黑体辐射的实验规律
- 格式:ppt
- 大小:1.92 MB
- 文档页数:59
实验七 黑体辐射Black-body Radiation任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射;只要其温度在绝对零度以上,也要从外界吸收辐射的能量。
处在不同温度和环境下的物体,都以电磁辐射形式发出能量,而黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且,非黑体的辐射能力不仅与温度有关,而且与表面的材料的性质有关,而黑体的辐射能力则仅与温度有关。
在黑体辐射中,存在各种波长的电磁波,其能量按波长的分布与黑体的温度有关。
实验目的(experimental purpose)1.了解黑体实验的发展历史,明确光谱辐射曲线的广泛应用;2.了解黑体实验仪器组件,明确测量过程与分析要素;3.明确黑体实验设计思想,掌握黑体辐射原理与定律。
实验原理(experimental principle)任何物体都具有不断辐射、吸收、发射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。
显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。
黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐 射的能力比同温度下的任何其它物体强。
黑体辐射指黑体发出的电磁辐射。
黑体辐射能量按波长的分布仅与温度有关。
对于黑体的研究,使得自然现象中的量子效应被发现。
我们换一个角度来说:所谓黑体辐射其实就是当地的状态光和物质达到平衡所表现出的现象:物质达到平衡,所以可以用一个温度来描述物质的状态,而光和物质的交互作用很强,而如此光和光之间也可以用一个温度来描述(光和光之间本身不会有交互作用,但光和物质的交互作用很强)。
实验七 黑体辐射Black-body Radiation任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射;只要其温度在绝对零度以上,也要从外界吸收辐射的能量。
处在不同温度和环境下的物体,都以电磁辐射形式发出能量,而黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且,非黑体的辐射能力不仅与温度有关,而且与表面的材料的性质有关,而黑体的辐射能力则仅与温度有关。
在黑体辐射中,存在各种波长的电磁波,其能量按波长的分布与黑体的温度有关。
实验目的(experimental purpose)1.了解黑体实验的发展历史,明确光谱辐射曲线的广泛应用;2.了解黑体实验仪器组件,明确测量过程与分析要素;3.明确黑体实验设计思想,掌握黑体辐射原理与定律。
实验原理(experimental principle)任何物体都具有不断辐射、吸收、发射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。
显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。
黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐 射的能力比同温度下的任何其它物体强。
黑体辐射指黑体发出的电磁辐射。
黑体辐射能量按波长的分布仅与温度有关。
对于黑体的研究,使得自然现象中的量子效应被发现。
我们换一个角度来说:所谓黑体辐射其实就是当地的状态光和物质达到平衡所表现出的现象:物质达到平衡,所以可以用一个温度来描述物质的状态,而光和物质的交互作用很强,而如此光和光之间也可以用一个温度来描述(光和光之间本身不会有交互作用,但光和物质的交互作用很强)。
黑体辐射特性测量一、实验目的1、通过实验验证维恩位移定律与斯特藩—玻尔兹曼定律2、学会使用黑体辐射实验的操作软件3、了解黑体辐射的发展二、实验仪器及用具WGH—10型红外光谱仪、稳压溴钨灯三、实验原理1、维恩位移定律由普朗克公式的极值定出黑体辐射能量的谱密度的峰位λM就得到维恩位移定律:λMT=b(b=2.898*10^(-3)mK)2、斯特藩—玻尔兹曼定律1879年,奥地利物理学家斯特藩根据实验结果总结出一条关于黑体辐射本领与温度之间关系的规律:黑体的总辐射能量与绝对温度的四次方成正比。
