2013年中考二次函数与圆 答案
- 格式:doc
- 大小:589.80 KB
- 文档页数:21
二次函数的实际应用1例题1:一场篮球赛中,小明跳起投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。
⑴问此球能否投中?⑵在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?例题2:(2012·武汉·五月调考)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为335米,问此次跳水会不会失误?并通过计算说明理由.O练习1. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.2. 一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是21251233y x x=-++则他将铅球推出的距离是m 练习1图3.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。
一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。
例题3:公园要建造圆形的喷水池,在水池中央垂直于水面外安装一个柱子OA,O恰好在水面中心,OA =1.25米,由柱子顶端A处的喷水头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离为1米处达到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至落到池外?(2)如果水流喷出的抛物线开口与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流的最大高度应达多少米?例题4:(2012·武汉·四月调考)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3m.(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);(2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m,最内轨道的半径为r m,其上每0.3 m的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r为多少时池中安装的地漏的个数最多?练习:1. 爱琴公园的音乐喷泉中的一个旋转喷泉如图所示,水管AB高出水面53米,B处是自转的水喷头,喷出水流呈抛物线状,喷出的水流在与A点的水平距离2米处达到最高点C,点C距离水面3米。
2013年中考数学专题复习 二次函数的图象和性质【基础知识回顾】一、 二次函数的定义:一般地如果y= (a 、b 、c 是常数a ≠0)那么y 叫做x 的二次函数名师提醒: 二次函数y=kx 2+bx+c(a ≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x 的 最 高 次 数 是 , 按 一次排列2、强调二次项系数a 0二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a ≠0)的同象是一条 ,其定点坐标为 对称轴式2、在抛物y=kx 2+bx+c(a ≠0)中:(1)当a>0时,y 口向 ,当x<-2ba 时,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,(2)当a<0时,开口向 当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小.名师提醒:注意几个特殊形式的抛物线的特点1、y=ax 2 ,对称轴 定点坐标2、y= ax 2+k ,对称轴 定点坐标 3、y=a(x-h) 2对称轴 定点坐标4、y=a(x-h) 2 +k 对称轴 定点坐标三、二次函数同象的平移名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系:a:开口方向 向上则a 0,向下则a 0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用 判断b=0时,对称轴是 c:与y 轴的交点:交点在y 轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点名师提醒:在抛物线y= ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x 分别取2、3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 2 对应训练1.(2012•衢州)已知二次函数y=12-x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1 考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x 2-2mx-3,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是 .(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x 轴的交点. 对应训练2.(2012•河北)如图,抛物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),过点A作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是( ) A .①② B .②③ C .③④ D .①④考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2,则正确的结论是( ) A .①② B .①③ C .②④ D .③④ 对应训练3.(2012•重庆)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .abc >0B .a+b=0C .2b+c >0D .4a+c <2b 考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x 2沿直线y=x 平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .y=(x+1)2-1B .y=(x+1)2+1C .y=(x-1)2+1D .y=(x-1)2-1 对应训练4.(2012•南京)已知下列函数①y=x 2;②y=-x 2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x 2+2x-3的图象的有 (填写所有正确选项的序号). 【聚焦中考】1.(2012•泰安)二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于03.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数ayx在同一平面直角坐标系中的图象大致是A. B. C. D.4.(2012•泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y25.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.(2012•日照)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是()A.①② B.