当前位置:文档之家› 智能箱式变电站项目可行性研究报告(立项标准版)

智能箱式变电站项目可行性研究报告(立项标准版)

智能箱式变电站项目可行性研究报告(立项标准版)
智能箱式变电站项目可行性研究报告(立项标准版)

智能变电站技术发展与创新研究

智能变电站技术发展与创新研究 发表时间:2019-01-03T15:57:42.773Z 来源:《基层建设》2018年第33期作者:陈雯1 谢风飞2 [导读] 摘要:近年来,我国电网建设飞速发展,智能变电站已成为电网重要组成部分。 1 国网江西省电力有限公司都昌县供电分公司江西省九江市 332000; 2国网江西省电力有限公司九江供电分公司江西省九江市 332000 摘要:近年来,我国电网建设飞速发展,智能变电站已成为电网重要组成部分。智能变电站在电力系统中对电网安全和稳定运行有着直接的影响。智能变电站的优越性和经济性,决定其必将是今后变电站的发展趋势。 关键词:智能变电站;发展;创新智能变电站是电力系统发展的重要趋势,能够为人们提供更快捷、更舒适的电力服务。智能变电站的发展和应用,推动了电网的现代化、信息化和智能化。 1 智能变电站概述 智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。智能变电站具有以下特点: 1.数字化全站信息。数字化全站信息是指实现一次、二次设备的灵活控制,并具有双向通信功能,可以通过信息网进行管理,满足全变电站信息采集、传输、处理、输出过程完全数字化。 2.网络化通信平台。变电站能根据实际需求灵活选择网络拓扑结构,利用冗余技术增强系统可靠性;互感器的采样数据可通过过程层网络同时发送到测控、保护、故障录波及相角测量等装置,从而共享了数据;利用光缆代替电缆可大幅度减少变电站二次回路的连接线数量,同时提高了系统的可靠性。 3.标准化信息共享。标准化信息共享就是形成基于一致的断面的唯一性、一致性基础信息,一致的标准化信息模板,通过一致的标准、一致的建模来实现变电站里外的信息交换和信息共享。 4.互动化高级应用。互动化高级应用就是实现各种变电站里外高级应用系统相关对象之间的互动,全面满足智能电网运行、控制要求。 2 智能变电站的功能 智能变电站与常规变电站相比具有以下功能: 1.提高电压质量,抑制谐波和振荡。随着负荷的不断增加和电网结构的不断扩大,电网会承担更多的电力电子器件,容性负载导致系统中的电压谐波污染和振荡问题已日益突出。智能变电站应具有保证系统电压水平,抑制电压谐波和振荡的能力。 2.高度集成化控制平台,智能自动控制。智能变电站构建需要借助计算机技术的发展,随着变电站发展的智能化,高度集成的控制平台将成为智能变电站不可或缺的一部分。利用嵌入式技术实现在线操作系统,建立站内全景数据的统一信息平台,供各子系统统一数据,标准化、规范化存取访问并于调度等其他系统进行标准化交互。智能自动控制将是智能变电站智能功能中的核心部分。 3.标准的通信体系,快速、高质量的通信效果。智能变电站将是一个庞大的,集测量、分析、控制于一体的智能系统,保证系统之间各功能模块快速、高质量的通信将是系统功能实现的关键。应实现无线网、以太网等多种方式通信,实时选择最佳通信网络。数字变电站智能化的功能之一就是充分考虑到用户的需求,应利用调度信息系统,加强与用户的互动。在用户端安装通信设备,间接实现变电站——用户双向通信:智能变电站将能提供用户分时分段用电的指导信息,用户反馈的用电情况和需求趋势将作为智能变电站分析决策的参考。 4.智能化的监视系统,安全兼容分布式电源。智能化的监视系统主要采集一次设备状态信息,进行状态可视化展示并发送到上级系统,为实现优化电网运行和设备运行管理提供基础数据支撑。对网络所有节点的工况监视并在故障时报警,实现包含谐波、电压闪变、三相不平衡等监测在内的电能质量监测、分析与决策,为电能质量的评估与治理提供依据。 3 智能变电站的的技术创新 智能变电站应当实现设备融合、功能整合、结构简洁、信息共享、通讯可靠、控制灵活、接口规范、扩展便捷、安装模块化、站网一体化等特点,应包括以下先进技术创新: 1.智能变电站技术体系、技术标准及技术规范研究。在对智能电网的国内外现状、技术体系、实施进程及发展趋势进行追踪、分析和评价的基础上,研究智能变电站与数字变电站的差异,给出智能变电站的内涵、外延和应用范围。 2.一次、二次设备智能化集成技术研究。涉及变压器、开关设备、输配电线路及其配套设备、以及新型柔性电气设备等电力系统中各种一次设备与控制、保护、状态诊断等相关二次设备的智能化集成技术。 3.智能变电站全景信息采集及统一建模技术研究。主要指智能变电站基础信息的数字化、标准化、一体化实现及相关技术研究,实现广域信息同步实时采集,统一模型,统一时标,统一规范,统一接口,统一语义,为实现智能电网能量流、信息流、业务流一体化奠定基础。智能化信息采集系统与装置研究,利用基于同步综合数据采集同时适用于传统变电站和数字化变电站的新型测控模式,实现各类信息的一体化采集,包括与智能变电站有关的电源、负荷、线路、微电网的全景信息采集。 4.智能变电站系统和设备模型的自动重构技术研究。研究变电站自动化系统中智能装置的自我描述和规范;研究基于以太网的智能装置的即插即用技术;研究变电站自动化监控系统对智能装置识别技术、自动建模技术;研究当智能装置模型发生变化时的系统自适应和系统模型重构技术;研究自动化系统对智能装置的模型进行校验,对智能装置的功能及其模件进行测试、检查的交互技术;研究当变电站运行方式发生变化时,智能测控和保护装置在线自动重构运行模型的方法,后台系统自动修改智能装置的功能配置和参数整定的技术;研究自动化系统在智能装置故障时对故障节点的快速定位、切除和模型自适应技术。 5.间歇性分布式电源接入技术的研究。风能、太阳能等清洁能源可再生并网发电(称为间歇性电源)直接接入电网,将对电力系统运行的安全性、稳定性、可靠性以及电能质量等方面造成冲击和影响,对电力系统的备用容量提出更高要求。智能化变电站作为间歇性电源并入智能电网的接口,必须考虑并发展对应的柔性并网技术,实现对间歇性电源的功率预测、实时监视、灵活控制,以减轻间歇性电源对电网冲击和影响。

