1.5(1)两间点的距离公式
- 格式:ppt
- 大小:139.00 KB
- 文档页数:8
1.5 平面直角坐标系中的距离公式填一填1.两点间的距离公式 (1)数轴上:一般地,数轴上两点A ,B 对应的实数分别是x A ,x B ,则|AB |=|x B -x A |. (2)平面直角坐标系中:一般地,若两点A ,B 对应的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12+y 2-y 12. 2.点到直线的距离点P (x 0,y 0)到直线Ax +By +C =0的距离记为d ,则d =|Ax 0+By 0+C |A 2+B2. 3.两平行线间的距离两条平行直线的方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,两条直线间的距离记为d ,即d =|C 2-C 1|A 2+B2.判一判1.原点O 到点P (x ,y )的距离为|OP |=x 2+y 2.(√) 23.平面内任意两点间的距离均可使用两点间的距离公式.(√)4.直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离是|C 1-C 2|.(×)5.原点到直线Ax +By +C =0的距离公式是|C |A 2+B2.(√)6.平行线间的距离是两平行线上两点间距离的最小值.(√) 7.连接两条平行直线上两点,即得两平行线间的距离.(×)8想一想1. 提示:点到直线的距离公式只适用直线方程的一般式.2.两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求?提示:两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等. 3.两条平行直线间距离有哪几种求法? 提示:(1)直接利用两平行线间的距离公式.(2)在一条直线上任意选取一点利用点到直线的距离公式求解(一般要选特殊的点,如直线与坐标轴的交点、坐标为整数的点).(3)当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. ①当两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则d =|x 2-x 1|; ②当两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则d =|y 2-y 1|. 4.距离公式综合应用的常见类型有哪些? 提示:(1)最值问题.①利用对称转化为两点之间的距离问题.②利用所求式子的几何意义转化为点到直线的距离.③利用距离公式将问题转化为一元二次函数的最值问题,通过配方求最值. (2)求参数问题.利用距离公式建立关于参数的方程或方程组,通过解方程或方程组求值. (3)求方程的问题.立足确定直线的几何要素——点和方向,利用直线方程的各种形式,结合直线的位置关系(平行直线系、垂直直线系及过交点的直线系),巧设直线方程,在此基础上借助三种距离公式求解.思考感悟:练一练1.已知A (3,7),B A .5 B. 5 C .3 D .29 答案:B2.已知直线上两点A (a ,b ),B (c ,d ),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是线段AB 的中点D .原点一定在线段AB 的垂直平分线上 答案:D3.点(1,-1)到直线x -y +1=0的距离是( )A .3 2 B.22C .3 D.322答案:D4.点(5,-3)到直线x +2=0的距离等于( ) A .7 B .5 C .3 D .2 答案:A5.直线l 1:x +y =0与直线l 2:2x +2y +1=0间的距离是________.答案:24知识点一两点间距离公式的应用1.已知点A (2,m )与点B (m,1)间的距离是13,则实数m =( )A .-1B .4C .-1或4D .-4或1 解析:∵|AB |=m -22+1-m 2=13,∴m 2-3m -4=0,解得m =-1或m =4. 答案:C2.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为2+12+1-22=10. 答案:10知识点二 求点到直线的距离3.已知点(a,1)到直线x -y +1=0的距离为1,则a 的值为( ) A .1 B .-1 C. 2 D .± 2解析:由题意,得|a -1+1|12+-12=1,即|a |=2, 所以a =± 2.故选D. 答案:D4.点P (x ,y )在直线x +y -4=0上,O 是原点,则|OP |的最小值是( ) A.10 B .2 2 C. 6 D .2解析:由题意可知|OP |的最小值即原点(0,0)到直线x +y -4=0的距离d =|-4|2=2 2.知识点三 两条平行直线间的距离5.12b +c 等于( )A .-12B .48C .36D .-12或48解析:将l 1:3x +4y +5=0改写为6x +8y +10=0, 因为两条直线平行,所以b =8. 由|10-c |62+82=3,解得c =-20或c =40.所以b +c =-12或48.故选D. 答案:D6.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .4 B.21313C.51326 D.71326解析:由两直线平行可知36=2m ≠-31,故m =4.