②③ C.③④ D.①④7.(2012•泰安)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-38.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度)20 50 70 80 90所用燃气量(升)73 67 83 97 115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>33.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤34.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1) B.(2,1)C.(2,-1) D.(-2,1)5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2 C.-2 D.-26.(2012•西宁)如同,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于06.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-17.(2012•天门)已知二次函数y=ax2+bx+c的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc <0;③a-2b+4c <0;④8a+c >0.其中正确的有( )A .3个B .2个C .1个D .0个8.(2012•乐山)二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <19.(2012•扬州)将抛物线y=x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A .y=(x+2)2+2B .y=(x+2)2-2C .y=(x-2)2+2D .y=(x-2)2-210.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x 2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是( )A .(-2,3)B .(-1,4)C .(1,4)D .(4,3)11.(2012•陕西)在平面直角坐标系中,将抛物线y=x 2-x-6向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A .1B .2C .3D .6二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 个(提示:必要时可利用下面的备用图画出图象来分析).13.(2012•长春)在平面直角坐标系中,点A 是抛物线y=a (x-3)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .14.(2012•孝感)二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc <0; ②a-b+c <0; ③3a+c <0; ④当-1<x <3时,y >0.其中正确的是 (把正确的序号都填上).15.(2012•苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则y 1 y 2(填“>”、“<”或“=”). 16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x 2-(a 2+1)x-a+2的图象不经过点(1,0)的概率是 .17.(2012•上海)将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是 .18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为.19.(2012•贵港)若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.19.(2012•广安)如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.三、解答题20.(2012•柳州)已知:抛物线y=34(x-1)2-3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.21.(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:xi0 1 2 3 4 5 …yi0 1 4 9 16 25 …y i+1﹣yi1 3 5 7 9 11 …由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5…请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?【重点考点例析】考点一:二次函数图象上点的坐标特点例1 解:∵二次函数y=a(x-2)2+c(a>0),∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x取0时所对应的点离对称轴最远,x取2时所对应的点离对称轴最近,∴y3>y2>y1.故选B.1.(2012•衢州)解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x 的增大而减小,∴函数的对称轴x=-22m --≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m ≥1,故本选项错误;③将m=-1代入解析式,得y=x 2+2x-3,当y=0时,得x 2+2x-3=0,即(x-1)(x+3)=0,解得,x 1=1,x 2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x 2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分). 对应训练2.(2012•河北)解:①∵抛物线y 2=12(x-3)2+1开口向上,顶点坐标在x 轴的上方,∴无论x 取何值,y 2的值总是正数,故本小题正确;②把A (1,3)代入,抛物线y 1=a (x+2)2-3得,3=a (1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y 1=a (x+2)2-3过原点,当x=0时,y 2=12(0-3)2+1=112,故y 2-y 1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3)∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D . 考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)解:由抛物线与y 轴的交点位置得到:c >1,选项①错误;∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确;由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误;令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a -=1,及b a -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba-<0,∴b >0,∴abc <0,故本选项错误;B 、∵对称轴:x=2b a -=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D 、∵对称轴为x=12-,与x 轴的一个交点的取值范围为x1>1,∴与x 轴的另一个交点的取值范围为x 2<-2,∴当x=-2时,4a-2b+c <0,即4a+c <2b ,故本选项正确.