智能变电站通信网络技术方案

智能变电站通信网络技术方案 1 智能变电站通信网络总体结构 智能变电站通信网络采用IEC 61850国际标准,IEC 61850标准将变电站在结构上划分为变电站层、间隔层和过程层,并通过分层、分布、开放式网络系统实现连接。 变电站层与间隔层之间的网络称为变电站层网络,间隔层与过程层之间的网络称为过程层网络。 变电站层网络和过程层网络承载的业务功能截然不同。为了保证过程层网络的实时性、安全性,在现有的技术条件下,变电站层网络应与过程层网络物理分开,并采用100M及以上高速以太网构建。 通讯在线保护及故障系统服务器系统服务器GOOSE视频监视终端信息管理兼操作员站2兼操作员站1远动远动联动服务器子站工作站1工作站2变电站层 MMS/GOOSE网变电站层网络 超五类屏蔽 双绞线 其他智能电能保护故障间隔层设备计量测控录波 SMV网光缆过程层网络GOOSE网 合并智能单元单元过程层 光缆电缆

电子式开关设备 互感器(主变、断路器、刀闸) 智能变电站通信网络基本构架示意图 2 变电站层网络技术方案 功能: 变电站层网络功能和结构与传统变电站的计算机监控系统网络基本类似,全站信息的汇总功能(包括防误闭锁)可依靠MMS/GOOSE网络实现。 拓扑结构选择: 环形和星形拓扑结构相比,其网络可用率有所提高(单故障时两者均不损失功能,少数的复故障环形网可以保留更多的设备通信),但是支持环网的交换机和普通星型交换机相比价格大大提高。 国内经过多年的技术积累,装置普遍具备2~3个独立以太网口, 星型网络在变电站实际应用有着更加丰富的使用经验。 国内220kV及以上变电站层网络一般采用双星型拓扑结构;110kV及以下变电站层网络一般采用单星型拓扑结构。 变电站层双星型网络结构示意图 系统服务器兼操作员站远动工作站变电站层 变电站层网络变电站层交换机2 变电站层交换机1

智能变电站设计及研究

中文摘要 变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。变电站作为输配电系统的信息源和执行终端,要求提供的信息量和实现的集成控制越来越多。因此,目前的变电站迫切需要一个简约的、智能的系统,实现信息共享,以减少投资,提高运行、维护效率。这些运行和管理的需求使智能变电站成为变电站自动化系统的发展新方向。随着计算机应用技术和现代电子技术的飞速发展,开展智能变电站的设计及研究具有重要意义。 本设计主要研究内容如下: 首先,阐述智能变电站的研究背景、基本概念及技术特征、研究现状,提出了智能化变电站主要支撑技术;其次,进行智能变电站技术特征及架构体系的研究,提出了智能变电站的主要技术原则及技术特征,并对三层两网结构的智能变电站的架构体系进行了详细的介绍,详细分析了过程层网络和站控层网络的结构;作为智能变电站的主要通讯手段,本文对智能变电站的IEC61850通讯标准进行了详细的介绍。 在介绍智能变电站的主要支撑技术、技术原则、技术特征及通讯标准后,对智能变电站的高压设备技术特征、组成架构进行了介绍,并对智能变压器、智能开关设备进行了初步设计。 最后,基于上述的工作,对智能变电站二次设备与监控系统进行进一步的研究,给出了智能变电站站控层设备集成优化设计方案及完成了智能变电站在线监测系统多层分布结构设计。并以220kV、110kV电压等级为例,给出了220kV电压等级智能变电站通用设计三层两网设计方案及110kV电压等级智能变电站通用设计三层两网设计方案。 关键词智能变电站,架构体系,三层两网,IEC61850,在线监测系统 Abstract Substation is an important part of the power system, it is responsible for the heavy tasks of power conversion and power redistribution, and plays an important role in the safety and economic operation of power grid. Substation, as the information source and executive terminal of power transmission and distribution system, requires more and more information and integrated control. Therefore, the current substation urgently needs a simple and intelligent system to realize information sharing, so as to reduce investment and improve operation and maintenance efficiency. These requirements of operation and management make the Smart Substation become a new direction of substation automation system. With

智能变电站技术(详细版)[详细]

智能化变电站技术

内容提要
? 智能化变电站概述 ? 如何实现智能化变电站 ? 关键问题分析 ? 智能化变电站技术规范 ? 国内典型工程案例分析

智能化变电站概述-定义
? 《智能变电站技术导则》给出的定义 采用先进、可靠、集成、低碳、环保的智能设
备,以全站信息数字化、通信平台网络化、信息共 享标准化为基本要求,自动完成信息采集、测量、 控制、保护、计量和监测等基本功能,并可根据需 要支持电网实时自动化控制、智能调节、在线分析 决策、协同互动等高级功能的变电站。
? 智能变电站派生于智能电网

智能化变电站概述-变电站 内部分层
IEC61850将变电站分为三层
远方控制中心 技术服务
7
变电站层
功能A
16
功能B
9 16
8
3
继电保护
控制
间隔层
控制
3
继电保护
45
45
过程层接口
过程层
传感器
操作机构
高压设备

智能化变电站概述-需要区分的概念
? 变电站层 监控系统、远动、故障信息子站等
? 间隔层 保护、测控等
? 过程层 智能操作箱子(或称智能单元) 合并单元 一次设备智能组件等。