1884年玻尔兹曼根据电磁学和热力学的理论,导出这个关系,这就是斯特藩定律,可表述为:黑体辐射的总辐射本领R0与绝对温度T的四次方成正比,即:R0(T)=σT⁴四、实验方案及注意事项1、实验方案用WGH-10型外光谱仪记录福射体在80Onm——2500nm波段的相对辐射谱密度曲线,研究其辐射特性。
采用溴钨灯经过修正来代替黑体,结合实验软件提供的各遍度下绝对黑体的理论辐射谱密度曲线,验证普朗克辐射定律、斯特藩玻耳兹曼定律和维恩位移定律。
进行此验证时可使用实验软件提供的黑体理论辐射曲线作为验证对象,但要注意测得数据只具有相对意义。
软件中提供了归一化功能,该项功能的作用是将测得的数据曲线来以一一个系数,使谈曲线的峰值高度与理论曲线的峰值高度相同。
若实验数据符合理论值的话,归一化之后二者在定的波长范围内重合得较好。
在己知色温的电流下对溴钨灯的辐射谱进行扫描,扫描前选中“传递函数””修正为黑体”两项,对扫描所得的的数据进行归一化处理,使用软件中内置的功能取得该温皮下的理论黑体辐射请线,在若干个波长处(位置大致平均分布在曲线上:)算出实测值与理论值的相对误差δ=ΔE/E。
,然后计算平均相对误差。
根据平均相对误差的大小来确定实验结果是否支持普朗克辐射定律,由于实验仪器的精度限制,一般来来说平均相对误差在5%以内,即可认为实验结果支持普朗克辐射定律。
黑体辐射实验19世纪末,物理学晴朗的天空中飘着两朵乌云,其中之一被称为“紫外灾难”,即瑞利和金斯用经典的能量均分定理并不能完全解释热辐射现象。
1900年,普朗克提出金属空腔壁以与振子频率成正比的能量子为基本单元来吸收或发射能量,得到著名的普朗克公式,从理论上解释了黑体辐射频谱分布。
这一贡献引起物理学的一场革命,对量子理论的建立起到了重要作用。
本实验利用WGH ——10型黑体实验装置测量黑体的辐射能量曲线,从而验证普朗克公式,唯恩位移定律以及斯特藩——玻耳兹曼定律,并进一步研究黑体与一般发光体辐射强度的关系,学会测量一般发光光源的辐射能量曲线。
一、实验原理1、热辐射,黑体任何物体都具有不断辐射、吸收、发射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
黑体的特点:1、热辐射与辐射体材料的具体性质无关。
2、黑体辐射仅与温度有关。
3、黑体是为理论研究方便假想出来的,世界上不存在真正的黑体。
2、描述热体辐射的几个物理量单色辐出度()T M λ:在单位时间内物体从表面单位面积上发射的波长界于λ和λd 之间的辐射电磁波能量λE d 则λE d 与λd 之比称为单色辐出度()T M λ 即()T M λ=λE d /λd (与辐射体的温度和辐射波长有关)。
(1)辐出度()T M :在单位时间内物体从单位表面积上发射的所有各种波长的电磁波能量总和为辐出度()T M 即()()λλd M T M =T ⎰∞(1)2)单色吸收率()T λa :当辐射从外界入射到物体表面时,被物体吸收的能量与入射总能量之比称为吸收率A ,其中波长在λ到λ+λd 之间的吸收率A d 与λd 之比为单色吸收率()T λa 即()λλd d a A=T (2)3、黑体辐射定律(1)斯特藩——玻耳兹曼定律此定律首先由斯特藩于1879年从实践数据的分析中发现。
实验1 黑体辐射实验1.1 实验目的通过测量假想黑体的辐射曲线,了解黑体辐射的基本规律和普朗克的能量子假设,掌握扫描光栅单色仪的工作原理及使用方法。
1.2实验原理1.2.1 辐射测量的基本术语介绍黑体:是一种理想的辐射能源,是一种辐射仅取决于它的温度的辐射体,它在给定的温度下比在同样温度下的任何实际物体辐射出更多的能量。
故也称之为“完全辐射体”或“理想的温度辐射体”或“普朗克辐射体”。
辐射度:也称为“辐射出射度”简称“辐出度”。
表面上一点的辐射度为该点表面元发出的辐射通量除以该表面元的面积的商,单位是(瓦/米)。
辐亮度:表示光源的表面元发出的,在给定方向的基准所确定的方向传播的辐射通量,除以锥的立体角和表面元在垂直于给定方向的平面上的投影面积的乘积的商,单位是(瓦特/米·球面度)。
色温:一个光源的色温就是辐射同一色谱光的黑体温度,单位是(开尔文)。
1.2.2 黑体辐射指黑体发出的电磁辐射。
任何物体只要其温度在绝对零度以上就可以向周围发射辐射,称之为温度辐射。
黑体是一种完全的温度辐射体,它吸收全部的入射光辐射而一点也不反射。
