全等三角形单元检测题含答案
- 格式:docx
- 大小:673.12 KB
- 文档页数:9
最经典《全等三角形》单元测试题卷(含答案)全等三角形单元测试题一、选择题(每小题3分,共30分)1.下列说法错误的是()A。
全等三角形的对应边相等B。
全等三角形的对应角相等C。
全等三角形的周长相等D。
全等三角形的高相等2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A。
∠1=∠2B。
AC=CAC。
AB=ADD。
∠B=∠D3.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A。
AB=DEB。
∠B=∠EXXX=BCD。
EF∥BC4.长为3cm、4cm、6cm、8cm的木条各两根,XXX与XXX分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A。
一个人取6cm的木条,一个人取8cm的木条B。
两人都取6cm的木条C。
两人都取8cm的木条D。
B、C两种取法都可以5.△ABC中,AB=AC,三条高AD、BE、CF相交于O,那么图中全等的三角形有()A。
5对B。
6对C。
7对D。
8对6.下列说法中,正确的有()①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等。
A。
1个B。
2个C。
3个D。
4个7.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A。
B。
4C。
D。
58.如图,ABC中,AD是它的角平分线,AB=4,AC=3,那么△ABD与△ADC的面积比是()A。
1:1B。
3:4C。
4:3D。
不能确定二、填空题(每小题3分,共24分)11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=7.12.如图,∠1=∠2,CD=BD,可证△ABD≌△ACD,则依据是SSS。
13.在四边形ABCD中,已知CB=CD,∠XXX∠ADC=90°,∠BAC=35°,求∠BCD的度数。
全等三角形》单元测试题(含答案)全等三角形》单元测试题姓名。
班级:得分:一、填空题(4×10=40分)1、在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,DE>EF>DF。
2、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=70°,A′B′=15cm。
3、如图1,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是∠XXX。
4、如图2,在△ABC和△FED,AD=FC,AB=FE,当添加条件BD=CE时,就可得到△ABC≌△FED。
5、如图3,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形4对。
6、如图4,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是BD=EC。
7、如图5,△ABC中,∠C=90°,CD⊥XXX于点D,AE是∠BAC的平分线,点E到AB的距离等于3cm,则CF=6cm。
8、如图6,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=50°。
9、P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于C、D,则CD=PD,P点到∠AOB两边距离之和等于AO或BO。
10、AD是△ABC的边BC上的中线,AB=12,AC=8,则中线AD的取值范围是6≤AD≤8.二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等。
其中真命题的个数有2个。
12、如图7,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有△ABD≌△AFDB、△AFE≌△ADC。
13、下列条件中,不能判定△ABC≌△A′B′C′的是∠B=∠B′。
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
《第12章全等三角形》单元测试含答案解析一、选择题如图,5个全等的正六边形,A、B、C、D、E,请认真观看A、B、C、D四个答案,其中与右方图案完全相同的是()A.B.C.D.2.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形通过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等3.若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.74.如图,在2×2的方格纸中,∠1+∠2等于()A.60° B.90° C.120°D.150°5.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=60°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70° C.60° D.50°6.如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A .20°B .30°C .35°D .40°7.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )A .AD=AEB .∠AEB=∠ADC C .BE=CD D .AB=AC8.长为3cm ,4cm ,6cm ,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A .一个人取6cm 的木条,一个人取8cm 的木条B .两人都取6cm 的木条C .两人都取8cm 的木条D .C 两种取法都能够9.下列条件中,不能判定△ABC ≌△A 1B 1C 1的是( )A .AB=A 1B 1,∠A=∠A 1,AC=A 1C 1 B .AB=A 1B 1,BC=B 1C 1,AC=A 1C 1C .AB=A 1B 1,∠B=∠B 1,∠C=∠C 1D .AC=A 1C 1,AB=A 1B 1,∠B=∠B 110.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个11.依照下列已知条件,能画出唯独△ABC 的是( )A .AB=3,BC=4,AC=7B .AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45° D.∠C=90°,AB=412.如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50° B.65° C.70° D.85°13.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C的度数为()A.120°B.60° C.50° D.3014.如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15° B.30° C.45° D.60°15.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40° B.45° C.50° D.60°16.下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个17.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SAS B.ASA C.AAS D.SSS18.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去19.在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,若AB=4cm,则AD+DE的值为()A.3cm B.4cm C.5cm D.6cm20.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,如此格点三角形最多能够画出()A.2个B.3个C.4个D.5个二、填空题:21.将△ABC沿BC方向平移3cm得到△DEF,则CF= ;若∠A=80°,∠B=60°,则∠F= .22.假如两个三角形的三边对应相等,则这两个三角形,它也能充分告诉我们:三角形具有.23.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).24.如图所示,△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形对.25.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,如此的三角形一共能作出个.26.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN= .27.如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于.28.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,AB=10,BD是∠ABC平分线,DE⊥AB,垂足为E,则△ADE的周长为.29.如下面三个图均有AB=AC,BD=CE,图②在图①的基础上连结了AO,图③在图②的基础上连结了BC,则图①、图②、图③的全等三角形的对数分别为对,对,对.30.△ABC中,AB=10,BC=16,D为AC的中点,则中线BD的取值范畴为.三、作图解答题:31.已知△ABC.(1)请用尺规作图的方法在△ABC内求作一点O,使点O到三边的距离相等.(不写作法,但要保留作图痕迹)(2)若△ABC的周长为60,面积为150,试求点O到三边AB、BC、AC的距离分别是多少?32.在平面直角坐标系xOy中,△ABC的一直角顶点C恰好在坐标原点上,CA、CB分别落在坐标轴(见图示),AC=4,BC=3,AB=5;第一次以点B为定点翻转,边BA落在x轴上;第二次以点A为定点翻转,边AC落在x轴上;第三次以点C为定点翻转,边CB落在x轴上;…如此循环.