智能化变电站概述-需要区分的概念
? IEC61850变电站
特征: 1)两层结构(变电站层、间隔层,没有过程层); 2)一次设备非智能化,间隔层通过电缆与传统互感器和开关连
接; 3)不同厂家的装置都遵循IEC61850标准,通信上实现了互连
互通,取消了保护管理机; 4)间隔层保护、测控等装置支持IEC61850,直接通过网络与
变电站层监控等相连。
市场特征: 该模式在国网和南网都处于大批量推广阶段,所占比例会越来 越大,以后会成为变电站标配。 例如:华东500kV海宁变、湖北500kV武东变等。

智能变电站过程层报文详解

智能变电站过程层报文 1. GOOSE 报文 1.1. GOOSE 传输机制 SendGOOSEMessage 通信服务映射使用一种特殊的重传方案来获得合适级别的可靠性。重传序列中的每个报文都带有允许生存时间参数,用于通知接收方等待下一次重传的最长时间。如在该时间间隔内没有收到新报文,接收方将认为关联丢失。事件传输时间如图1-1所示。从事件发生时刻第一帧报文发出起,经过两次最短传输时间间隔T1重传两帧报文后,重传间隔时间逐渐加长直至最大重传间隔时间T0。标准没有规定逐渐重传时间间隔计算方法。事实上,重传报文机制是网络传输兼顾实时性、可靠性及网络通信流量的最佳方案,而逐渐重传报文已越来越不能满足实时性要求,对重传间隔时间已没有必要规定。 图1-1 GOOSE 事件传输时间 SendGOOSEMessage 服务以主动无须确认的发布者/订阅者组播方式发送变化信息,其发布者和订阅者状态机见图1-2和图1-3。 图1-2 GOOSE 服务发布者状态机 1) GoEna=True (GOOSE 使能),发布者发送数据集当前数据,事件计数器置1(StNum=1), 报文计数器置1(SqNum=1)。 2) 发送数据,SqNum=0,发布者启动根据允许生存时间确定的重发计时器,重发计时器 计时时间比允许生存时间短(通常为一半)。 3) 重发计时器到时触发GOOSE 报文重发,SqNum 加1。 4) 重发后,开始下一个重发间隔,启动重发计时器。重发间隔计算方法和重发之间的 最大允许时间都由发布者确定。最大允许时间应小于60秒。 5) 当数据集成员数据发生变化时,发布者发送数据,StNum 加1,SqNum=0。 5)

国内智能变电站研究现状

国内智能变电站研究现状 国家电网公司和南方电网公司组织中国电力科学研究院和国内的各大电力设备制造厂商从2001年开始关注AEC 61850系列标准,并开始对该标准进行翻译,目前已经发布和出版了IEC 6185o系列标准的正式版,并组织了6次互操作实验,国内较有影响力的电力自动化设备供应商积极响应并参与了互操作性试验。 为有效推进智能变电站建设的规范化,国家电网公司在近年近百个各种类型数字化变电站项目实施经验的基础上,组织下系列标准和规范的讨论,并由智能电网部牵头编写了e/GDw 383-2009《智能变电站技术导则》、e/GDwZ410下2010《高压设备智能化技术导则》、《智能变电站设计规范》、O/GDw441-2010《智能变电站继电保护技术规范》、《智能电网试点项目评价指标体系与评价方法研究》等。这些标准和技术规范的出台,为智能变电站的实施试点项目提供了规范化的依据。 1.实际工程应用 2007年5月,河南首个智能变电站——洛阳金谷园110kv变电站正式投入运行。该站基于“网络化二次系统”概念,采用vLAN技术将局域网内的设备按网络化保护和控制功能逻辑划分成若干个网段,保证了控制的实时性,实现了网络的安全隔离;在间隔层采用了GOOSE网络传输技术,实现了数字化变电站三层结构的一体化应用;利用GOOSE网络实现了设备跳合闸命令传输、智能操作,实现了变电站过程层、间隔层、站控层一体化的五防操作逻辑闭锁功能;利用网络化实现了母线保护、备自投、低频低压减载功能;采用基于SNMP协议的网络在线监视与诊断服务技术,实时监视各网络节点的工作情况,实现了变电站二次设备的网络可视化监控。特别是在“网络化二次系统”及“网络化保护”方面处于国际领先水平。河南金谷园110kⅤ变电站智能化改造成功,标志真正意义上的智能变电站投人运行,也为智能电网的建设打下了良好的基础工作。