黑体辐射能量的效率最高,仅与温度有关,它的发射率是1,任何其它物体的发射率都小于1。
1.2.3黑体辐射定律黑体辐射的经典解释:瑞利—金斯公式: 222()M T k T cνπν= (1)错误!未找到引用源。
黑体辐射的光谱分布:普朗克定律,普朗克定律叙述了黑体辐射的光谱分布。
此定律用光谱辐射出射度(简称辐出度或辐射度)表示,其形式为:()()32/2e x p 1h k T h MT c ννπν=- (2)错误!未找到引用源。
其中λ是波长(m ),ν是频率(Hz ),3426.625610h W s -=⨯是普朗克常数,8310/c m s =⨯是光速,T 是绝对温度(K ),231.380610/k W s K -=⨯是波尔兹曼常数。
黑体光谱辐射亮度()L T λ由下式给出:()()M T L T λλπ= (3)错误!未找到引用源。
黑体辐射实验原理黑体辐射实验是探究热辐射规律和黑体辐射特性的经典实验之一。
该实验通过对黑体辐射的探究,使我们能够了解热辐射的本质和特征,进而对热辐射进行更加深入的研究。
黑体是吸收一切辐射能的理想物体,它可以完全吸收入射的辐射能,不对外界环境产生任何反射或透射。
黑体辐射实验中常用的黑体是由金属或陶瓷制成的容器,内部被涂有吸收率接近于1的黑色物质。
黑体辐射实验的原理是利用黑体的能量吸收和辐射特性,来研究物体的热辐射规律。
实验中,首先需要将黑体加热到一定温度。
当黑体被加热后,它会发出辐射能,这些能量以电磁波的形式向四面八方传播。
黑体辐射的光谱能够覆盖从长波红外线到短波紫外线的所有频率范围,其中包含了可见光。
黑体辐射的能量分布与温度有关,根据普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,黑体辐射的能量与温度的四次方成正比。
实验中,我们可以使用一些设备来测量黑体辐射的特性。
例如,可以使用辐射计来测量黑体辐射的辐射强度,辐射计的工作原理是利用热电效应或半导体效应来测量电磁辐射的能量。
同时,我们还可以使用光谱仪来测定黑体辐射的光谱分布,通过将黑体辐射光线分散成不同波长的光谱线,进而测量不同波长处的辐射强度。
实验中,我们可以通过改变黑体的温度来观察黑体辐射的变化。
当黑体温度较低时,黑体辐射主要是长波红外线,所以我们看不到明显的光亮。
随着温度的升高,黑体辐射的光谱会逐渐向可见光方向移动,从红色逐渐变为橙色、黄色、绿色、蓝色,最后变为紫色。
同时,黑体辐射的强度也会随温度升高而增加。
黑体辐射实验的结果与理论计算吻合得非常好。
根据普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,我们可以利用黑体辐射的能量分布和温度之间的关系,来计算出黑体的温度。
这种方法被广泛应用于天体物理学中,用来研究远离地球的星体的温度和能量分布。
总之,黑体辐射实验通过观察和测量黑体辐射的特性,使我们能够更好地理解热辐射的规律和性质。
通过实验结果,我们可以验证普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,并用来计算黑体的温度。
4.1普朗克黑体辐射理论基础导学要点一、黑体与黑体辐射(一)黑体与黑体辐射1.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.2.黑体辐射(1)定义:黑体虽然不反射电磁波,却可以向外辐射电磁波,这样的辐射叫作黑体辐射.(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.(二)黑体辐射的实验规律1.随着温度的升高,各种波长的辐射强度都有增加.2.随着温度的升高,辐射强度的极大值向波长较短的方向移动.要点二、能量子1.定义:组成黑体的振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,这个不可再分的最小能量值ε叫作能量子.2.表达式:ε=hν.其中ν是带电微粒的振动频率,即带电微粒吸收或辐射电磁波的频率.h 称为普朗克常量.h=6.626 070 15×10-34 J·s.3.能量的量子化:微观粒子的能量是量子化的,或者说微观粒子的能量是分立的.要点突破突破一:对黑体的理解1.对黑体的理解(1)黑体是一个理想化的物理模型,绝对的黑体实际上是不存在的,但可以用某装置近似地代替。