(1)请在第2020次翻转处画出△ABC的形状示意图.(2)翻转后的图形和原三角形是否是全等三角形?什么缘故?(3)试求第10次翻转后△ABC三个顶点的坐标.(△ABC的三边长按照1:1的单位长度)四、解答题33.如图,已知AB∥CD,AE∥CF,BF=DE求证:AB=CD.34.如图,已知AB=AD,AC=AE,∠1=∠2求证:∠B=∠D.35.如图所示,在△ABC中,AB=AC,M为BC的中点,MD⊥AB于点D,ME⊥AC于点E.求证:MD=ME.36.如图所示,E为AB延长线上的一点,AC⊥BC,AD⊥BD,AC=AD求证:∠CEA=∠DEA.37.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过C、A作BD的垂线,垂足分别为E、F.求证:EF=CE﹣AF.五、解答题:38.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A= 度.39.如图,OP平分∠AOB,∠AOB=40°,PM⊥OA于M,PN⊥OB于N,PC∥OB,交边OA于点C,E为边OB上的一点,且满足PC=PE.求∠EPN的度数?40.如图,BD平分∠ADC,∠A=∠B=90°,OA=OB.求证:CA平分∠DCB.41.在四边形ABCD中,AD∥BC,点E为CD的中点.求证:S△AEB =SABCD.42.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,∠B=∠D,AF=CE,AB∥CD.求证:AB=CD.43.如图,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分别交AD、DE于点G、F,AC与DE交于点H.求证:(1)△ABC≌△ADE;(2)BC⊥DE.六、探究、开放题:44.如图,已知AF∥BE,且AF=BE,AC=BD.请指出图中有哪些全等三角形,并任选一对给予证明.45.已知命题:如图,点B、C、E、F在同一直线上,若AB=AF,∠1=∠2,则△ABE≌△AFC.请判定那个命题是真命题依旧假命题,假如是真命题,请给予证明;假如是假命题,请添加一个条件使它成为真命题,并加以证明.46.如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,则线段BD和CE具有什么数量关系,并证明你的结论.47.如图①,在△ABC中,∠BAC=90°,AB=AC,直线l通过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.《第12章全等三角形》参考答案与试题解析一、选择题如图,5个全等的正六边形,A、B、C、D、E,请认真观看A、B、C、D四个答案,其中与右方图案完全相同的是()A.B.C.D.【考点】全等图形.【分析】将选项中的图形绕正六边形的中心旋转,与题干的图形完全相同的即为所求.【解答】解:观看图形可知,只有选项C中的图形旋转后与图中的正六边形完全相同.故选:C.【点评】此题考查了全等图形以及生活中的旋转现象,旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.2.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形通过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等【考点】全等图形.【分析】依照全等三角形的性质和全等图形的定义对各选项分析判定利用排除法求解.【解答】解:A、两个三角形全等,形状一定相同,正确,故本选项错误;B、两个三角形全等,面积一定相等,正确,故本选项错误;C、一个图形通过平移、旋转、翻折后,前后两个图形一定全等,正确,故本选项错误;D、只有边长相等的正方形才全等,因此所有的正方形都全等错误,故本选项正确.故选D.【点评】本题考查了全等图形的定义,熟记全等三角形的性质以及全等图形的概念是解题的关键.3.若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.7【考点】全等三角形的性质.【分析】先求出AC,依照全等三角形的性质得出DF=AC,即可得出选项.【解答】解:∵△ABC的周长为15,AB=6,BC=4,∴AC=15﹣6﹣4=5,∵△ABC≌△DEF,∴DF=AC=5,故选B.【点评】本题考查了全等三角形的性质的应用,解此题的关键是能依照全等三角形的性质得出AC=DF,注意:全等三角形的对应边相等,对应角相等.4.如图,在2×2的方格纸中,∠1+∠2等于()A.60° B.90° C.120°D.150°【考点】全等图形.【分析】标注字母,然后利用“边角边”求出△ABC和△DEA全等,依照全等三角形对应角相等可得∠2=∠3,再依照直角三角形两锐角互余求解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选B.【点评】本题考查了全等图形,要紧利用了网格结构以及全等三角形的判定与性质,准确识图并确定出全等三角形是解题的关键.5.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=60°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70° C.60° D.50°【考点】全等三角形的性质.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,再依照全等三角形对应角相等可得∠DAC=∠BAE.【解答】解:∵∠B=60°,∠AEC=120°,∴∠BAE=∠AEC﹣∠B=120°﹣60°=60°,∵△ABE≌△ACD,∴∠DAC=∠BAE=60°.故选C.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.6.如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】依照全等三角形的性质得出∠A′CB′=∠ACB,求出∠B′CB=∠ACA′,代入=∠BCB′=∠A′CB′﹣∠A′CB求出即可.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′﹣∠A′CB=∠ACB﹣∠A′CB,∴∠B′CB=∠ACA′,∵∠A′CB′=65°,∠A′CB=35°,∴∠ACA′=∠BCB′=∠A′CB′﹣∠A′CB=65°﹣35°=30°,故选B.【点评】本题考查了全等三角形的性质的应用,解此题的关键是求出∠B′CB=∠ACA′,注意:全等三角形的对应角相等,难度适中.7.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD 的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【考点】全等三角形的判定.【专题】推理填空题.【分析】依照AAS即可判定A;依照三角对应相等的两三角形不一定全等即可判定B;依照AAS即可判定C;依照ASA即可判定D.【解答】解:A 、依照AAS (∠A=∠A ,∠C=∠B ,AD=AE )能推出△ABE ≌△ACD ,正确,故本选项错误;B 、三角对应相等的两三角形不一定全等,错误,故本选项正确;C 、依照AAS (∠A=∠A ,∠B=∠C ,BE=CD )能推出△ABE ≌△ACD ,正确,故本选项错误;D 、依照ASA (∠A=∠A ,AB=AC ,∠B=∠C )能推出△ABE ≌△ACD ,正确,故本选项错误; 故选:B .【点评】本题考查了对全等三角形的判定的应用,注意:全等三角形的判定方法只有SAS ,ASA ,AAS ,SSS ,共4种,要紧培养学生的辨析能力.8.长为3cm ,4cm ,6cm ,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A .一个人取6cm 的木条,一个人取8cm 的木条B .两人都取6cm 的木条C .两人都取8cm 的木条D .C 两种取法都能够【考点】全等三角形的应用;三角形三边关系.【分析】若两个三角形全等,那么它们的三边对应相等,因此第三边应该取同样长度的木条,且要符合三角形三边关系定理,可运用排除法进行求解.【解答】解:若两人所拿的三角形全等,那么两人所拿的第三根木条长度相同,故排除A ; 若取8cm 的木条,那么3+4<8,不能构成三角形,因此只能取6cm 的木条,故排除C 、D ; 故选B .【点评】此题要紧考查了全等三角形的判定以及三角形三边关系的运用,难度不大.9.下列条件中,不能判定△ABC ≌△A 1B 1C 1的是( )A .AB=A 1B 1,∠A=∠A 1,AC=A 1C 1 B .AB=A 1B 1,BC=B 1C 1,AC=A 1C 1C .AB=A 1B 1,∠B=∠B 1,∠C=∠C 1D .AC=A 1C 1,AB=A 1B 1,∠B=∠B 1【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,依照全等三角形的判定定理逐个判定即可.【解答】解:A 、符合全等三角形的判定定理:SAS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;B 、符合全等三角形的判定定理:SSS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;C 、符合全等三角形的判定定理:AAS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;D 、不符合全等三角形的判定定理,即不能判定△ABC ≌△A 1B 1C 1,故本选项正确;故选D .【点评】本题考查了全等三角形的判定定理的应用,要紧考查学生对定理的明白得能力和辨析能力,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,难度适中.10.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD ,AC=AD ,依照三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD ,由∠1=∠2可知∠BAC=∠EAD ,加①AB=AE,就能够用SAS 判定△ABC ≌△AED ;加③∠C=∠D ,就能够用ASA 判定△ABC ≌△AED ;加④∠B=∠E ,就能够用AAS 判定△ABC ≌△AED ;加②BC=ED 只是具备SSA ,不能判定三角形全等.