又方程6x +4y +1=0可化简为3x +2y +12=0,∴平行线间的距离为|12--3|22+32=71326.故选D. 答案:D知识点四 对称问题7.直线y =3xA .y =3x -10B .y =3x -18C .y =3x +4D .y =4x +3解析:在直线上任取两点A (1,-1),B (0,-4),则其关于点P 的对称点A ′,B ′可由中点坐标公式求得为A ′(3,-1),B ′(4,2),由两点式可求得方程为y =3x -10.答案:A8.直线2x +3y -6=0关于点(1,-1)对称的直线的方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线的方程为2x +3y +C =0(C ≠-6).在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)对称的点为(-1,-2),则点(-1,-2)必在所求直线上,∴2×(-1)+3×(-2)+C =0,解得C =8. 故所求直线的方程为2x +3y +8=0. 答案:D综合知识 距离公式的综合应用9.已知△ABC 中,A (2,-1),B (4,3),C (3,-2). (1)求BC 边上的高所在直线方程的一般式; (2)求△ABC 的面积.解析:(1)因为k BC =3--24-3=5,所以BC 边上的高AD 所在直线斜率k =-15.所以AD 所在直线方程为y +1=-15(x -2).即x +5y +3=0.(2)BC 的直线方程为:y +2=5(x -3). 即5x -y -17=0,点A 到直线BC 的距离为|2×5--1-17|52+-12=626. 又因为|BC |=3-42+-2-32=26,所以△ABC 的面积S =12×626×26=3.10.已知直线l 1经过点A (0,1),直线l 2经过点B (5,0),且直线l 1∥l 2,l 1与l 2间的距离为5,求直线l 1,l 2的方程.解析:∵直线l 1∥l 2,∴当直线l 1,l 2垂直于x 轴时,直线l 1的方程为x =0,直线l 2的方程为x =5, 这时直线l 1,l 2之间的距离等于5,符合题意. 当直线l 1,l 2不垂直于x 轴时,可设其斜率为k , 依题意得,直线l 1的方程为y =kx +1,即kx -y +1=0,直线l 2的方程为y =k (x -5), 即kx -y -5k =0.由两条平行直线间的距离公式,得|1+5k |1+k2=5, 解得k =125.∴直线l 1的方程为12x -5y +5=0,直线l 2的方程为12x -5y -60=0.综上,符合题意的直线l 1,l 2的方程有两组:l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0.基础达标一、选择题1.点P (1,-1)到直线l :3y =2的距离是( )A .3 B.53C .1 D.22解析:点P (1,-1)到直线l 的距离d =|3×-1-2|02+32=53,选B. 答案:B2.已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m =( )A .0 B.34C .3D .0或34解析:点M 到直线l 的距离d =|m +4-1|m 2+1=|m +3|m 2+1,所以|m +3|m 2+1=3,解得m =0或m =34,选D.答案:D3.两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为( ) A.1310 B.135 C.72 D.235解析:直线3x +4y -12=0,即直线6x +8y -24=0,根据直线3x +4y -12=0与ax +8y +11=0平行,可得a =6,故两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为|-24-11|36+64=72. 答案:C4.已知点A (1,3),B (3,1),C (-1,0),则△ABC 的面积等于( ) A .3 B .4 C .5 D .6解析:设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=3-12+1-32=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x +y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.答案:C5.直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点.则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:因为直线l 与直线y =x +1垂直,所以设直线l 的方程为y =-x +b .又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0),原点O (0,0)到直线x +y -b =0(b >0)的距离为|0+0-b |12+12=1,解得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0. 答案:A6.