故选D . 考点四:抛物线的平移例4 (2012•桂林)解:∵A 在直线y=x 上,∴设A (m ,m ),∵OA=2,∴m 2+m 2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A (1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C . 对应训练4.(2012•南京)解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x 2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x 2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.解:∵抛物线的顶点在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y=mx+n 的图象经过二、三、四象限,故选C . 2.解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误;B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.解:∵二次函数图象开口向下,∴a <0,∵对称轴x=2ba-<0,∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限,纵观各选项,只有C 选项符合.故选C .4.解:∵函数的解析式是y=-(x+1)2+a ,如右图,∴对称轴是x=-1,∴点A 关于对称轴的点A ′是(0,y 1),那么点A ′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小,于是y 1>y 2>y 3.故选A .5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A . 6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确;又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误;∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误;∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ),联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确,则正确的选项有:①④.故选D . 7.A8.解:(1)若设y=kx+b (k ≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k ≠0),由73=20k,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c , 则由7340020 67250050 83490070a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1 508 597a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x 2-85x+97(18≤x ≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y 升与旋钮角度x 度的变化规律; (2)由(1)得:y=150x 2-85x+97=150(x-40)2+65,所以当x=40时,y 取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50(升) 设该家庭以前每月平均用气量为a 立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】1.C 2.D 解:根据题意得:y=|ax 2+bx+c|的图象如右图:所以若|ax 2+bx+c|=k (k ≠0)有两个不相等的实数根,则k >3,故选D .3.B 解:∵当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x ≤3时,总有y ≤0,∴当x=3时,y=9+3b+c ≤0②,①②联立解得:c ≥3,故选B . 4.B 5.C6.解:由图可知,当x >﹣1时,函数值y 随x 的增大而减小,A 、当x=0时,y 的值小于1,故本选项错误;B 、当x=3时,y 的值小于0,故本选项正确;C 、当x=1时,y 的值小于1,故本选项错误;D 、y 的最大值不小于1,故本选项错误.6.C 解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式,A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确; D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C . 7.B 解:根据图象可得:a >0,c <0,对称轴:2bx a=->0,①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误;②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故此选项正确;④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故正确为:③④两个.8.B 解:∵二次函数y=ax 2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a <0,b >0,由a=b-1<0得到b <1,结合上面b >0,所以0<b <1①,由b=a+1>0得到a >-1,结合上面a <0,所以-1<a <0②,∴由①②得:-1<a+b <1,且c=1,得到0<a+b+1<2,∴0<t <2.故选:B . 9.B 10.D 11.B 解:当x=0时,y=-6,故函数与y 轴交于C (0,-6),当y=0时,x 2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A (-2,0),B (3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2. 二、填空题12.7 解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x 1=12,得x 2=72.可画出草图为:(右图)图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18.故答案为:18. 14.①②③ 解:根据图象可得:a <0,c >0,对称轴:x=2b a -=1,2ba=-1,b=-2a ,∵a <0, ∴b >0,∴abc <0,故①正确;把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,故②正确;∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误.