其中能使△ABC ≌△AED 的条件有:①③④故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS 、SAS 、SSA 、HL .做题时要依照已知条件在图形上的位置,结合判定方法,进行添加.11.依照下列已知条件,能画出唯独△ABC 的是( )A .AB=3,BC=4,AC=7B .AB=4,BC=3,∠C=30°C .∠A=30°,AB=3,∠B=45°D .∠C=90°,AB=4【考点】全等三角形的判定.【分析】利用全等三角形的判定方法以及三角形三边关系分别判定得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、依照AB=4,BC=3,∠A=30°不能画出唯独三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯独△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯独三角形,故本选项错误;故选:C.【点评】此题要紧考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.12.如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50° B.65° C.70° D.85°【考点】全等三角形的判定与性质.【分析】第一依照三角形外角的性质可得∠BDC=25°+60°=85°,然后再证明△AEB≌△ADC,依照全等三角形的性质可得∠B=∠C=25°,再利用三角形内角和定理运算出∠BMD的度数.【解答】证明:∵∠BAC=60°,∠C=25°,∴∠BDC=25°+60°=85°,在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C=25°,∴∠DNB=180°﹣25°﹣85°=70°,故选:C.【点评】此题要紧考查了全等三角形的判定和性质,以及三角形外角的性质,关键是正确证明△AEB ≌△ADC.13.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C的度数为()A.120°B.60° C.50° D.30【考点】三角形内角和定理.【分析】依照三角形的内角和求得∠OAB+∠OBA,利用角平分线的定义求得∠CAB+∠CBA,利用三角形的内角和定理列式运算求得答案即可.【解答】解:∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=(∠ABC+∠BAC)=180°﹣120°=60°,∴∠ABC+∠BAC=120°,∴∠C=180°﹣(∠ABC+∠BAC)=60°.故选:B.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.14.如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15° B.30° C.45° D.60°【考点】矩形的性质.【专题】运算题.【分析】本题要紧考查矩形的性质以及折叠,求解即可.【解答】解:因为∠EAF是△DAE沿AE折叠而得,因此∠EAF=∠DAE.又因为在矩形中∠DAB=90°,即∠EAF+∠DAE+∠BAF=90°,又∠BAF=60°,因此∠AED==15°.故选A.【点评】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,因此折叠前后的两个图形是全等三角形,复合的部分确实是对应量.15.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40° B.45° C.50° D.60°【考点】直角三角形全等的判定;全等三角形的性质;等腰直角三角形.【分析】先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.因此得出∠ABC=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E,∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,∴∠FBD=∠FAE,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴BD=AD,∴∠ABC=∠BAD=45°,故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个【考点】全等三角形的判定;角平分线的性质.【分析】依照角的平分线性质和判定即可判定①②;全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,依照判定定理判定③④⑤⑥即可.【解答】解:∵角平分线的点到角的两边的距离相等,∴①正确;∵在角的内部到角的两边的距离相等,则这条射线是角的平分线,∴②错误;如图:在Rt△ACB和Rt△DEF中,∠C=∠E=90°,∠A=∠D,AC=EF,则△ACB和△DEF就不全等,∴③错误;∵当符合SAS时两三角形全等,当符合SSA时,两三角形不全等,∴④错误;如图:DE∥BC,∴∠ADE=∠B,∠AED=∠C,符合两三角形的对应角相等,然而两三角形不全等,∴⑤错误;∵当一个三角形的底为2,高为1,而另一个三角形的底为1,高为2,两三角形的面积相等,但这两个三角形不全等,∴⑥错误;即不正确的有5个,故选D.【点评】本题考查了角的平分线性质,全等三角形的判定定理的应用,能明白得定理和正确运用定理进行判定是解此题的关键,注意:角平分线上的点到角的两边的距离相等,全等三角形的判定定理有:SAS,ASA,AAS,SSS,HL,难度适中,然而比较容易出错.17.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SAS B.ASA C.AAS D.SSS【考点】作图—差不多作图;全等三角形的判定.【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,因此两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角18.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【专题】应用题.【分析】此题能够采纳全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原先一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原先一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原先一样的三角形,故D选项错误.故选:C.【点评】要紧考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练把握.19.在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,若AB=4cm,则AD+DE的值为()A.3cm B.4cm C.5cm D.6cm【考点】角平分线的性质.【分析】先依照角平分线的性质得出BD=DE,进而可得出结论.【解答】解:∵在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,∴DE=BD.∵AB=4cm,∴AD+DE=AD+BD=AB=4cm.故选B.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.20.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,如此格点三角形最多能够画出()A.2个B.3个C.4个D.5个【考点】全等三角形的判定.【专题】网格型.【分析】依照三边对应相等的两个三角形全等画图即可.【解答】解:如图所示:,最多能够画出4个.故选:C.【点评】此题要紧考查了全等三角形的判定,关键是把握三条边分别对应相等的两个三角形全等.二、填空题:21.将△ABC沿BC方向平移3cm得到△DEF,则CF= 3cm ;若∠A=80°,∠B=60°,则∠F= 40°.【考点】平移的性质.【分析】依照平移的性质,结合图形可直截了当求解.【解答】解:观看图形可知,对应点连接的线段是AD、BE和CF.∵△ABC沿BC方向平移3cm得到△DEF,∴BE=CF=3cm,∴∠F=∠ACB=180°﹣∠A﹣∠B=40°,故答案为:3cm,40°.【点评】本题考查平移的差不多性质:①平移不改变图形的形状和大小;②通过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.22.假如两个三角形的三边对应相等,则这两个三角形全等,它也能充分告诉我们:三角形具有稳固性.【考点】全等三角形的判定.【分析】依照判定方法判定解答,三角形全等说明三边一定时可不能有其它形状显现,也就有稳固性.【解答】解:运用三角形全等的判定方法SSS可知,假如两个三角形的三边对应相等,则这两个三角形全等,由此反映了三角形具有稳固性.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有①②③(填序号).【考点】全等三角形的判定.【专题】压轴题.【分析】由已知条件,可直截了当得到三角形全等,得到结论,采纳排除法,对各个选项进行验证从而确定正确的结论.【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).因此正确结论有①②③.故填①②③.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、AAS、ASA.得到三角形全等是正确解决本题的关键.24.如图所示,△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形 4 对.【考点】翻折变换(折叠问题);直角三角形全等的判定.