智能变电站的网络结构优化

0引言 智能变电站由一次设备和二次设备2个层面构成,其基本 的组成单元和普通数字化变电站并没有本质区别。 智能变电站的优势主要体现在一次设备的智能化控制以及利用网络化来组织二次设备上,加之一次设备与二次设备之间采用了高速网络通信,因此二者之间的联系得以加强。从智能变电站组成的层次结构来看,从一次设备(互感器、断路器)开始,往下是过程层设备(主要是户外柜组件和过程层交换机),其次是隔离层设备(如各类保护装置和测控装置),最后是由以太网MMS 、监控系统和远控装置构成的站控层设备。而从智能变电站的发展趋势来看,有向系统层和设备层2层结构简化的趋势。但这种2层简化结构需要依赖于大量的计算机和网络控制技术,因此短时间内还难以实现。 当前的智能变电站多数仍采用传统的3层结构形式,该种结构框架的过程层设备和间隔层设备是通过过程层的网络连接来实现的。网络连接在过程层中承担着智能变电站主要数据的通信任务,这些传输数据来自于变电站运行中的状态实时数据,以及变电站的模拟量采样信息、网络中传输的设备管理信息和事件警告信息等。因此, 在研究智能变电站的网络结构优化时,主要是考虑网络中数据传输的优化。 1智能变电站网络结构形式分析 智能变电站自动化系统分为站控层、间隔层和过程层3个 大层次,通信连接一般都是靠站控总线和过程总线完成。其中站控总线处理站控层与间隔层各控制设备之间的通信,而过程总线处理间隔层与过程层中各种智能一次设备的通信。 从逻辑上讲,在设计时,通常可依据需要将站控总线设置为独立于过程总线,或将站控总线与过程总线合并的形式。这2种不同的布线方式各有优缺点。如果将站控总线与过程总线合并,可能会因数据时效性属性不同(实时性、非实时性)、数据控制属性不同(控制性、非控制性)而导致数据间的互相影响,降低网络资源的利用效率和网络的安全性。但这种布线方式能够提高硬件资源的利用效率,在条件允许的情况下,可通过以太网的优先级排队技术或虚拟局域网技术来实现对各类重要等级不同的数据进行分析处理。 不论是采用站控总线和过程总线合并的形式还是单独布设的形式,从网络结构上看,都可以分为5个基本的层级结构:层级1(站控单元、站运行支持单元、路由器、远程控制中心)、层级2(一级交换机)、层级3(监控单元、保护单元)、层级4(二级交换机)、层级5(执行机构、传感器)。如果是站控总线和过程总线独立布设的形式,则各个层次的组成单元依次与下一层级的组成单元相连,同一层级的组成单元互不影响,形成从一级交换机开始的若干条独立的数据传输线路,此时一级交换机和二级交换机之间没有直接的线路连接,而是要经过层次3中的监控单元和保护单元。如果是站控总线和过程总线合并布设的形式,则在一级交换机和二级交换机之间直接存在直接的连接线路,但一级交换机所接收到的数据既有直接来自于二级交换机的数据,也有通过监控单元和保护单元的数据,这是这一布线方式可能存在数据干扰的根本原因。 2智能变电站网络结构优化 在本节中,将从某智能变电场升压站的组网结构优化及其 网络的流量优化2个方面来展开讨论。该升压站的原系统结构如图1所示。 2.1 原系统结构特点分析 由图1可知,其网络结构为典型的“三层两网”式结构,站控层、间隔层和过程层的层次结构很明显,过程层和站控层这2级网络为独立式布置。在本例中,网络采用高速以太网搭建,过程层的网络采用了2类网络形式来分别处理上行数据和下行数据,其中电流和电压实时数据的上传、开关量的上传均由SV 采样值网络完成,而分合闸控制量的下行则由GOOSE 网络完成。站控层网络采用MMS /GOOSE 通信方式来完成全站信息的汇总和处理。 在原站控层的组网方案中,采用的是双星型拓扑结构,冗余网络采用双网双工方式运行。而过程层的网络结构为单星型的以太网结构,保护装置由2套独立的单网配置提供,因此能够使过程层网络具有双重化的特点,且2套网络互相物理隔离。过程层中的网络采样值按点对点传输的方式完成,以直接跳闸的方式来实现对间隔层设备的保护。 采用上述组网结构后,可以实现GOOSE 和SV 以太网口的独立传输,在信息传输时交换机所承担的任务明确,能够有效避免数据之间的干扰。原过程层GOOSE 网络承担着繁重的数据采样任务,但网络仅具备100M 的流量承载力,影响了数据的传输效率,加之网络接口独立设置,因此不便于网络结构的维护。 浅谈智能变电站的网络结构优化 丁文树 (泰州供电公司,江苏泰州225300) 摘要:介绍了智能变电站的层级构成以及各个层级的特点,在此基础上,对当前智能变电站主要的网络结构形式进行了分析,最后 以某智能变电站的网络结构改造和优化为例,阐述了网络结构优化后的具体形式以及网络流量优化时所采用的优化方法。 关键词:智能变电站;网络结构优化;流量优化 图1升压站原系统结构示意图 站控层设备 站控层网络 间隔层设备 过程层网络 过程层设备 合并单元 测控装置 录波装置 计量装置 智能单元 保护装置 设计与分析◆Sheji yu Fenxi 134

智能变电站技术研究综述

龙源期刊网 https://www.doczj.com/doc/4419046270.html, 智能变电站技术研究综述 作者:王震李洁李鲁燕 来源:《中小企业管理与科技·下旬刊》2015年第11期 摘要:随着科学技术的革新以及电力系统的不断进步,推动了智能电网的快速崛起,智 能电网是优化电力能源配置的重要平台,涵盖发电、输电、配电、用电和调度各环节,广泛利用先进的设备和技术,确保了安全、可靠、优质的电力供应。变电站作为智能电网发展的重要环节,其智能化水平也随之得到了有效的提升。智能变电站技术是通过智能一次技术,智能二次技术,辅助系统综合监控平台等技术,实现安全、可靠、自愈、兼容、协调等功能。本文主要对智能变电站技术进行了研究,以供参考。 关键词:智能电网;智能变电站;技术;发展 1 智能变电站概述 1.1 智能变电站的结构智能变电站是由站控层、间隔层和过程层三大部分组成的。站控层的主要功能是完成数据采集、监测、控制和相应的信息保护管理,其是由通信系统、站域控制、对时系统以及自动化系统组成的;间隔层的设备主要包括继电保护装置、测控装置等二次设备;过程层的主要作用是对变电站中的电能进行科学的分配、转换、传输测量和控制保护,组成部分包括智能组件构成的智能设备、相应的合并单元以及智能终端。 1.2 智能变电站的主要技术特点第一,智能变电站中的分层控制技术。智能变电站通常采用的是分布式的控制技术,其将变电站的内部结构合理划分为站控层、间隔层和过程层三个部分。另外为了确保变电站各层调控功能的独立性,进一步降低变电站中央控制与处理设备的实际负荷量,需要在各层中安装设置具有智能化控制与处理能力的设备,进而降低变电站安全隐患以及潜在风险的发生率,促进智能变电站工作效率的进一步提升。第二,智能变电站中的计算机控制终端技术。在智能变电站中引进计算机终端,变电站可以利用计算机终端,在较短的时间内分析与判断站内的各项数字信息和变电站的实际运营情况,进而促使变电站实际运行中存在的问题得到及时的发现和解决,从而避免了因没有发现安全隐患而造成的输变电站事故,提升了变电站的安全性与可靠。第三,智能变电站中的电力装置集成化技术。目前智能变电站已经广泛使用光纤技术,光纤技术的应用有效的实现了智能变电站中各个控制层面的局域管理功能,使信息能够在控制中心与一、二次设备之间进行自由传播,同时信息传输过程中各层面的稳定性与可靠性得到了显著的提高。另外,在智能变电站中应用先进的计算机与数字化信息技术,使电能检测和设备管理之间的集成化得以实现,在减小电力设备所需空间面积的同时降低了设备的安装成本。 2 智能变电站技术分析