故答案为:①②③. 15.y 1>y 2 解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大∵x1>x2>1,∴y1>y2.故答案为:>. 16.37解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0,∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2.可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37.17.y=x 2+x-2 18.y=-(x+1)2-2 解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.18 解:分段函数y=的图象如图:故要使直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,常数m 的取值范围为0<m <2,故答案为:0<m <2.19.272解:如图,过点P 作PM ⊥y 轴于点M ,∵抛物线平移后经过原点O 和点A (-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=12(x+3)2+h ,将(-6,0)代入得出:0=12(-6+3)2+h ,解得:h=92-,∴点P 的坐标是(-3,92-),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=|-3|×|92-|=272.故答案为:272.三、解答题20.解:(1)抛物线y=34(x-1)2-3,∵a=34>0,∴抛物线的开口向上,对称轴为x=1;(2)∵a=34>0,∴函数y 有最小值,最小值为-3;(3)令x=0,则y=34(0-1)2-3=94-,所以,点P 的坐标为(0,94-),令y=0,则34(x-1)2-3=0,解得x 1=-1,x 2=3,所以,点Q 的坐标为(-1,0)或(3,0),当点P (0,94-),Q (-1,0)时,设直线PQ 的解析式为y=kx+b ,则940b k b ⎧=-⎪⎨⎪-+=⎩,解得9494k b ⎧=-⎪⎪⎨⎪=-⎪⎩,所以直线PQ 的解析式为y=94-x 94-,当P (0,94-),Q (3,0)时,设直线PQ的解析式为y=mx+n,则9430nm n⎧=-⎪⎨⎪+=⎩,解得3494mn⎧=⎪⎪⎨⎪=-⎪⎩,所以,直线PQ的解析式为y=34x94-,综上所述,直线PQ的解析式为y=94-x94-或y=34x94-.3.(2012•佛山)解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1;(2)有理数b=(n≠0);(3)①当x=0时,y=0,当x=时,y=,当x=1时,y=1,当x=时,y=.故当x的取值从0开始每增加个单位时,y的值依次增加、、…②当x=0时,y=0,当x=时,y=,当x=时,y=,当x=时,y=,故当x的取值从0开始每增加个单位时,y 的值依次增加、、…。
贵州省黔东南州2013年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本大题每小题均有ABCD 四个备选答案,其中只有一个是正确的。
1(4分)(2013•黔东南州)(﹣1)2的值是()A﹣1 B 1 C ﹣2 D 2考点:有理数的乘方分析:根据平方的意义即可求解解答:解:(﹣1)2=1故选B点评:本题考查了乘方的运算,负数的奇数次幂是负数,负数的偶数次幂是正数2(4分)(2013•黔东南州)下列运算正确的是()A(a 2)3=a 6B a2+a=a5C(x﹣y)2=x2﹣y2D+=2考点:幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式专题:计算题分析:A、利用幂的乘方运算法则计算得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用立方根的定义化简得到结果,即可作出判断解答:解:A、(a2)3=a6,本选项正确;B、本选项不能合并,错误;C、(x ﹣y)2=x 2﹣2xy+y2,本选项错误;D 、+=2+,本选项错误,故选A点评:此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握公式及法则是解本题的关键3(4分)(2013•黔东南州)如图是有几个相同的小正方体组成的一个几何体它的左视图是()A B C D考点:简单组合体的三视图分析:根据左视图是从左面看到的图判定则可解答:解:左面看去得到的正方形第一层是2个正方形,第二层是1个正方形故选B点评:本题主要考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,难度适中4(4分)(2013•黔东南州)从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够成三角形的概率是()A B C D考点:列表法与树状图法分析:列举出所有情况,让能组成三角形的情况数除以总情况数即为所求的概率解答:解:共有10、7、5;10、7、3;10、5、3;7、3、5;4种情况,10、7、3;10、5、3这两种情况不能组成三角形;所以P(任取三条,能构成三角形)=故选:C点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=构成三角形的基本要求为两小边之和大于最大边5(4分)(2013•黔东南州)如图,已知a∥b,∠1=40°,则∠2=()A140°B120°C40°D50°考点:平行线的性质;对顶角、邻补角专题:计算题分析:如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数解答:解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°故选A点评:此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补6(4分)(2013•黔东南州)某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152这组数据中,众数和中位数分别是()A126,126 B130,134 C126,130 D118,152考点:众数;中位数分析:根据众数和中位数的定义求解即可解答:解:这组数据按从小到大的顺序排列为:118,126,126,134,144,152,故众数为:126,中位数为:(126+134)÷2=130故选C点评:本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键7(4分)(2013•黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r 为半径作圆,若圆C与直线AB相切,则r的值为()A2cm B24cm C3cm D4cm考点:直线与圆的位置关系分析:R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值解答:解:Rt△ABC中,∠C=90°,AC=3cm,BC=4cm;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=R;∵S△ABC=AC•BC=AB•r;∴r=24cm,故选B点评:本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点8(4分)(2013•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A