【分析】共有四对,分别是△ABD≌△CDB,△ABD≌△C′DB,△DCB≌△C′DB,△AOB≌△C′OD.【解答】∵四边形ABCD是长方形,∴∠A=∠C=90°,AB=CD,AD=BC,∴△ABD≌△CDB.(HL)∵△BDC是将长方形纸牌ABCD沿着BD折叠得到的,∴BC′=A D,BD=BD,∠C′=∠A.∴△ABD≌△C′DB.(HL)同理△DCB≌△C′DB.∵∠A=∠C′,∠AOB=∠C′OD,AB=C′D,∴△AOB≌△C′OD.(AAS)因此共有四对全等三角形.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,如此的三角形一共能作出7 个.【考点】全等三角形的判定.【专题】压轴题.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,因此一共能作出7个.故答案为:7.【点评】本题考查了全等三角形的作法;做三角形时要依照全等的判定方法的要求,正确对每种情形进行讨论是解决本题的关键.26.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN= 2 .【考点】全等三角形的判定与性质.【分析】如图,证明∠B=∠MAC;证明△ABN≌△CAM,得到AM=BN=3,AN=CM=5,即可解决问题.【解答】解:∵BN⊥AN,AB⊥AC,∴∠B+∠BAN=∠BAN+∠CAM,∴∠B=∠MAC;在△ABN与△CAM中,,∴△ABN≌△CAM(AAS),∴AM=BN=3,AN=CM=5,∴MN=5﹣3=2.故答案为2.【点评】该题要紧考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固把握全等三角形的判定及其性质,并能灵活来解题.27.如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于 4 .【考点】角平分线的性质;平行线之间的距离.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后依照角平分线上的点到角的两边的距离相等可得OE=OF=OG,再依照两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判定出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.28.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,AB=10,BD是∠ABC平分线,DE⊥AB,垂足为E,则△ADE的周长为8 .【考点】角平分线的性质;全等三角形的判定与性质.【分析】先依照角平分线的性质得出CD=DE,故可得出AD+CD=AD+DE=AC,再依照全等三角形的判定定理得出△BCD≌△BED,故BE=BC,由此可得出AE的长,由△ADE的周长=AE+AD+DE=AE+AC即可得出结论.【解答】解:∵BD是∠ABC平分线,DE⊥AB,AC=6,∴DE=CD,∴AD+CD=AD+DE=AC=6,在Rt△BCD与RtBED中,,∴△BCD≌△BED(HL),∴BE=BC=8,∴AE=10﹣8=2,。
全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。
全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
全等三角形单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列作图属于尺规作图的是A.用量角器画出∠AOB,使∠AOB等于已知角αB.用圆规和直尺作线段AB,使AB等于已知线段αC.用刻度尺作出线段AB等于2倍的已知线段mD.用三角板作45°的角2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是A.带①和②去B.只带②去C.只带③去D.都带去3.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长,判定△ABC≌△DEC的理由是A.SSS B.ASA C.SAS D.AAS4.下列条件中,能判定△ABC≌△DEF的是A.AB=DE,BC=EF,∠A=∠E B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.∠A=∠D,∠B=∠E,AC=DF5.如图,AB=CD,AD=CB,那么下列结论中错误的是A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD6.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形共有对A.5 B.3 C.6 D.48.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF ≌△CDE;③点D在∠BAC的平分线上.正确的是A.①B.②C.①②D.①②③9.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是A.45°B.55°C.60°D.75°10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DA平分∠CDE;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE +AC =AB ,其中正确的有A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题3分,共30分)11.若△ABC ≌△A ′B ′C ′,AB =3,∠A ′=30°,则A ′B ′=__________,∠A =__________°.12.如图,OC 为AOB ∠的平分线,CM OB ⊥,3CM =,则点C 到射线OA 的距离为__________.13.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为__________.14.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF =8 cm ,则AE =__________cm .16.如图,△ABC 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =12,BC =8,则AF =________.17.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC 交边AC 于点D ,CD =4,△ABD 的面积为10,则AB 的长是__________.18.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.19.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是__________.20.如图,Rt △ABC 中,9083C AC BC ∠=︒==,,,AE AC P Q ⊥,,分别是AC AE ,上的动点,且PQ AB =,当AP =__________时,才能使ABC △和PQA △全等.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .22.如图,点E ,F 在AB 上,CE 与DF 交于点G ,AD =BC ,∠A =∠B ,AE =BF .求证:GE =GF .23.如图,12AC AE AB AD =∠=∠=,,.求证:BC DE =.24.如图,在Rt △ABC 中,∠C =90°.作∠BAC 的平分线AP 交边BC 于点D .(保留作图痕迹,不写作法).若∠BAC =28°,求∠ADB 的度数.25.如图,AD 是BAC ∠的平分线,点E 在AB 上,且AE AC =,EF BC ∥交AC 于点F .试说明:EC平分DEF ∠.26.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BE 、CF 相交于点D ,BD =CE .求证:AD =AE .27.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BA C.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.28.如图,△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为2 cm/s.设点P的运动时间为t(s).(1)当t为何值时,△ABQ≌△CBP;(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.3.【答案】C【解析】因为CD=CA,CE=CB,ACB DCE∠=∠,所以△ABC≌△DEC(SAS).故选C.4.【答案】D【解析】A.AB=DE,BC=EF,∠A=∠E,SSA不能确定全等;B.∠A=∠E,AB=EF,∠B=∠D,AB和EF不是对应边,不能确定全等;C.∠A=∠D,∠B=∠E,∠C=∠F,AAA不能确定全等;D.∠A=∠D,∠B=∠E,AC=DF,根据AAS,能判断△ABC≌△DEF.故选D.5.【答案】B【解析】∵在△ABD和△CDB中,AB CD AD CB BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C,∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.6.【答案】A【解析】∵AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,PA=PB,∠CPA=∠DPB,∴△CPA≌△∠DPB(AAS),∴PC=PD,∴∠1=∠2,故选A.7.【答案】B【解析】根据AB=CD,AE=CF,∠BAE=∠DCF可得:△ABE≌△CDF;根据CE=AF,∠DAF=∠BCE,∠DFA=∠BEC可得:△ADF≌△CBE;根据∠DAC=∠BCA,∠BAC=∠DCA,AC=CA可得:△ACD≌△CAB,共有3对全等三角形,故选B.8.