已知△ABC 的三个顶点是A (-a,0),B (a,0)和C ⎝ ⎛⎭⎪⎫a2,32a ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形解析:因为k AC =32a a 2+a =33,k BC =32a a2-a=-3,k AC ·k BC =-1,所以AC ⊥BC ,又|AC |=⎝ ⎛⎭⎪⎫a 2+a 2+⎝ ⎛⎭⎪⎫32a 2=3|a |. |BC |=⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫32a -02=|a |,|AC |≠|BC |. 所以△ABC 为直角三角形.答案:C7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 C. 2 D .4解析:由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=3 2.答案:A 二、填空题8.已知点A (-1,2),B (3,b )的距离是5,则b =________.解析:根据两点间的距离公式,可得3+12+b -22=5,解得b =5或b =-1. 答案:5或-19.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________.解析:∵|5×2-12k +6|52+122=4, ∴|16-12k |=52,∴k =-3,或k =173.答案:-3或17310.两直线3x +y -3=0与6x +my +n =0平行且距离为10,则m +n =________. 解析:因为两直线平行,所以m =2, 由两平行线的距离公式知⎪⎪⎪⎪⎪⎪-3-n 232+12=10, 解得n =14或n =-26.所以m +n =16或m +n =-24. 答案:16或-2411.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________________________________________________________________________.解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, 所以k =2或k =-23.所以所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=012.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:求x 2+y 2的最小值,就是求2x +y +5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x +y +5=0的距离d =522+12= 5. 答案: 5 三、解答题13.已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解析:(1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P 点垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若直线l 的斜率存在,设其方程为y +1=k (x -2),即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2)过P 点且与原点O 距离最大的直线是过P 点且与OP 垂直的直线.由l ⊥OP ,得k l k OP=-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,存在过点P 且到原点距离最大为5的直线,因此不存在过点P 到原点距离为6的直线.14.已知直线l 1:x +3y -3m 2=0和直线l 2:2x +y -m 2-5m =0相交于点P (m ∈R ). (1)用m 表示直线l 1与l 2的交点P 的坐标;(2)当m 为何值时,点P 到直线x +y +3=0的距离最短?并求出最短距离.解析:(1)解方程组⎩⎪⎨⎪⎧x +3y -3m 2=0,2x +y -m 2-5m =0,得x =3m ,y =m 2-m ,∴直线l 1与l 2的交点P 的坐标为(3m ,m 2-m ).(2)设点P 到直线x +y +3=0的距离为d ,d =|3m +m 2-m +3|2=|m 2+2m +3|2=|m +12+2|2=m +12+22,∴当m =-1时,即P 点坐标为(-3,2)时,点P 到直线x +y +3=0的距离最短,最短距离为 2.能力提升15.已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P . (1)使|PA |+|PB |最小; (2)使||PA |-|PB ||最大.解析:(1)可判断A ,B 在直线l 的同侧,设A 点关于l 的对称点A 1的坐标为(x 1,y 1), 则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧x 1=-25,y 1=-95.由直线的两点式方程得直线A 1B 的方程为y -1-95-1=x -4-25-4,即y =711(x -4)+1,由⎩⎪⎨⎪⎧x +2y -2=0,y =711x -4+1得直线A 1B 与l 的交点为P ⎝⎛⎭⎪⎫5625,-325,由平面几何知识可知,此时|PA |+|PB |最小.