a<0,b<0,c>0,b2﹣4ac>0B a>0,b<0,c>0,b2﹣4ac<0C a<0,b>0,c<0,b2﹣4ac>0D a<0,b>0,c>0,b2﹣4ac>0考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,再结合抛物线的对称轴与y轴的关系判断b 与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点的个数判断b2﹣4ac与0的关系解答:解:∵抛物线的开口向下,∴a<0,∵对称轴在y轴右边,∴a,b异号即b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∵抛物线与x轴有2个交点,∴b2﹣4ac>0故选D点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0(4)b2﹣4ac由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<09(4分)(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A m>﹣1B m<1 C﹣1<m<1 D﹣1≤m≤1考点:两条直线相交或平行问题专题:计算题分析:联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可解答:解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1故选C点评:本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用10(4分)(2013•黔东南州)如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A(10)B(10)或(﹣10)C(20)或(0,﹣2)D(﹣21)或(2,﹣1)考点:反比例函数与一次函数的交点问题;坐标与图形变化-旋转专题:计算题分析:联立直线与反比例解析式,求出交点A的坐标,将△ABO绕点O旋转90°,得到△A′B′O,利用图形及A的坐标即可得到点A′的坐标解答:解:联立直线与反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1,∴y=2或﹣2,∴A(1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1)故选D点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形变化﹣旋转,作出相应的图形是解本题的关键二、填空题(本题共6小题,每小题4分,共24分)11(4分)(2013•黔东南州)平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0)考点:关于x轴、y轴对称的点的坐标分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案解答:解:点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0),故答案为:(﹣2,0)点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律12(4分)(2013•黔东南州)使根式有意义的x的取值范围是x≤3考点:二次根式有意义的条件分析:根据被开方数大于等于0列式计算即可得解解答:解:根据题意得,3﹣x≥0,解得x≤3故答案为:x≤3点评:本题考查的知识点为:二次根式的被开方数是非负数13(4分)(2013•黔东南州)将一副三角尺如图所示叠放在一起,则的值是考点:相似三角形的判定与性质分析:由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案解答:解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在RtACD中,∠D=30°,∴CD==AC,∴==故答案为:点评:此题考查了相似三角形的判定与性质与三角函数的性质此题难度不大,注意掌握数形结合思想的应用14(4分)(2013•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C ﹣∠B,则∠B=60度考点:三角形内角和定理分析:先整理得到∠A+∠C=2∠B,再利用三角形的内角和等于180°列出方程求解即可解答:解:∵∠B﹣∠A=∠C﹣∠B,∴∠A+∠C=2∠B,又∵∠A+∠C+∠B=180°,∴3∠B=180°,∴∠B=60°故答案为:60点评:本题考查了三角形的内角和定理,是基础题,求出∠A+∠C=2∠B是解题的关键15(4分)(2013•黔东南州)若两个不等实数m、n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则m2+n2的值是6考点:根与系数的关系分析:根据题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,所以利用根与系数的关系来求m2+n2的值解答:解:由题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,则m+n=2,mn=﹣1所以,m2+n2=(m+n)2﹣2mn=2×2﹣2×(﹣1)=6故答案是:6点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法16(4分)(2013•黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是1014049考点:规律型:数字的变化类分析:根据已知数字变化规律,得出连续奇数之和为数字个数的平方,进而得出答案解答:解:∵1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,∴1+3+5+…+2013=()2=10072=1014049故答案为:1014049点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键三、解答题:(本大题共8个小题,共86分)17(10分)(2013•黔东南州)(1)计算:sin30°﹣2﹣1+(﹣1)0+;(2)先简化,再求值:(1﹣)÷,其中x=考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题分析:(1)分别根据负整数指数幂、0指数幂的计算法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可解答:解:(1)原式=﹣+1+π﹣1=π;(2)原式=÷=×=,当x=时,原式==+1点评:本题考查的是分式的混合运算及实数的运算,熟知分式混合运算的法则是解答此题的关键18(8分)(2013•黔东南州)解不等式组,并把解集在数轴上表示出来考点:解一元一次不等式组;在数轴上表示不等式的解集专题:计算题分析:先求出两个不等式的解集,再求其公共解解答:解:,解不等式①得,x<2,解不等式②得,x≥﹣2,在数轴上表示如下:所以,不等式组的解集是﹣2≤x<2点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示19(8分)(2013•黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F求证:AM=EF考点:正方形的性质;全等三角形的判定与性质;矩形的判定与性质专题:证明题分析:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,根据题干条件证明出AP=MF,PM=ME,进而证明△APM≌△FME,即可证明出AM=EF解答:证明:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,∵四边形ABCD是正方形,∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,∴AP=QM=DF=MF,PM=PB=ME,∵在△APM和△FME中,,∴△APM≌△FME(SAS),∴AM=EF点评:本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及矩形的性质等知识,此题正确作出辅助线很易解答20(10分)(2013•黔东南州)为了解黔东南州某县2013届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图成绩分组组中值频数25≤x<30 