【答案】D∵△ABE≌△ACF,∴AE=AF,∵△BDF≌△CDE,∴DF=DE,∵在△AFD和△AED中,AF AE AD AD DF DE=⎧⎪=⎨⎪=⎩,∴△AFD≌△AED(SSS),∴∠FAD=∠EAD,∴AD平分∠BAC,即点D在∠BAC的平分线上.综上所述,在本题给出的结论中,正确的是①②③.故选D.9.【答案】C【解析】∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C.10.【答案】B【解析】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD 平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∴BE+AC=AB,∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.【答案】3;30【解析】由对应角相等,对应边相等,A′B′=AB ,∠A =30°.故答案为:3;30. 12.【答案】3【解析】如图,过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF .∵CM =3,∴CF =3.故答案为:3.角的余角相等),在△FCE 和△ABC 中,90ECF BEC BC ACB FEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABC ≌△FCE (ASA ),∴AC =EF ,∵AE =AC -CE ,BC =2 cm ,EF =8 cm ,∴AE =8-2=6 cm ,故答案为:6. 16.【答案】10【解析】如图,连接AE ,BE ,过E 作EG ⊥BC 于G ,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,AE BEEF EG=⎧⎨=⎩,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC-CF=12-x,BG=BC+CG=8+x,∴12-x=8+x,解得x=2,∴AF=12-2=10.故答案为:10.17.【答案】5【解析】如图,过点D作DE⊥AB于点E.∵BD平分∠ABC.又∵DE⊥AB,DC⊥BC,∴DE=DC=4.∵△ABD的面积=12·AB·DE=12×AB×4=10,∴AB=5.故答案为:5.20.【答案】3或8【解析】分为两种情况:①当AP=3时,∵BC=3,∴AP=BC,∵∠C=90°,AE⊥AC,∴∠C=∠QAP=90°,∴在Rt △ABC 和Rt △QAP 中,AB PQ BC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △PQA (HL ); ②当AP =8时,∵AC =8,∴AP =AC ,∵∠C =90°,AE ⊥AC ,∴∠C =∠QAP =90°,∴在Rt △ABC 和Rt △QAP中,AB PQ AC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △QAP (HL ),故答案为:3或8.22.【解析】∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,=AD BC A B AF BE =⎧⎪⎨⎪=⎩∠∠,∴△ADF ≌△BCE (SAS ),∴∠CEB =∠DFA ,∴GE =GF .23.【解析】∵12∠=∠,∴12BAE BAE ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC △和DAE △中,AC AE BAC DAE AB AD =⎧⎪∠=∠⎨⎪=⎩,∴BAC △≌DAE △(SAS ),∴BC DE =.24.【解析】(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC =28°, ∴∠CAD =BAD =14°,又∵∠C =90°,∠ADB =∠C +∠CAD ,∴∠ADB =90°+14°=104°.26.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CE AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .27.【解析】(1)∵∠BAC =∠EAD ,∴∠BAC -∠EAC =∠EAD -∠EAC ,即:∠BAE=∠CAD,在△ABE和△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,28.【解析】(1)∵△ABQ≌△CBP,∴BQ=BP,∴2t=5-2t,∴t=54,∴t=54s时,△ABQ≌△CBP,(2)结论:∠CMQ=60°不变,理由:∵△ABC是等边三角形,∴∠ABQ=∠CAP,AB=CA,又∵点P,Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,AB CAABQ CAP AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.。
八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。
第十二章全等三角形单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定2.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③3.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.①B.②C.③D.任意一块4.如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个B.1个C.2个D.3个5.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm6.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.7.AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()A.69°B.°C.°D.不能确定8.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误 B.①错误,②正确 C.①,②都错误D.①,②都正确9.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1 B.2 C.5 D.无法确定10.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A 折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP =S△APF.正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.12.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均为等边三角形,DE、AB交于点F,AF=3,则△ACE的面积为.13.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC 于E,连接DE,DF⊥BC于F,则∠EDC=°.14.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△ABD≌△CEB.15.如图,线段AC、BD相交于点0,OA=OC,OB=OD,那么AB、CD的位置关系是.16.如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是cm.三.解答题(共8小题,满分72分)17.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.18.(8分)如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.19.(8分)已知:如图,在△ABC中,AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.20.(8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.21.(8分)如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC 于一点O,AC=AE,AD=AB,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)若∠BAD=20°,求∠CDE的度数.22.(10分)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求证:∠AFC=120°;(2)若AD=6,CE=4,求AC的长?23.(10分)有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,量出DE的长为50m,你能求出锥形小山两端A、B的距离吗?24.(12分)探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.参考答案与试题解析1.解:∵在△ABC和△DEF中,∠A=50°,∠B=70°,∠D=50°,∠E=70°,EF=3cm,AB=3cm 若是AB=DE,则可以推出两三角形全等此处是EF与AB相等,设DE=3,则DE=EF,则∠D=∠E显然与已知相违背,所以此假设不成立所以两三角形一定不全等.故选C.2.解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.3.解:只有①中包含两角及夹边,符合ASA.故选A.4.解:∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线, ∴∠BAE=∠BAD ,∠ABE=∠ABC , ∴∠BAE +∠ABE=(∠BAD +∠ABC )=90°, ∴∠AEB=180°﹣(∠BAE +∠ABE )=180°﹣90°=90°, 故③小题正确;延长AE 交BC 延长线于F , ∵∠AEB=90°, ∴BE ⊥AF , ∵BE 平分∠ABC , ∴∠ABE=∠FBE , 在△ABE 与△FBE 中,,∴△ABE ≌△FBE (ASA ), ∴AB=BF ,AE=FE , ∵AD ∥BC , ∴∠EAD=∠F ,在△ADE 与△FCE 中,,∴△ADE ≌△FCE (ASA ), ∴AD=CF ,∴AB=BC +CF=BC +AD ,故①小题正确; ∵△ADE ≌△FCE ,∴CE=DE ,即点E 为CD 的中点,故②小题正确; ∵△ADE ≌△FCE , ∴S △ADE =S △FCE , ∴S 四边形ABCD =S △ABF , ∵S △ABE =S △ABF ,∴S △ABE =S 四边形ABCD ,故④小题正确;若AD=BC ,则CE 是Rt △BEF 斜边上的中线,则BC=CE ,∵AD与BC不一定相等,∴BC与CE不一定相等,故⑤小题错误.综上所述,不正确的有⑤共1个.故选:B.5.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.6.解:∵围成两个全等的三角形可得两个三角形的周长相等∴x+y+z=,∵y+z>x∴可得x<,又因为x为最长边大于∴x≥综上可得≤x<故选:A.7.解:∵AD=AB,∴∠ADB=(180°﹣∠BAC)=90°﹣∠BAC,∴∠C=∠ADB﹣∠DAC=(180°﹣∠BAC)=90°﹣∠BAC﹣∠BAC=90°﹣∠BAC;∵BE=BC,∴∠C=∠BEC=∠BAC+∠ABE=∠BAC+(180°﹣∠BAC)=∠BAC+45°﹣∠BAC=45°+∠BAC,∴90°﹣∠BAC=45°+∠BAC,解得∠BAC=,∴∠C=90°﹣=.故选:C.8.解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2、∠B1=∠B2,∴△A1B1C1∽△A2B2C2,设相似比为k,即===k,∴=k,∵△A1B1C1,△A2B2C2的周长相等,∴k=1,即A1B1=A2B2,B1C1=B2C2,A1C1=A2C2,∴△A1B1C1≌△A2B2C2,∴②正确;故选:D.9.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,=(AD×EF)÷2=(2×1)÷2=1.所以,S△ADE故选:A.10.解:①正确.作EM ∥AB 交AC 于M . ∵CA=CB ,∠ACB=90°, ∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=a ,∴tan ∠CAE===﹣1,故①正确,②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF , ∴∠PCE=∠PFE=45°, ∵∠EFA=∠ACE=90°, ∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确. ④正确.∵∠CPE=∠CAE +∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°, ∴∠CPE=∠CEP , ∴CP=CE ,故④正确, ⑤错误.∵△APC ≌△APF , ∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE , ∴S △ACD =S △AEF ,∵S △ACD =S △ABC ,S △AEF =S △AEC ≠S △ABC , ∴矛盾,假设不成立. 故选:D .11.解:∵已知DE=AB,∠D=∠A,∴根据ASA判断全等添加∠B=∠E;根据AAS判断全等添加∠ACB=∠DFE;根据SAS判断全等添加AF=CD.故填空答案:∠B=∠E或∠ACB=∠DFE或AF=CD.12.解:如图所示,过D作DG⊥AB于G,EK⊥AC交AC的延长线于K.∵△ABD是等边三角形,DG⊥AB,∴AG=BG=AB,由勾股定理得:DG=AG,∵∠BAC=30°,∴AC=AB,∴AG=AC=AB,∵由勾股定理得:BC=AC,∴DG=BC=BE,∵∠EBA=60°+30°=90°,∴EB⊥AB.∴DG∥EB.∴∠BEF=∠GDF,∠DGB=∠EBF=90°,在△DGF与△EBF中,∵,∴△ADF≌△GEF(AAS),∴DF=EF,GF=BF,∵AG=BG,AF=3,∴FG=,AG=2,∴AB=4AC=2,EC=BC=AC=6,在Rt△CEK中,EK=EC=3,∴S=•AC•EK=•2•3=6.△ACE故答案为6.13.解:过D作DM⊥AC交CA的延长线于M,DN⊥AE,∵CD平分∠ACB,∴DF=DM,∵∠BAC=120°,∴∠DAM=60°,∵AE平分∠BAC,∴∠BAE=60°,∴∠DAM=∠BAE,∴DM=DN,∵DF⊥BC,∴DE平分∠AEB,∵AB=AC,AE平分∠BAC交BC于E,∴AE⊥BC,∴∠AEB=90°,∴∠DEF=45°,∵∠B=∠C=30°,∴∠DCF=15°,∴∠EDC=30°,故答案为:30.14.解:已知∠B=∠B,∠BDA=∠BEC=90°,则再添加一个边相等即可,所以可添加BD=BE或AD=CE或BA=BC,从而利用AAS或ASA来判定△ABD≌△CEB,故答案为:BD=BE或AD=CE或BA=BC.15.解:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.故答案为:AB∥CD.16.解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.17.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.18.证明:∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,在△BAN和△CBM中,,∴△BAN≌△CBM(SAS),∴∠ABN=∠BCM,∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∵∠NOC为△OBC的外角,∴∠NOC=∠BCM+∠OBC=60°,在Rt△OHC,∠HCO=30°,则2OH=OC.19.证明:(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.20.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.21.证明:(1)在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴∠BAC=∠DAE,∠E=∠C,∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∠BAD=20°,∴∠CAE=∠BAD=20°,∵∠E=∠C,∠AOE=∠DOC,∴∠CAE=∠CDE,∴∠CDE=20°.22.解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=,∠FCA=,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠FAC﹣∠FCA=180°﹣×120°=120°.(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠FAC=∠FAD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∴△ADF≌△AGF(SAS)∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=10.23.解:在△ABC和△EDC中,∴△ABC≌△EDC,∴AB=DE=50.答:锥形小山两端A、B的距离为50m.24.解:(1)∵AE⊥BC,BF⊥AC∴△AEB和△AFB都是直角三角形∵D是AB的中点∴DE和DF分别为Rt△AEB和Rt△AFB的斜边中线∴DE=AB,DF=AB(直角三角形斜边中线等于斜边的一半)∴DE=DF∵DE=kDF∴k=1(2)∵CB=CA∴∠CBA=∠CAB∵∠MAC=∠MB∴∠CBA﹣∠MBC=∠CAB﹣∠MAC即∠ABM=∠BAM∴AM=BM∵ME⊥BC,MF⊥AC∴∠MEB=∠MFA=90又∵∠MBE=∠MAF∴△MEB≌△MFA(AAS)∴BE=AF∵D是AB的中点,即BD=AD又∵∠DBE=∠DAF∴△DBE≌△DAF(SAS)∴DE=DF(3)DE=DF如图1,作AM的中点G,BM的中点H,∵点D是边AB的中点∴DG∥BM,DG=BM同理可得:DH∥AM,DH=AM∵ME⊥BC于E,H 是BM的中点∴在Rt△BEM中,HE=BM=BH∴∠HBE=∠HEB∠MHE=∠HBE+∠HEB=2∠MBC又∵DG=BM,HE=BM∴DG=HE同理可得:DH=FG,∠MGF=2∠MAC∵DG∥BM,DH∥GM∴四边形DHMG是平行四边形∴∠DGM=∠DHM∵∠MGF=2∠MAC,∠MHE=2∠MBC 又∵∠MBC=∠MAC∴∠MGF=∠MHE∴∠DGM+∠MGF=∠DHM+∠MHE∴∠DGF=∠DHE在△DHE与△FGD中,∴△DHE≌△FGD(SAS),∴DE=DF21世纪教育网–中小学教育资源及组卷应用平台21世纪教育网。