(2)由直线的两点式方程求得直线AB 的方程为y -31-3=x -24-2,即x +y -5=0.由⎩⎪⎨⎪⎧x +2y -2=0,x +y -5=0得直线AB 与l 的交点为P (8,-3),此时||PA |-|PB ||最大.16.已知三条直线l 1:mx -y +m =0,l 2:x +my -m (m +1)=0,l 3:(m +1)x -y +(m +1)=0,它们围成△ABC .(1)求证:不论m 取何值时,△ABC 中总有一个顶点为定点; (2)当m 取何值时,△ABC 的面积取最值?并求出最值. 解析:(1)证明:设直线l 1与直线l 3的交点为A .由⎩⎪⎨⎪⎧mx -y +m =0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,∴点A 的坐标为(-1,0),∴不论m 取何值,△ABC 中总有一个顶点A (-1,0)为定点.(2)由⎩⎪⎨⎪⎧ x +my -m m +1=0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =0,y =m +1,即l 2与l 3交点为B (0,m +1).再由⎩⎪⎨⎪⎧mx -y +m =0,x +my -m m +1=0,解得⎩⎪⎨⎪⎧x =m m 2+1,y =m 3+m 2+mm 2+1,即l 1与l 2交点为C ⎝ ⎛⎭⎪⎫mm 2+1,m 3+m 2+m m 2+1.设边AB 上的高为h , ∴S △ABC =12|AB |·h =12·1+m +12·⎪⎪⎪⎪⎪⎪m m +1m 2+1-m 3+m 2+m m 2+1+m +1m +12+1=12·|m 2+m +1|m 2+1=12·m 2+m +1m 2+1=12⎝ ⎛⎭⎪⎫1+m m 2+1.当m =0时,S =12;当m ≠0时,S =12⎝⎛⎭⎪⎪⎫1+1m +1m . ∵函数f (x )=x +1x的值域为[2,+∞)∪(-∞,-2].∴-12≤1m +1m <0或0<1m +1m≤12,∴14≤S <12或12<S ≤34. 当m =1时,△ABC 的面积的最大值为34,当m =-1时,△ABC 的面积的最小值为14.。
1.5平面直角坐标系中的距离公式第1课时两点间的距离公式学习目标 1.掌握两点间距离公式,并能简单应用.2.初步体会解析法研究几何问题.3.会解决简单的对称问题.知识点两点间的距离公式已知平面上两点P1(x1,y1),P2(x2,y2),思考1当x1≠x2,y1=y2时,|P1P2|=?答案|P1P2|=|x2-x1|.思考2当x1=x2,y1≠y2时,|P1P2|=?答案|P1P2|=|y2-y1|.思考3当x1≠x2,y1≠y2时,|P1P2|=?答案|P1P2|=(x2-x1)2+(y2-y1)2梳理两点间的距离公式如图,在Rt△P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=(x2-x1)2+(y2-y1)2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=z(x2-x1)2+(y2-y1)2.1.点P1(0,a),点P2(b,0)之间的距离为a-b.(×)2.点P(x1,y1)关于点M(x0,y0)的对称点是P′(2x0-x1,2y0-y1).(√)类型一 两点间的距离问题例1 如图,已知△ABC 的三顶点A (-3,1),B (3,-3),C (1,7),(1)判断△ABC 的形状; (2)求△ABC 的面积. 考点 两点间的距离公式 题点 两点间距离公式的综合应用 解 (1)方法一 ∵|AB |=(3+3)2+(-3-1)2=52,|AC |=(1+3)2+(7-1)2=52,又|BC |=(1-3)2+(7+3)2=104,∴|AB |2+|AC |2=|BC |2,且|AB |=|AC |, ∴△ABC 是等腰直角三角形. 方法二 ∵k AC =7-11-(-3)=32,k AB =-3-13-(-3)=-23,∴k AC ·k AB =-1,∴AC ⊥AB . 又|AC |=(1+3)2+(7-1)2=52, |AB |=(3+3)2+(-3-1)2=52,∴|AC |=|AB |,∴△ABC 是等腰直角三角形. (2)S △ABC =12|AC |·|AB |=12(52)2=26,∴△ABC 的面积为26.反思与感悟 (1)判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.(2)在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形的长度特征,主要考察边是否相等或是否满足勾股定理.跟踪训练1 已知点A (-1,2),B (2,7),在x 轴上求一点P ,使|P A |=|PB |,并求|P A |的值. 考点 两点间的距离公式 题点 两点间距离公式的综合应用 解 设P (x ,0),|P A |=(x +1)2+(-2)2,|PB |=(x -2)2+(-7)2,∵|P A |=|PB |, ∴(x +1)2+4=(x -2)2+7,得x =1,∴P (1,0), ∴|P A |=(1+1)2+4=2 2.类型二 对称问题命题角度1 关于点对称问题例2 (1)求点P (x 0,y 0)关于点A (a ,b )的对称点P ′的坐标; (2)求直线3x -y -4=0关于点(2,-1)的对称直线l 的方程. 