SMA时,GA表面应撒布适宜粒径的预拌沥青碎石,铺装下层和面层之间应使用AMP-PS普适反应型防水粘结材料或改性乳化沥青作粘层。
面层为GA时,下层GA 表面可不撒布碎石,上层GA表面应撒布适宜粒径的预拌沥青碎石,双层GA层间无需采用粘层。
2.4.3 方案特点沥青类粘结剂+GA+SMA的铺装结构是日本常用的铺装结构形式,该结构充分利用了GA 的防水性、整体性等特点,防水性能优良。
2.4.4方案适用领域该结构适宜于铺装厚度较薄的桥面铺装。
2.5 Elinminator防水粘结体系作防水层的铺装结构2.5.1铺装结构Elinminator防水粘结体系作防水层的铺装结构如图2.5所示。
图2.5 Elinminator防水粘结体系作防水层的铺装结构图2.5.2方案说明1 钢板喷砂除锈到规定等级,在喷砂除锈合格后3h内,喷涂底涂层(Zed S94),其用量约200 g/m2。
2 待底涂层固化后,实施甲基丙烯酸类树脂防水膜(两层)和Bond Coat SA1030胶粘剂,在每层喷涂完约1h(23℃)后喷涂下一层。
甲基丙烯酸类树脂防水膜总用量宜为2.5~3.5Kg/ m2,Bond Coat SA1030胶粘剂用量宜为1.25~1.75Kg/ m2。
3 下层采用SMA时,厚度宜为30~40mm,相应面层厚度宜为30~40mm,铺装下层和面层之间应使用AMP-PS普适反应型防水粘结材料或改性乳化沥青作粘层。
2.5.3 方案特点Elinminator防水粘结体系与钢板的结合力、抗刺破能力、防腐蚀能力及铺装层间稳定性优良。
2.5.4方案适用领域高粘度改性沥青SMA,具有优良的热稳性,同时,抗裂性、密水性均较一般改性沥青密级配沥青混凝土优良,表面粗糙均匀、抗滑,特别是粗骨料嵌挤结构较适应于我国南方地区的高温气候,在高温重载下的抗车辙性能方面具有较大优势。
其与Elinminator防水粘结体系的共同使用,适用于跨径较大的桥梁桥面铺装。
2.6 Elinminator防水粘结体系与浇筑式沥青混凝土共同使用的铺装结构2.6.1铺装结构Elinminator防水粘结体系+GA共同使用的铺装结构如图2.6所示。
图2.6 Elinminator防水粘结体系+GA共同使用的铺装结构图2.6.2方案说明1 钢板喷砂除锈到规定等级,在喷砂除锈合格后3h内,喷涂底涂层(Zed S94),其用量约200 g/m2。
2 待底涂层固化后,实施甲基丙烯酸类树脂防水膜(两层)和Tack Coat No.2胶粘剂,在每层喷涂完约1h(23℃)后喷涂下一层。
甲基丙烯酸类树脂防水膜总用量宜为2.5~3.5Kg/ m2,Tack Coat No.2胶粘剂用量宜为100~200g/ m2。
3 下层采用GA,同时兼具防水层的作用。
下层厚度宜为25~40mm,相应面层厚度宜为30~40mm。