智能变电站概述

智能变电站概述 第2 章智能变电站概述 2.1 智能变电站的定义和主要技术特点 所谓智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。 智能变电站具有数字化全站信息、网络化通信平台、标准化信息共享和互动化高级应用的主要技术特点。 (1)数字化全站信息。数字化全站信息是指实现一次、二次设备的灵活控制,并具有双向通信功能,可以通过信息网进行管理,满足全变电站信息采集、传输、处理、输出过程完全数字化。主要表现在信息的接地数字化,通过采用电子互感器,或者常规互感器就地配置合并单元,实现了就地数字化的信息采样;通过一次设备智能终端的配置,实现就地采集设备本体信息和就地执行控制命令。使电缆缩短,光缆延长。

(2)网络化通信平台。网络化通信平台是指使用基于IEC 61850 的标准化网络通信体系,具体表现是网络化传输全站信息。变电站能根据实际需求灵活选择网络拓扑结构,利用冗余技术增强系统可靠性;互感器的采样数据可通过过程层网络同时发送到测控、保护、故障录波及相角测量等装置,从而共享了数据;利用光缆代替电缆可大幅度减少变电站二次回路的连接线数量,同时提高了系统的可靠性。 (3)标准化信息共享。标准化信息共享就是形成基于一致的断面的唯一性、一致性基础信息,一致的标准化信息模型,通过一致的标准、一致的建模来实现变电站里外的信息交换和信息共享。具体表现在信息一体化系统下,将全站的数据按照一致的格式、一致的编号存放在一块儿,使用时按照一致的检索方式、一致的存取机制进行,避免了不同功能应用时对相同信息的重复建设。 (4)互动化高级应用。互动化高级应用就是实现各种变电站里外高级应用系统相关对象之间的互动,全面满足智能电网运行、控制要求。具体而言,就是建立变电站内全景数据的信息一体化系统,供各个子系统同一数据标准化规范化存取访问以及和调度等其他系统进行标准化交互;满足变电站集约化管理、顺序控制的要求,并能与相邻变电站、电源、用户之间的协调互动,支撑各级电网的安全稳定经济运行[5,6].

智能变电站网络安全策略分析与研究 徐晓寅

智能变电站网络安全策略分析与研究徐晓寅 摘要:智能变电站网络的可靠性和安全性决定了站内智能终端、合并单元、保 护装置、测控装置、自动化系统等各设备之间信息流的传输质量,会对变电站的 安全稳定运行产生直接影响。本文针对智能变电站网络存在的安全威胁,从技术 和管理方面提出了适用于智能变电站网络安全的策略。 关键词:智能变电站;网络安全;策略分析 1 智能变电站网络安全现状分析 智能变电站网络面临的安全威胁主要有内部和外部两部分:内部威胁为网络 交换机硬件问题对站内网络造成的风险;网络风暴造成站内网络瘫痪;外部人为 专业攻击造成的破坏。 1.1 外部安全威胁主要是人为专业攻击,在智能变电站网络条件下,人为专业攻击主要分为以下两种。 1.1.1 主动破坏 非法专业用户接入网络后,通过监听、拦截对站内信息及设备进行监视和控 制操作,再伪造信息向网络发送大量无用报文,使站内网络设备异常、死机甚至 无法重启,最后导致整个网络瘫痪。 1.1.2 无意识破坏 专业用户正常接入网络后,由于误操作导致大量组播报文在网络内传播,对 网络造成破坏和损失。 1.2 智能变电站面临的内部威胁主要来源于内部通信的脆弱性。智能变电站改变了原有的点对点的通信模式,取消了原有的硬接线模式,不同部件之间的通信,采用了对等的通信模式,所有变电站的智能部件之间的通信均在局域网上实现, 并且不同智能部件的关联度更加紧密。一旦某个智能部件遭到恶意攻击,就会影 响整个变电站内的通信,危及站内业务的正常运行。其安全威胁主要有以下几方面: 1.2.1 网络交换机硬件风险 变电站在正常和异常运行时,均会产生不同程度的电磁干扰,如高压电气设 备的倒闸操作、短路故障等电磁暂态过程及高压电气设备周围产生的静电场和磁场、雷电、电磁波辐射、人体与物体的静电放电等。这些电磁干扰会对交换机的 通信传输产生一定影响,导致交换机转发的报文出错,甚至丢失整帧报文,影响 智能变电站网络的安全可靠运行。因此,在强电磁干扰的情况下,交换机必须满 足零丢帧的要求,以满足过程层数字化的需求。而在实际生产现场,智能变电站 的交换机选型配置及验收都无明确的负责机构及硬件把关负责人员,导致交换机 管理处于无序甚至空白状态。 1.2.2 网络风暴 交换机作为网络核心通信设备,如果自身的报文转发机制异常,会导致网络 风暴,给智能变电站网络运维留下极大的隐患。网络风暴的基本表现为:大量重 复报文在网络中快速传播,大量信息排队等待,直至占满带宽或耗尽交换机 CPU 资源,严重影响网络的正常运行。产生网络风暴的原因很多,其中重要的原因是 网络环路问题,主要指:对过程层网络来说,虽然工程应用上通过静态VLAN划 分或 GMRP组播技术来实现网络隔离,但如果网络环路发生在同一VLAN内,仍 会产生网络风暴;对站控层网络来讲,由于没有采用任何组播报文隔离技术,GOOSE 报文组播范围为站控层全网;一旦网络内形成重复链路,GOOSE 报文就会