考点 对称问题的求法 题点 直线关于点的对称问题解 (1)根据题意可知,点A (a ,b )为线段PP ′的中点, 设P ′点的坐标为(x ,y ),则根据中点坐标公式,得⎩⎪⎨⎪⎧a =x +x02,b =y +y 02,所以⎩⎪⎨⎪⎧x =2a -x 0,y =2b -y 0.所以点P ′的坐标为(2a -x 0,2b -y 0).(2)方法一 设直线l 上任意一点M 的坐标为(x ,y ), 则M 点关于点(2,-1)的对称点为M 1(4-x ,-2-y ),且M 1在直线3x -y -4=0上, 所以3(4-x )-(-2-y )-4=0, 即3x -y -10=0.所以所求直线l 的方程为3x -y -10=0.方法二 在直线3x -y -4=0上取两点A (0,-4),B (1,-1), 则点A (0,-4)关于点(2,-1)的对称点为A 1(4,2), 点B (1,-1)关于点(2,-1)的对称点为B 1(3,-1). 可得直线A 1B 1的方程为3x -y -10=0, 即所求直线l 的方程为3x -y -10=0.反思与感悟 (1)点关于点的对称问题:若两点A (x 1,y 1),B (x 2,y 2)关于点P (x 0,y 0)对称,则点P 是线段AB 的中点,并且⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.(2)直线关于点的对称问题:若两条直线l 1,l 2关于点P 对称,则:①l 1上任意一点关于点P 的对称点必在l 2上,反过来,l 2上任意一点关于点P 的对称点必在l 1上;②若l 1∥l 2,则点P 到直线l 1,l 2的距离相等;③过点P 作一直线与l 1,l 2分别交于A ,B 两点,则点P 是线段AB 的中点.跟踪训练2 与直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0考点 对称问题的求法 题点 直线关于点的对称问题 答案 D解析 由平面几何知识易知,所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0), 关于点(1,-1)的对称点为(-1,-2),则点(-1,-2)必在所求直线上, ∴2×(-1)+3×(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0. 命题角度2 关于轴对称问题例3 点P (-3,4)关于直线x +y -2=0的对称点Q 的坐标是( ) A .(-2,1) B .(-2,5) C .(2,-5) D .(4,-3)考点 对称问题的求法 题点 点关于直线对称 答案 B解析 设对称点坐标为(a ,b ),由题意,得⎩⎨⎧a -32+b +42-2=0,b -4a +3=1,解得⎩⎪⎨⎪⎧a =-2,b =5,即Q (-2,5).反思与感悟 (1)点关于直线的对称问题求点P (x 0,y 0)关于直线Ax +By +C =0的对称点P ′(x ,y )时,利用⎩⎨⎧y -y 0x -x·⎝⎛⎭⎫-A B =-1,A ·x 0+x 2+B ·y 0+y2+C =0可以求P ′点的坐标.(2)直线关于直线的对称问题:若两条直线l 1,l 2关于直线l 对称,①l 1上任意一点关于直线l 的对称点必在l 2上,反过来,l 2上任意一点关于直线l 的对称点必在l 1上;②过直线l 上的一点P 且垂直于直线l 作一直线与l 1,l 2分别交于点A ,B ,则点P 是线段AB 的中点. 跟踪训练3 一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程.考点 对称问题的求法 题点 光路可逆问题解 设原点关于直线l 的对称点A 的坐标为(a ,b ), 由直线OA 与l 垂直和线段AO 的中点在直线l 上,得⎩⎨⎧b a ×⎝⎛⎭⎫-43=-1,8×a 2+6×b2=25,解得⎩⎪⎨⎪⎧a =4,b =3,∴点A 的坐标为(4,3).∵反射光线的反向延长线过点A (4,3), 又反射光线过点P (-4,3),两点纵坐标相等, 故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧y =3,8x +6y =25,解得⎩⎪⎨⎪⎧x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3⎝⎛⎭⎫x ≤78. 类型三 运用坐标法解决平面几何问题例4 在△ABC 中,AD 是BC 边上的中线,求证:|AB |2+|AC |2=2(|AD |2+|DC |2). 考点 题点证明 设BC 所在边为x 轴,以D 为原点,建立直角坐标系,如图所示,设A(b,c),C(a,0),则B(-a,0).∵|AB|2=(a+b)2+c2,|AC|2=(a-b)2+c2,|AD|2=b2+c2,|DC|2=a2,∴|AB|2+|AC|2=2(a2+b2+c2),|AD|2+|DC|2=a2+b2+c2,∴|AB|2+|AC|2=2(|AD|2+|DC|2).反思与感悟利用坐标法解平面几何问题常见的步骤(1)建立坐标系,尽可能将有关元素放在坐标轴上.(2)用坐标表示有关的量.(3)将几何关系转化为坐标运算.(4)把代数运算结果“翻译”成几何关系.跟踪训练4已知:等腰梯形ABCD中,AB∥DC,对角线为AC和BD.求证:|AC|=|BD|. 