如图所示,如果在一个空腔壁上开一个小孔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从小孔射出,这个小孔就成了一个绝对黑体。
(2)黑体看上去不一定是黑的,有些可看成黑体的物体由于自身有较强的辐射,看起来还会很明亮.2.一般物体与黑体的比较(1)温度一定时,黑体辐射强度随波长的分布有一个极大值.(2)随着温度的升高①各种波长的辐射强度都有增加;②辐射强度的极大值向波长较短的方向移动,如图所示。
突破二:普朗克的量子化假设1.普朗克的量子化假设(1)能量子:振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,例如可能是ε或2ε、3ε……当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位一份一份地辐射或吸收的.这个不可再分的最小能量值ε叫作能量子。
黑体辐射的实验规律
黑体辐射的实验规律由黑体辐射定律、斯特藩-玻尔兹曼定律
和维恩位移定律组成。
1. 黑体辐射定律(普朗克定律):描述了黑体辐射的能量密度与频率之间的关系。
根据该定律,黑体辐射的能量密度与频率的平方成正比。
数学表达式为:B(ν, T) = (2hν^3 / c^2) * (1 / (exp(hν / kT) - 1)),其中B(ν, T)表示单位频率范围内的能量密度,ν表示频率,T表示黑体的温度,h为普朗克常数,c为光速,k为玻尔兹曼常数。
2. 斯特藩-玻尔兹曼定律:描述了黑体辐射的总辐射功率与温
度之间的关系。
根据该定律,黑体辐射的总辐射功率与温度的四次方成正比。
数学表达式为:P = σ * A * T^4,其中P表示
黑体辐射的总辐射功率,σ为斯特藩-玻尔兹曼常数,约等于
5.67 × 10^−8 W/(m^2·K^4),A表示黑体的表面积,T表示黑体的温度。
3. 维恩位移定律:描述了黑体辐射的主峰频率与温度之间的关系。
根据该定律,黑体辐射的主峰频率与温度成反比。
数学表达式为:λ_max = b / T,其中λ_max表示主峰频率对应的波长,b为维恩位移常数,约等于2.898 × 10^−3 m·K。
这些规律揭示了黑体辐射现象与温度、频率、波长之间的基本关系,对理解和研究热辐射、热力学以及量子物理学等领域有着重要的意义。
高中物理黑体辐射规律黑体辐射是热学中的重要现象之一,它指的是处于热平衡状态的物体对外发射的电磁辐射。
黑体辐射规律是描述黑体辐射特性的定律,也是热辐射研究的基础。
本文将从黑体辐射规律的原理、应用以及实验验证等方面进行探讨。
一、黑体辐射规律的原理黑体是指对所有波长的辐射都能完全吸收的物体,它能够实现热平衡状态并对外发射电磁波。
根据黑体辐射规律,我们可以得出以下结论:1. 黑体辐射的频谱分布:根据普朗克公式,黑体辐射的频谱分布与物体的温度有关。
温度越高,辐射的峰值频率越高,而且辐射强度也随温度升高而增加。
2. 黑体辐射的强度与温度的关系:根据斯特藩-玻尔兹曼定律,黑体辐射的总辐射强度与温度的四次方成正比。
这意味着温度越高,黑体辐射的总辐射强度越大。
3. 黑体辐射的能量密度与温度的关系:根据斯特藩-玻尔兹曼定律,黑体辐射的能量密度与温度的四次方成正比。
这意味着温度越高,黑体辐射的能量密度越大。
二、黑体辐射规律的应用黑体辐射规律在许多领域都有广泛的应用,下面我们将介绍其中的几个典型应用:1. 太阳辐射:太阳可以看作是一个近似黑体辐射源,其辐射能量的分布规律符合黑体辐射规律。
太阳辐射的研究对于理解地球的气候变化、太阳能利用以及天体物理学等方面都具有重要意义。
2. 热辐射测温:利用黑体辐射规律,可以通过测量物体辐射的能量密度来推算物体的温度。
这在工业生产中的温度测量、红外线测温等方面有广泛应用。
3. 热辐射能源利用:利用黑体辐射的特性,可以设计高效的热辐射能源利用系统,如太阳能电池板、热辐射加热系统等。
三、黑体辐射规律的实验验证为了验证黑体辐射规律,科学家们进行了一系列实验。
其中最著名的是普朗克的黑体辐射定律实验和斯特藩-玻尔兹曼定律的实验验证。
普朗克的实验通过对黑体辐射的频谱分布进行测量,验证了黑体辐射的频谱与温度相关的规律。
他的实验结果与普朗克公式的预测相符,为黑体辐射规律奠定了基础。
斯特藩-玻尔兹曼定律的实验验证主要是通过测量黑体辐射的总辐射强度和能量密度与温度的关系。