智能变电站在线监测技术研究

编订:__________________ 审核:__________________ 单位:__________________ 智能变电站在线监测技术 研究 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5404-85 智能变电站在线监测技术研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:电网运行的稳定性可以通过设备的在线监测技术得到保障,文章总结了我国关于智能变电站所采用的在线监测技术,其中包括传感、信息处理、数据传输等智能技术的原理其优势,分析了我国目前在线监测发展情况,其中对于存在的问题进行研究,借此希望可以对电网自愈系统提供可靠的依据。 关键词:智能变电站;在线监测;技术 1 智能变电站在线监测技术存在的问题 1.1 在线监测技术共享功能需要进一步完善 要想实现智能变电站与供电系统中各个组成部分的信息数据共享功能,就必须要保证各个系统的数据收集速率保持在一个相同的水平。这样一来,就需要另外建立一个数据信息收集系统,将供电系统中各组成部分采集到的数据收集起来,然后再对数据传输速

南瑞继保智能变电站高级应用专题报告

智能变电站高级应用 专题报告

目录 1概述 2高级应用介绍 2.1程序化操作 2.2与主站系统的无缝连接(图模一体化) 2.3智能告警及分析决策 2.4无功自动调节 2.5智能开票系统 3预研功能 3.1分布式状态估计 3.2设备在线监测与状态检修 3.3事故信息综合分析决策

1 智能变电站概述 智能变电站是坚强智能电网的重要基础和支撑。由先进、可靠、节能、环保、集成的设备组合而成,以高速网络通信平台为信息传输基础,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级应用功能。 智能变电站对于硬件、软件同样有自身的需求。对于软件来说,智能化意味着自动化程度更高,将工作人员从大量繁复、易出错的工作中解放出来;更聪明,对于系统运行状态并不是简单的通知运行人员,而是可以从系统采集数据中判断自身所处的状态,并可以对状态进行闭环的处理;更灵活,系统部署方便、系统规模可调整,与其它系统的集成方便。

2高级应用介绍 2.1程序化操作 程序化操作也称为顺序控制。变电站程控操作是指变电站内智能设备依据变电站操作票的执行顺序和执行结果校核要求,由站内智能设备代替操作人员,自动完成操作票的执行过程。实际操作时只需要变电站内运行人员或调度运行人员根据操作要求选择一条顺控操作命令,操作票的执行和操作过程的校验由变电站内智能电子设备自动完成。 在智能化变电站内实施顺控操作,能够使智能化变电站真正实现无人值班,达到变电站“减员增效”的目的;同时通过顺控操作,减少或无需人工操作,最大限度地减少操作失误,缩短操作时间,提高变电站的智能程度和安全运行水平。 智能化变电站的几个特点:一次设备智能化和二次设备网络化;互操作性和

智能变电站在线监测技术研究

编号:AQ-JS-00145 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 智能变电站在线监测技术研究Research on online monitoring technology of Intelligent Substation

智能变电站在线监测技术研究 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:电网运行的稳定性可以通过设备的在线监测技术得到保 障,文章总结了我国关于智能变电站所采用的在线监测技术,其中 包括传感、信息处理、数据传输等智能技术的原理其优势,分析了 我国目前在线监测发展情况,其中对于存在的问题进行研究,借此 希望可以对电网自愈系统提供可靠的依据。 关键词:智能变电站;在线监测;技术 1智能变电站在线监测技术存在的问题 1.1在线监测技术共享功能需要进一步完善 要想实现智能变电站与供电系统中各个组成部分的信息数据共 享功能,就必须要保证各个系统的数据收集速率保持在一个相同的 水平。这样一来,就需要另外建立一个数据信息收集系统,将供电 系统中各组成部分采集到的数据收集起来,然后再对数据传输速率 进行统一处理。这种方式的应用,不仅会降低智能变电站的工作效

率,而且也会在一定程度上加大成本投入。 1.2在线监测技术的网络选择有待提高 网络连接方式以及数据传输速率,是影响在线监测技术在智能变电站中应用有效性的关键因素。所以,在选择在线监测技术所使用的网络平台时,必须要根据实际需要,选择更加经济、高效的供电网络系统。就当前供电系统中的网络选择方式来看,以太网的选择是比较普遍的。在应用以太网来搭建供电系统的网络系统时,首先,要注意的就是网络系统与变电站的兼容性,以确保智能变电站的稳定运行;其次,在建立网络系统时,必须要根据时代发展需要,设计具有双向通信功能的网络通道,以保证变电站工作的高效性;最后,就是网络选择的经济适用性,在保证供电质量的基础上,适当的控制成本投入。 1.3在线监测技术的稳定性较低 变电站主要是用来改变电压的,其工作的稳定性将直接影响到用户的用电质量。因此,提高在线监测技术在智能变电站中应用时的稳定性是十分必要的。在线监测技术主要是采用数字信号的模式

智能变电站体系结构

在智能变电站中,继电保护受自动化体系结构设计的影响较大。体系结构不仅影响保护装置的接口要求,更重要的是会从整体上影响保护设备配置、实现方式、维护方式及运行可靠性。本期简单的介绍一下智能变电站自动化系统的体系结构。 其中提到逻辑接口可以采用几种不同的方法映射到物理接口,一般逻辑接口1、3、6、9映射到站控层中,逻辑接口4、5映射到过程层中。间隔之间的通信接口8可以映射到任何一种或者同时映射到两种。上期图中没有做备注,很多朋友没看明白,这里重新备注一下。 接口1:间隔层和站控层之间交换保护数据; 接口3:间隔层内交换数据; 接口4:过程层和间隔层之间交换瞬时采样数据; 接口5:过程层和间隔层之间交换控制数据; 接口6:间隔层和变电站层之间交换控制数据; 接口8:间隔层之间交换数据; 接口9:站控层之间交换数据;