考点题点证明如图所示,建立直角坐标系,设A(0,0),B(a,0),C(b,c),则点D的坐标是(a-b,c),∴|AC|=(b-0)2+(c-0)2=b2+c2,|BD|=(a-b-a)2+(c-0)2=b2+c2.故|AC|=|BD|.1.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为()A .1B .-5C .1或-5D .-1或5 考点 两点间的距离公式题点 已知两点间的距离求参数的值 答案 C 解析 |AB |=(a +2)2+42=5,解得a =1或a =-5.2.已知点A (x ,5)关于点(1,y )的对称点为(-2,-3),则点P (x ,y )到原点的距离是( ) A .2 B .4 C .5D.17考点 两点间的距离公式 题点 求两点间的距离 答案 D解析 由题意知,⎩⎪⎨⎪⎧1=x -22,y =5-32,解得⎩⎪⎨⎪⎧x =4,y =1.∴P (4,1), 则|OP |=42+12=17.3.已知△ABC 的三个顶点是A (-a ,0),B (a ,0)和C ⎝⎛⎭⎫a 2,32a ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形考点 题点 答案 C解析 ∵|AB |=2|a |,|AC |=⎝⎛⎭⎫a 2+a 2+⎝⎛⎭⎫32a -02=3|a |,|BC |=⎝⎛⎭⎫a 2-a 2+⎝⎛⎭⎫32a -02=|a |, ∴|AB |2=|AC |2+|BC |2, ∴△ABC 为直角三角形.4.点A 在第四象限,点A 到x 轴的距离为3,到原点的距离为5,则点A 的坐标为____________. 考点 两点间的距离公式 题点 两点间距离公式的综合应用 答案 (4,-3)解析 由题意得,A 点的纵坐标为-3,设A (x ,-3), 则(x -0)2+(-3-0)2=5,x =±4.又点A 在第四象限,∴x =4,∴A (4,-3).5.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为________. 考点 对称问题的求法 题点 点关于直线对称 答案 x -y +1=0解析 线段PQ 的垂直平分线就是直线l ,则k l ·k PQ =k l ·4-21-3=-1,得k l =1,PQ 的中点坐标为(2,3),在直线l 上,∴直线l 的方程为y -3=x -2,即x -y +1=0.1.两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2与两点的先后顺序无关,其反映了把几何问题代数化的思想. 2.有关对称问题的两种主要类型 (1)中心对称:①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称:①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点为A ′(m ,n ),则有⎩⎨⎧n -bm -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.一、选择题1.已知A (-1,0),B (5,6),C (3,4)三点,则|AC ||CB |的值为( )A.13B.12 C .3 D .2 考点 两点间的距离公式 题点 求两点间的距离 答案 D解析 由两点间的距离公式, 得|AC |=[3-(-1)]2+(4-0)2=42,|CB |=(3-5)2+(4-6)2=22,故|AC ||CB |=4222=2. 2.已知两直线l 1:x +y -2=0,l 2:2x -y -1=0相交于点P ,则点P 到原点的距离为( ) A. 5 B .5 C. 2D .2考点 两点间的距离公式 题点 求两点间的距离 答案 C解析 由⎩⎪⎨⎪⎧ x +y -2=0,2x -y -1=0,得⎩⎪⎨⎪⎧x =1,y =1,∴点P 的坐标为(1,1),故到原点的距离为(1-0)2+(1-0)2= 2.3.光线从点A (-3,5)射到x 轴上,经反射后经过点B (2,10),则光线从A 到B 的距离是( ) A .5 2 B .2 5 C .510D .10 5考点 对称问题的求法题点 光路可逆问题答案 C解析 点A (-3,5)关于x 轴的对称点的坐标为A ′(-3,-5).光线从A 到B 的距离是|A ′B |=[2-(-3)]2+[10-(-5)]2=510.4.已知点M (-1,3),N (5,1),P (x ,y )到M ,N 的距离相等,则x ,y 满足的条件是( )A .x +3y -8=0B .x -3y +8=0C .x -3y +9=0D .3x -y -4=0 考点 两点间的距离公式题点 两点间距离公式的综合应用答案 D解析 由|PM |=|PN |,得(x +1)2+(y -3)2=(x -5)2+(y -1)2,化简得3x -y -4=0.5.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895 B.175C.135D.115 考点 恒过定点的直线题点 恒过定点的直线的应用答案 C解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0过定点B ⎝⎛⎭⎫-1,25,由两点间的距离公式,得|AB |=135. 6.