第十二章全等三角形单元测试一.选择题(共12小题).1.如图(1),已知△ABC的六个元素,则图(2)、图(3)、图(4)中的三角形和△ABC 全等的有()A.图(2)和图(3)B.图(3)和图(4)C.只有图(3)D.只有图(4)2.下列各组图形中,一定全等的是()A.两个等边三角形B.腰长相等的两个等腰三角形C.两边和一角对应相等的两个三角形D.两边对应相等的两个直角三角形3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB=15,则CD 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD 的长为()A.3 B.4 C.5 D.65.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°6.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°7.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 8.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定10.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.SAS B.SSS C.ASA D.AAS11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ 的最小值为()A.1 B.2 C.3 D.412.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5 B.4 C.3 D.2二.填空题13.已知图中的两个三角形全等,则∠α的度数是.14.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.15.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.16.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为.三.解答题17.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A 运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).18.如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.19.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.20.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.参考答案一.选择题1.解:如图(1)、(2)根据一边、一角不能判定量三角形全等,故图(2)中的三角形和△ABC不全等;如图(1)、(3)两角为58°、50°,对应相等,但是对应边不相等,不能判定它们全等,故图(3)中的三角形和△ABC不全等;如图(1)、(4)根据全等三角形的判定定理ASA可以证得它们全等,故图(4)中的三角形和△ABC全等.综上所述,只有图(4)中的三角形和△ABC全等.故选:D.2.解:各组图形中,一定全等的是两边对应相等的两个直角三角形,故选:D.3.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.5.解:如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL).∴AB=AE,∠B=∠AED.又∵AB+BD=DC,∴EC=DC﹣DE=DC﹣BD=(AB+BD)﹣BD=AB=AE,即EC=AE,∴∠C=∠CAE,∴∠B=∠AED=2∠C,又∵∠B+∠C=180°﹣∠BAC=72°,∴3∠C=72°,∴∠C=24°,故选:B.6.解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.7.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.8.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.9.解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选:A.10.解:在△D′O′C′和△DOC中,,∴△D′O′C′≌△DOC(SSS),∴∠D′O′C′=∠DOC.则全等的依据为SSS.故选:B.11.解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,PA⊥ON,∴PQ=PA=2,故选:B.12.解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.二.填空题(共4小题)13.解:∵两个三角形全等,∴α=50°.故答案为:50°.14.解:添加AB=AC,∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(ASA),故答案为:AB=AC.15.解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3+5+7=3+3x﹣2+2x﹣1,解得:x=3.故答案为:3.16.解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5.∴S△BCE故答案为:5.三.解答题(共4小题)17.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.18.(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°﹣∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=∠BAC,∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC)=90°﹣∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣(90°﹣∠ABC),即∠AOC=90°+∠ABC.(2)AE+CD=AC,证明:∵∠AOC=90°+∠ABC=135°,∴∠EOA=45°,在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,则在△AEO和△AMO中∴△AEO≌△AMO,同理△DCO≌△NCO,∴∠EOA=∠MOA,∠CON=∠COD,OD=ON,∴∠EOA=∠MOA=∠CON=∠COD=45°,∴∠MON=∠MOA=45°,过M作MK⊥AD于K,ML⊥ON于L,∴MK=ML,S△AOM =AO×MK,S△MON=ON×ML,∴=,∵=,∴=,∵AO=3OD,∴=,∴==,∴AN=AM=AE,∵AN+NC=AC,∴AE+CD=AC.19.证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.20.解:(1)结论:PM=PN,PM⊥PN.理由如下:如图2中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON和△PAM中,,∴△PON≌△PAM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OPA=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图3中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△PAE和△PAG中,,∴△PAE≌△PAG(AAS),∴AE=AG,∴OD=AE.。
全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判第1题图定△≌△最恰当的理由是()A.边角边B.角边角C.边边边D.边边角2.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走第2题图2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处3.如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对4.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()△A.ACE≌△BCD△B.BGC≌△AFC△C.DCG≌△ECF△D.ADB≌△CEA6.如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是()第3题图第5题图第6题图7.已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2△C.ABC≌△CED D.∠1=∠28.如图所示,两条笔直的公路、相交于点O,C村的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5km,村庄C到公路的距离为4km,则C村到公路的距离是()A.3kmB.4kmC.5kmD.6km△9.如图所示,在ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论:①AS=AR;②QP∥△AR;③BPR≌△QPS中()第7题图第8题图第9题图A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确二、填空题(每小题3分,共24分)11.(2012·山东临沂中考)如图,在△R t ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.第10题图12.(2012·浙江义乌中考)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是(不添加辅助线).13.如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,那么∠BCE=度.14.如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第13题图第14题图第15题图16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D点到直线AB的距离是cm.17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD△=3,则ABC的面积是.18.如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有.第16题图第17题图第18题图三、解答题(共46分)19.(6分)如图所示,四边形ABCD的对角线AC,BD相交于点△O,ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.20.(8分)如图所示,△A BC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.第19题图第20题图21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.22.