7—7 分子平均碰撞频率和平均自由程
- 格式:ppt
- 大小:293.00 KB
- 文档页数:8
第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。
7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。
故选择(C )。
7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。
第21讲 分子的平均碰撞频率和平均自由程 习题课教学要求理解气体分子的平均碰撞次数及平均自由程。
重点与难点重点:分子的平均碰撞次数及平均自由程。
难点:分子的平均碰撞次数及平均自由程。
7.7 分子的平均碰撞频率和平均自由程气体分子无规则热运动,频繁碰撞。
每个分子在两次碰撞之间自由行进多长的路径和用多长时间完全是偶然的、不确定的(如图7-10)。
但对大量分子,从统计的角度看,每个分子在单位时间内与其它分子平均碰撞多少次和平均自由行进多少路径却是有规律的。
7.7.1 平均碰撞频率z平均碰撞频率z 就是对于处于平衡状态下的大量气体分子组成的系统,一个分子单位时间内与其它分子的平均碰撞次数。
根据简化的气体分子模型,同种气体分子中每个分子都是直径为d 的刚性球,设想跟踪一个气体分子A ,为简化计算起见,首先假定其它分子不动,A 分子以平均相对速率u 接近其它分子,那么1秒内有哪些分子能与A 分子相碰呢?在A 分子运动过程中,它的质心轨迹是一条折线abce , 凡是其它分子的质心离开此折线的距离小于或等于分子有效直径d 的,都将与A 分子相碰(图7-11)。
如果以1秒内A 分子质心运动轨迹为轴,以分子有效直径d 为半径作一圆柱体(该圆柱体体积为2πd u )。
质心在该圆柱体内的分子都将与A 分子相碰。
设n 为分子数密度,则该圆柱体内的分子数为2πn d u ,亦即1秒内A 分子与其它分图7-10气体分子的碰撞e子发生碰撞的平均次数。
所以平均碰撞频率2πZ n d u =式中,,2πd σ=称为分子的碰撞截面。
考虑所有分子同时以平均速率υ运动,分子间平均相对运动速率为υ2=u , 故2Z d n υ=(7-23)上式表明,分子热运动平均碰撞频率与分子数密度n 、分子平均速率υ成正比,也与分子碰撞截面σ或分子有效直径d 的平方成正比。
7.7.2 平均自由程 λ平均自由程 λ 就是在平衡状态下,一个分子在连续两次碰撞之间所经过的路程的平均值。
分子运动的平均自由程分子运动的平均自由程是指分子在气体、液体或固体中在碰撞之间所能运动的平均距离。
它是一个重要的物理参数,可以帮助我们理解分子在不同状态下的运动行为。
为了理解分子运动的平均自由程,我们首先需要了解分子运动的特点。
在气体中,分子具有高度自由的运动,不受相互作用力的限制。
在液体中,分子之间存在较强的相互作用力,但仍然能够以较高的速度运动。
在固体中,分子的运动受到最强的相互作用力的限制,只能在一个非常狭小的区域内振动。
分子运动的平均自由程与分子的平均自由时间密切相关。
平均自由时间是指分子在两次相互碰撞之间的平均时间间隔。
它可以通过分子的平均速度和分子之间的碰撞频率来计算。
分子的平均速度可以根据其运动能量和质量来计算,而分子之间的碰撞频率可以通过理想气体动力学理论中的碰撞模型来估算。
在气体中,分子的平均自由程可以用碰撞截面积与密度的比值来计算。
碰撞截面积是指分子在碰撞中所占据的面积,它可以通过假设分子为刚球模型,并通过计算分子之间的碰撞几率来估算。
密度是指单位体积内分子的数量,可以通过气体状态方程和理想气体动力学理论来计算。
在液体中,分子的平均自由程要考虑分子之间的相互作用力。
通常情况下,液体分子的运动路径受到相互作用力的限制,平均自由程较短。
然而,液体中存在一些自由的分子,可以运动一段距离而不受相互作用力的束缚,从而形成分子的平均自由程。
这可以通过在分子之间引入排斥作用力和引力作用力来计算。
在固体中,分子的平均自由程非常短。
由于固体分子之间的相互作用力非常强大,分子只能在一个非常小的区域内振动,不具备自由运动的能力。
因此,固体分子的平均自由程通常可以认为是分子的尺寸。
总结起来,分子运动的平均自由程是分子在气体、液体或固体中在碰撞之间所能运动的平均距离。
它与分子的平均自由时间、碰撞截面积、密度和相互作用力等因素有关。
对于不同状态的物质,平均自由程的计算方法也不同。
第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。
7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。
故选择(C )。
7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。
气体分子碰撞频率和平均自由程的推导气体与固体、液体的不同之处在于,气体由的离散的分子构成,分子之间受到引力作用,在温度和压力相同时,分子们构成的气体能量总是不断变化,分子之间就会发生碰撞,产生热能。
这里以布朗分子模型(Brownian molecular model)为基准,来分析气体分子的碰撞频率及平均自由程。
首先,假设一定的温度和压强条件下,气体分子的碰撞频率是不变的。
在这样的条件下,分子能量总是在不同程度的变化,每次碰撞之后都会有能量的转换。
根据热力学定律,每次碰撞都要转换掉热能或动能到等价物,所以,当分子碰撞频率较高时,分子获取的能量也会增加。
而在温度和压强条件下,分子碰撞频率是不变的。
因此,任何一个分子都会有不同的碰撞频率,而这个频率可以用卡尔曼方程(KM equation)来描述,其表达式为:KM = (u/6)*(1+a1)^2*(1+a2)^2*…*(1+aN)^2其中u表示分子的总能量;ai表示分子碰撞的概率。
根据KM方程,可以得出碰撞频率的计算公式:f=1/u*(1+a1)^2*(1+a2)^2*…*(1+aN)^2其中,f表示分子的碰撞频率,u表示总能量,ai表示分子碰撞的概率。
由此可知,气体分子碰撞频率与能量有关,碰撞次数越多,气体分子的能量就越多。
接着,我们来探讨气体分子的平均自由程p。
由热力学可知,当一个分子受到外力作用时,就会发生力学变化,平均自由程就会发生变化。
因此,在温度和压强相同的情况下,气体分子的碰撞频率越高,此时分子的平均自由程p就会越大,公式为:p=f/u其中,f表示气体分子的碰撞频率,u表示能量总和。
由此可知,气体分子的平均自由程p也与能量有关,越大的能量,分子越可能进行更远的碰撞,所以平均自由程就会越大。
据以上分析,得出气体分子的碰撞频率和平均自由程的推导公式如下:气体分子的碰撞频率:KM = (u/6)*(1+a1)^2*(1+a2)^2*…*(1+aN)^2平均自由程:p=f/u最后,还要注意的是,由于温度和压强的变化,气体的分子的碰撞频率和平均自由程也会发生变化。