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0考点 两点间的距离公式题点 两点间距离公式的综合应用答案 A解析 由已知,得A (-1,0),P (2,3),由|P A |=|PB |,得B (5,0),由两点式得直线PB 的方程为x +y -5=0.7.直线x +y -1=0上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)考点 两点间的距离公式题点 两点间距离公式的综合应用答案 C解析 设所求点的坐标为(x 0,y 0),有x 0+y 0-1=0,且(x 0+2)2+(y 0-3)2=2, 两式联立解得⎩⎪⎨⎪⎧ x 0=-3,y 0=4或⎩⎪⎨⎪⎧x 0=-1,y 0=2.故选C. 8.点P (a ,b )关于直线l :x +y +1=0对称的点仍在l 上,则a +b 等于( )A .-1B .1C .2D .0考点 对称问题的求法题点 点关于直线对称答案 A解析 ∵点P (a ,b )关于直线l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.二、填空题9.点P (2,5)关于直线x +y =1的对称点的坐标是____________.考点 对称问题的求法题点 点关于直线对称答案 (-4,-1)解析 设对称点坐标为(x 0,y 0),则⎩⎨⎧y 0-5x 0-2×(-1)=-1,x 0+22+y 0+52=1,解得⎩⎪⎨⎪⎧x 0=-4,y 0=-1. 10.等腰△ABC 的顶点是A (3,0),底边长|BC |=4,BC 边的中点是D (5,4),则此三角形的腰长为________.考点 两点间的距离公式题点 求两点间的距离答案 2 6解析 |BD |=12|BC |=2, |AD |=(5-3)2+(4-0)2=2 5.在Rt △ADB 中,由勾股定理得腰长|AB |=22+(25)2=2 6. 11.在直线x -y +4=0上取一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为________.考点 两点间的距离公式题点 两点间距离公式的综合应用答案 ⎝⎛⎭⎫-32,52 解析 设P 点的坐标是(a ,a +4),由题意可知,|PM |=|PN |,即(a +2)2+(a +4+4)2=(a -4)2+(a +4-6)2,解得a =-32, 故P 点的坐标是⎝⎛⎭⎫-32,52. 三、解答题12.在△ABC 中,点A (1,1),B (3,1),若△ABC 是等边三角形,求点C 的坐标. 考点 两点间的距离公式题点 两点间距离公式的综合应用解 设点C 的坐标为(x ,y ),因为△ABC 为等边三角形,所以|AC |=|BC |, 即(x -1)2+(y -1)2=(x -3)2+(y -1)2. ①又|AC |=|AB |, 即(x -1)2+(y -1)2=(1-3)2+(1-1)2. ②由①得x =2,代入②,得y =1±3.故所求点C 的坐标为(2,1+3)或(2,1-3).13.已知正方形ABCD 中,E ,F 分别是BC ,AB 边的中点,DE ,CF 交于点G ,求证:|AG |=|AD |.考点 两点间的距离公式题点 两点间距离公式的综合应用证明 建立如图所示的直角坐标系,设正方形边长为2,则B (0,0),C (2,0),A (0,2),E (1,0),F (0,1),D (2,2).直线DE 的方程为y =2x -2,直线CF 的方程为y =-12x +1, 由⎩⎪⎨⎪⎧ y =2x -2,y =-12x +1,得⎩⎨⎧ x =65,y =25,即点G ⎝⎛⎭⎫65,25.从而|AG |= ⎝⎛⎭⎫65-02+⎝⎛⎭⎫25-22=2=|AD |. 四、探究与拓展14.已知点A (1,3),B (5,-2),点P 在x 轴上,则使|AP |-|BP |取最大值的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0)考点 两点间的距离公式题点 两点间距离公式的综合应用答案 B解析 点A (1,3)关于x 轴的对称点为A ′(1,-3),连接A ′B 并延长交x 轴于点P ,即为所求.直线A ′B 的方程是y +3=-2+35-1·(x -1), 即y =14x -134.令y =0,得x =13. 即点P 坐标为(13,0).15.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于点B ,且|AB |=5,求直线l 的方程.考点 两点间的距离公式题点 两点间距离公式的综合应用解 当直线l 的斜率不存在时,过点A (1,-1)的直线为x =1,解方程组⎩⎪⎨⎪⎧ x =1,2x +y -6=0,得B 点坐标为(1,4),此时|AB |=5,x =1即为所求. 当直线l 的斜率存在时,设过点A (1,-1)的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1), 得⎩⎪⎨⎪⎧ x =k +7k +2,y =4k -2k +2(k ≠-2,否则与已知直线平行),则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2. 由已知⎝ ⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,得k =-34, ∴y +1=-34(x -1),即3x +4y +1=0. 综上可知,所求直线l 的方程为x =1或3x +4y +1=0.。