(8分)(2012·重庆中考)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.第21题图23.(9分)如图所示,在△ABC中,AB=A C,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.求证:AF平分∠BAC.24.(9分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.第23题图第24题图A第 1 章 全等三角形检测题参考答案1. B解析:∵ BF ⊥AB ,DE ⊥BD ,∴ ∠ABC =∠BDE .2.C解析:因为 两个全等的等边三角形的边长均为 1 m ,所以 机器人由 A 点开始按 ABCDBEA 的顺序沿等边三角形的边循环运动一圈,即为 6 m. 因为 2 012÷6=335……2,即行走了 335 圈余 2 m ,所以行走 2 012 m 停下时,这个微型机器人停在点 C 处.故选 C .3.C解析:由已知条件可以得出 ABO ≌△CDO ,△AOD ≌△COB ,△ADE ≌△CBF ,△AEO ≌△CFO ,△ADC ≌△CBA ,△BCD ≌△DAB ,△AEB ≌△CFD ,共 7 对,故选 C. 4.D 解析:因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,、B 、C 项没有“对应”,所以错误,而D 项有“对应”,D 是正确的.故选 D .5.D解析:因为 △ABC 和△CDE 都是等边三角形,所以 BC =AC ,CE =CD ,∠BCA =∠ECD =60°,所以 ∠BCA +∠ACD =∠ECD +∠ACD ,即∠BCD =∠ACE ,所以 在△BCD 和△ACE 中,所以 △BCD ≌△ACE (SAS ),故 A 成立.因为 △BCD ≌△ACE ,所以 ∠DBC =∠CAE . 因为 ∠BCA =∠ECD =60°,所以 ∠ACD=60°.在△BGC 和△AFC 中,所以 △BGC ≌△AFC ,故 B 成立.因为 △BCD ≌△ACE ,所以 ∠CDB =∠CEA ,在△DCG 和△ECF 中,所以 △DCG ≌△ECF ,故 C 成立.故选 D .6.B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形C.与三角形 有两边及其夹角相等,二者全等;有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但边不对应相等,二者不全等.故选B.7.D解析:因为B、C、D三点在同一条直线上,且AC⊥CD,所以∠1+∠2=90°.因为∠B=90°,所以∠1+∠A=90°,所以∠A=∠2.故B选项正确.在△ABC和△CED中,所以△ABC≌△CED,故C选项正确.因为∠2+∠D=90°,所以∠A+∠D=90°,故A选项正确.因为AC⊥CD,所以∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8.B 解析:如图所示,连接AC,作CF⊥,CE⊥.因为AB=BC=CD=DA=5km,所以△ABC≌△ADC,所以∠CAE=∠CAF,所以CE=CF=4km.故选B.9.D解析:因为AB=AC,所以∠ABC=∠ACB.因为BD平分∠ABC,CE平分∠ACB,所以∠ABD=∠CBD=∠ACE=∠BCE.第8题答图所以①△BCD≌△CBE(ASA);由①可得CE=BD,所以③△BDA≌△CEA(SAS);由①可得BE=CD,又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10.B解析:因为PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP,所以△ARP≌△ASP(HL),所以AS=AR,∠RAP=∠SAP.因为AQ=PQ,所以∠QP A=∠SAP,所以∠RAP=∠QP A,所以QP∥AR.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.11.3解析△:由条件易判定ABC≌△FCE,所以AC=EF=5cm,则AE=AC-CE=EF-BC=5-2=3(cm).12.DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等)解析:因为BD=CD,∠FDB=∠EDC,DF=DE,所以△BDF≌△CDE.熟练掌握全等三角形的判定方法是解题的关键.(以第一种为例,添加其他条件的请同学们自行证明)13.39解析:因为△ABC和△BDE均为等边三角形,所以AB=BC,∠ABC=∠EBD=60°,BE=BD.因为∠ABD=∠ABC+∠DBC,∠EBC=∠EBD+∠DBC,所以∠ABD=∠CBE,所以△ABD≌△CBE,所以∠BCE=∠BAD=39°.14.60解析:因为△ABC是等边三角形,所以∠ABD=∠C,AB=BC.因为BD=CE,所以△ABD≌△BCE,所以∠BAD=∠CBE.因为∠ABE+∠EBC=60°,所以∠ABE+∠BAD=60°,所以∠APE=∠ABE+∠BAD=60°.15.55°解析:在△ABD与△ACE中,因为∠1+∠CAD=∠CAE+∠CAD,所以∠1=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠2=∠ABD.因为∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,所以∠3=55°.16.3解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,所以D点到直线AB的距离就是DE的长.由角平分线的性质可知DE=DC,又BC=8cm,BD=5cm,所以DE=DC=3cm.所以D点到直线AB的距离是3cm.第17题答图第16题答图17.31.5解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,因为OB,OC分别平分∠ABC和∠ACB,OD⊥BC,所以OD=OE=OF.所以=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.18.①②③④解析:∵在△ABC中,AB=AC,AD是△ABC的角平分线,已知DE⊥AB,DF⊥△AC,可证ADE≌△ADF(AAS),故有∠EDA=∠FDA,AE=AF,DE=DF,①②正确;AD是△ABC的角平分线,在AD上可任意设一点△M,可证BDM≌△CDM,∴BM=CM,∴AD上的点到B,C两点的距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.19.分析:(1)要证OA=OB,由等角对等边知需证∠CAB=∠DBA,由已知△ABC≌△BAD 即可证得.(2)要证AB∥CD,根据平行线的性质需证∠CAB=∠ACD,由已知和(1)可证得∠OCD=∠ODC,又因为∠AOB=∠COD,所以可证得∠CAB=∠ACD,即AB∥CD获证.证明:(1)因为△ABC≌△BAD,所以∠CAB=∠DBA,所以OA=OB.(2)因为△ABC≌△BAD,所以AC=BD.又因为OA=OB,所以AC-OA=BD-OB,即OC=OD,所以∠OCD=∠OD C.因为∠AOB=∠COD,∠CAB=,∠ACD=,所以∠CAB=∠ACD,所以AB∥CD.20.分析:由△ABC≌△ADE,可得∠DAE=∠BA C=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB-∠D,即可得∠DGB的度数.解:因为△ABC≌△ADE,所以∠DAE=∠BAC=(∠EAB-∠CAD)=.所以∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21.分析:首先根据角之间的关系推出∠EAC=∠BAF.再根据边角边定理,证明△EAC≌△BAF.最后根据全等三角形的性质定理,得知EC=BF.根据角的转换可求出EC⊥BF.证明:(1)因为AE⊥AB,AF⊥AC,所以∠EAB=90°=∠FAC,所以∠EAB+∠BAC=∠FAC+∠BAC.又因为∠EAC=∠EAB+∠BAC,∠BAF=∠FAC+∠BAC.所以∠EAC=∠BAF.在△EAC与△BAF中,所以△EAC≌△BAF.所以EC=BF.(2)因为∠AEB+∠ABE=90°,又由△EAC≌△BAF可知∠AEC=∠ABF,所以∠CEB+∠ABF+∠EBA=90°,即∠MEB+∠EBM=90°,即∠EMB=90°,所以EC⊥BF.22.分析:要证BC=ED,需证△ABC≌△AED.证明:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.又因为AB=AE,∠B=∠E,所以△ABC≌△AED,所以BC=ED.点拨:已知一边一角对应相等证两三角形全等时,思路有三种:(1)证对应角的另一边对应相等,“凑”SAS;(2)证对应边的对角对应相等,“凑”AAS;(3)证对应边的另一邻角对应相等,“凑”ASA.23.证明:因为BD⊥AC,CE⊥AB,所以∠AEC=∠ADB=90°.在△ACE与△ABD中,所以△ACE≌△ABD(AAS),所以AE=AD.在Rt△AEF与Rt△ADF中,AE AD,AF AF,所以Rt△AEF≌Rt△ADF(HL),所以∠EAF=∠DAF,所以AF平分∠BAC.24.⑴证明:设∠ACE=∠1,因为直线BF垂直于CE,交CE于点F,所以∠CFB=90°,所以∠ECB+∠CBF=90°.又因为∠1+∠ECB=90°,所以∠1=∠CBF.因为AC=BC,∠ACB=90°,所以∠A=∠CBA=45°.又因为点D是AB的中点,所以∠DCB=45°.因为∠1=∠CBF,∠DC B=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.(2)解:CM=BE.证明如下:因为∠ACB=90°,所以∠ACH+∠BCF=90°.因为CH⊥AM,即∠CHA=90°,所以∠ACH+∠CAH=90°,所以∠BCF=∠CAH.因为CD为等腰直角三角形斜边上的中线,所以CD=AD.所以∠ACD=45°.在△CAM与△BCE中,CA=BC,∠CAH=∠BCF,∠ACM=∠CBE,所以CAM≌BCE,所以CM=BE.△。