根据上述思想,国内智能站采用较多的是三层两网的结构。 1、三层 智能变电站自动化系统站控层设备包括:监控主机、数据通信网关、数据服务器、综合应用服务器、操作员站、工程师工作站、PMU数据集中器和计划管理终端等; 间隔层设备包括:继电保护装置、测控装置、故障录波装置、网络记录分析仪、及稳控装置等; 过程层设备包括:合并单元、智能终端、智能组件等。 2、两网 变电站网络在逻辑上可分为:站控层网络、间隔层网络、过程层网络。全站通信采用高速工

业以太网组成。 站控层网络是间隔层设备和站控层设备之间的网络,实现站控层内部以及站控层和间隔层之间的数据传输;(上图接口1/3/6/9) 过程层网络是间隔层设备和过程层设备之间的网络,实现间隔层设备和过程层设备之间的数据传输。(上图接口4/5) 间隔层设备之间的通讯,在物理上可以映射到站控层网络,也可以映射到过程层网络。(上图接口8) (1)站控层网络 站控层网络设备包括站控层中心交换机和间隔交换机。站控层中心交换机连接数据通信网关机、监控主机、综合应用服务器、数据服务器等设备间隔交换机链接间隔内的保护、测控和其他智能电子设备。间隔交换机与中心交换机通过光纤连成同一物理网络。上期提到过,站控层和间隔层之间的网络通信协议采用MMS,故也称为MMS网。网络可通过划分VLAN(虚拟局域网)分割成不同的逻辑网段,也就是不同的通道。 (2)过程层网络 过程层网络包括GOOSE网和SV网。 GOOSE网用于间隔层和过程层设备之间的状态与控制数据交换。GOOSE网一般按电压等级配置,220kV以上电压等级采用双网,保护装置与本间隔的智能终端之间采用GOOSE点对点通信方式。 SV网用于间隔层和过程层设备之间的采样值传输,保护装置与本间隔的合并单元之间也采用点对点的方式接入SV数据。也就是我们常说的“直采直跳”。关于直采、网采、直跳、网跳的概念我们在后面再详细介绍。 3、对时系统 智能站自动化系统中另一个重要的组成部分就是对时系统。对时系统由主时钟、时钟扩展装置、对时网络组成。主时钟采用双重化配置,支持北斗导航系统(BD)、GPS系统、地面授时信号,其中优先采用北斗导航系统。时钟同步精度优于1μs。站控层设备与时钟同步一般采用简单网络时间协议(SNTP)方式,经站控层网络对时报文接受对是信号。间隔层和过程层一般采用IRIG-B码、秒脉冲对时方式。 下图为根据某220kV智能变电站的自动化系统简化的结构示意图,方便大家了解。小编水平有限,欢迎对智能站比较了解的朋友指教讨论。

智能变电站网络报文记录分析装置通用技术规范(范本)

智能变电站网络报文记录分析装置专用技术规范(范本)

本规范对应的专用技术规范目录

智能变电站网络报文记录分析装置 技术规范(范本)使用说明 1.本技术规范分为通用部分、专用部分。 2.项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3.项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”,并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: 1)改动通用部分条款及专用部分固化的参数。 2)项目单位要求值超出标准技术参数值。 3)需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。 4.对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5.技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6.投标人逐项响应专用技术规范中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件专用技术规范的“招标人要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求响应表时,如有偏差除填写“投标人技术偏差表”外,必要时应提供相应试验报告。 7.一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用技术规范中详细说明。

目次 智能变电站网络报文记录分析装置技术规范(范本)使用说明 (465) 1总则 (467) 1.1引言 (467) 1.2供方职责 (467) 2技术规范要求 (467) 2.1使用环境条件 (467) 2.2网络报文记录分析装置额定参数 (468) 2.3装置功率消耗 (468) 2.4网络报文记录分析装置总的技术要求 (468) 2.5网络报文监测终端的技术要求 (470) 2.6网络报文管理机的技术要求 (471) 2.7网络报文记录分析装置技术指标 (472) 2.8柜结构的技术要求 (473) 3试验 (473) 3.1工厂试验 (473) 3.2系统联调试验 (473) 3.3现场试验 (474) 4技术服务、设计联络、工厂检验和监造 (474) 4.1卖方提供的样本和资料 (474) 4.2技术资料,图纸和说明书格式 (474) 4.3供确认的图纸 (474) 4.4买卖双方设计的图纸 (474) 4.5其他资料和说明书 (474) 4.6卖方提供的数据 (475) 4.7图纸和资料分送单位、套数和地址 (475) 4.8设计联络会议 (475) 4.9工厂验收和现场验收 (475) 4.10质量保证 (475) 4.11项目管理 (476) 4.12现场服务 (476) 4.13售后服务 (476) 4.14备品备件,专用工具,试验仪器 (476)

新一代智能变电站整体设计方案研究

新一代智能变电站整体设计方案研究 发表时间:2019-01-24T11:22:20.157Z 来源:《河南电力》2018年16期作者:蔡学松 [导读] 本文先从新一代智能变电站要满足电网发展方式转变的要求 蔡学松 (江苏科能电力工程咨询有限公司 210000) 摘要:本文先从新一代智能变电站要满足电网发展方式转变的要求、新一代智能变电站要满足管理发展方式转变的要求以及新一代智能变电站要满足智能变电站技术进步的要求这三个方面分析了新一代智能变电站发展要求,然后从新一代智能变电站整体设计方案的技术路线以及新一代智能变电站整体设计方案的关键设备研制这两个方面分析了新一代智能变电站整体设计方案。 关键词:新一代;智能变电站;整体设计;方案 1 新一代智能变电站发展要求 我们都知道智能电网一定是电网技术未来发展的一个必然趋势。那么在此基础上智能变电站作为智能电网建设的一个非常重要环节之一,也可以说它是电网最重要的基础运行参量采集点或者说是管控执行点以及与此同时它也是未来智能电网的支撑点,所以这样来看的话我们就会发现其发展建设的水平将会直接影响到我国智能电网建设的一个总体高度。总而言之我们可以说建设具有信息化与自动化以及互动化的坚强智能电网这一个重要的目标对变电站的发展实际上也是提出了更高要求。 1.1 新一代智能变电站要满足电网发展方式转变的要求 首先我们要知道波动性或者说是间歇性清洁能源的接入,实际上肯定是要求变电站更加灵活可控而且与此同时还得满足多元化服务需求才可以,那么这样一来的话也就要求变电站能够实现更加友好互动经济社会发展,与此同时也要求变电站更安全或者说是更可靠,不仅如此还得更优质资源或者说是更加环境约束才可以满足要求,我们一定要保证变电站更高效而且更节约或者说是更环保才行。 1.2 新一代智能变电站要满足管理发展方式转变的要求 可以说伴随着调控一体化运行或者说是专业检修管理的一个进一步的建设,与此同时我们也会发现智能电网对电网管理模式优化的支撑作用可以说是越来越重要。换句话说就是专业化建设或者说是调控运行以及状态检修等管理模式的进一步建设,实际上是对智能变电站的发展提出了新的更高的要求。那么我们构建调控一体运行体系的时候,就必须得要求新一代智能变电站应该或者说是必须得更好地支撑调度运行业务一体化需要才可以,这样做的结果就是可以实现变电站设备监控的统一管理,与此同时还可以通过信息流优化整合,最终实现与调度系统全景数据共享的目标,进而也可以提升决策控制能力,这样一来的话就可以提高运行效率以及构建专业检修体系,那么如果说是想要要求新一代智能变电站应更好支撑变电站专业化检修或者说是维护需要的话,我们首先就得要实现设备运维或者说是检修一体化,那么这主要是通过在线监测与此同时还要利用设备状态可视化技术,从而就可以为检修管理提供优化或者说是决策依据,进而就可以提高设备利用效率或者说是设备管理水平 1.3 新一代智能变电站要满足智能变电站技术进步的要求 我们知道自动控制技术可以说是为实现电网安全可靠或者说是经济灵活运行奠定了一个非常有效的基础,那么这就主要表现在高温超导以及纳米技术、新型绝缘材料与复合材料等新材料或者说是技术的应用,那么所有这些应用都可以说是为提高设备性能或者说是研制新设备创造了一个非常充分的条件。与此同时信息通信技术也可以说是为满足海量信息交互或者说是处理功能提供了非常重要的技术支撑。所以说我们就必须要开展新一代智能变电站技术研究,以求推动智能变电站技术创新发展或者说是跨越发展。 2 新一代智能变电站整体设计方案 2.1 新一代智能变电站整体设计方案的技术路线 我们说一次设备智能化向智能一次设备的这一转变,一定是采用新结构与新工艺才可以实现一次设备之间或者说是一次设备以及智能组件间的这样一种深度融合,这样一来的话就可以提升设备可靠性以及可用性,不仅如此还可以实现设备功能智能化或者说是安装模块化,从另一个角度来看运检标准化可以说是主要表现在分散独立运行向协同优化控制转变整合系统功能的一个实现,与此同时优化信息资源也必须得要满足发电以及用电等各方面变化的一个整体要求,以求最终可以实现空间维度或者说是时间维度的正常运行,与此同时还要实现电网紧急情况的协调控制以求可以提升决策控制能力,进一步就可以在提高运行效率的基础之上全面提升大运行或者说是大检修管理方式转变的一个支撑能力。除此之外像我们所说的安装设计向整体设计转变改变供应商主导的分专业的这样一种设计模式,它就主要是通过优化整体设计或者说是明确功能需求,而去实现正确引导关键技术研究以及关键设备研制的这样一个最终目标,那么与此同时还要实现全程动态优化,这样做的结果就是可以提高变电站整体设计水平。我们要保证新一代智能变电站可以在现有智能变电站的基础上,而去实现更加突出实用性或者说是先进性的目标,与此同时还要注意更加注重创新理念,这样一来还要强化一二次设备的深度融合以及系统的优化集成或者说是新能源的接入,不仅如此我们还要更加注重关键技术的突破或者说是关键设备性能的提升,这主要是为了注重变电站设计的通用化,然后就可以努力提高设备或者说是系统的可靠性,以求最终可以实现变电站内建筑以及一、二次设备的使用寿命,我们的最终目标就是要降低全寿命工程造价然后与此同时还要更加注重施工工艺标准化或者说是运行维护高效化,以求可以实现在实施环节中实现工厂化制造以及现场组装或者说是缩短变电站建设工期的最终目标,进而就可以全面提升变电站建设效率和效益。 2.2 新一代智能变电站整体设计方案的关键设备研制 新一代智能变电站整体设计方案的关键设备研制主要表现在要实现一、二次最佳融合,这主要是通过对变压器运行优化控制或者说是负荷调解控制,进而就可以提升变压器自身优化能力,而且与此同时还可以支持电网优化运行。所以我们就要研究应用新型节能技术优化冷却方式而且还要采用新型介质等,以求可以降低变压器本体损耗。我们要注意新型断路器控制技术研究主要是为了改善分合闸特性以求可以延长设备使用寿命,这样一来的话就可以实现断路器选相控制以及分合闸相角控制功能,进而也就可以降低断路器操作时产生的不安全暂态过程。除此之外我们还要研究气体绝缘介质组合电器或者说是真空断路器,因为这样就可以有效实现环保高压开关设备以及智能组件整合技术的进一步提升。那么这一点就肯定是对影响电子式互感器稳定性或者说是可靠性关键技术难点就可以实现进行攻关的目标,从

相关主题
文本预览
相关文档 最新文档