275 430≤x<35 325 m35≤x<40 375 2440≤x<45 a 3645≤x<50 475 n50≤x<55 525 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表分析:(1)求出组距,然后利用375加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值;(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数解答:解:(1)组距是:375﹣325=5,则a=375+5=425;根据频数分布直方图可得:m=12,则n=100﹣4﹣12﹣24﹣36﹣4=20;(2)优秀的人数所占的比例是:=06,则该县中考体育成绩优秀学生人数约为:4000×06=2400(人)点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题21(12分)(2013•黔东南州)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人(1)用树形图获列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率考点:列表法与树状图法分析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果;(2)由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得;(3)由选出的是2名主持人恰好1男1女的情况,然后由概率公式即可求得解答:解:(1)画树状图得:共有20种等可能的结果,(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:=;(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为:=点评:此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比22(12分)(2013•黔东南州)如图,在直角三角形ABC中,∠ABC=90°(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC是所作⊙O的切线;(3)若BC=,sinA=,求△AOC的面积考点:作图—复杂作图;切线的判定分析:(1)根据角平分线的作法求出角平分线FC,进而得出⊙O;(2)根据切线的判定定理求出EO=BO,即可得出答案;(3)根据锐角三角函数的关系求出AC,EO的长,即可得出答案解答:(1)解:如图所示:(2)证明:过点O作OE⊥AC于点E,∵FC平分∠ACB,∴OB=OE,∴AC是所作⊙O的切线;(3)解:∵sinA=,∠ABC=90°,∴∠A=30°,∴∠ACB=∠OCB=ACB=30°,∵BC=,∴AC=2,BO=tan30°BC=×=1,∴△AOC的面积为:×AC×OE=×2×1=点评:此题主要考查了复杂作图以及切线的判定和锐角三角函数的关系等知识,正确把握切线的判定定理是解题关键23(12分)(2013•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?考点:一次函数的应用分析:(1)根据函数图象由待定系数法就可以直接求出y与x之间的函数关系式;(2)设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,根据购进甲品牌文具盒120个可以求出乙品牌的文具盒的个数,由共需7200元为等量关系建立方程求出其解即可;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,根据条件建立不等式组求出其解即可解答:解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,∴y与x之间的函数关系式为y=﹣x+300;(2)∵y=﹣x+300;∴当x=120时,y=180设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,∴乙品牌的进货单价是30元答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,∵m为整数,∴m=180,181∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700∵k=﹣5<0,∴W随m的增大而减小,∴m=180时,W 最大=1800元点评:本题考查了待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,列一元一次不等式组解实际问题的运用,解答时求出第一问的解析式是解答后面问题的关键24(14分)(2013•黔东南州)已知抛物线y 1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y 2=x+1的一个交点的横坐标为2(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P 在抛物线上,当S △PAB≤6时,求点P的横坐标x的取值范围考点:二次函数综合题分析:(1)首先求出抛物线与直线的交点坐标,然后利用待定系数法求出抛物线的解析式;(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象由图象可以直观地看出使得y1≥y2的x的取值范围;(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由S △PAB≤6可以求出h的范围,这是一个不等式,解不等式求出x P的取值范围解答:解:(1)∵抛物线与直线y2=x+1的一个交点的横坐标为2,∴交点的纵坐标为2+1=3,即交点坐标为(2,3)设抛物线的解析式为y1=a(x﹣1)2+4,把交点坐标(2,3)代入得:3=a(2﹣1)2+4,解得a=﹣1,∴抛物线解析式为:y 1=﹣(x﹣1)2+4=﹣x2+2x+3(2)令y1=0,即﹣x2+2x+3=0,解得x1=3,x2=﹣1,∴抛物线与x轴交点坐标为(3,0)和(﹣1,0)在坐标系中画出抛物线与直线的图形,如图:根据图象,可知使得y 1≥y2的x的取值范围为﹣1≤x≤2(3)由(2)可知,点A坐标为(3,0)令x=3,则y 2=x+1=3+1=4,∴B(3,4),即AB=4设△PAB中,AB边上的高为h,则h=|x P﹣x A|=|x P﹣3|,S △PAB=AB•h=×4×|x P﹣3|=2|x P﹣3|已知S△PAB≤6,2|x P﹣3|≤6,化简得:|x P﹣3|≤3,去掉绝对值符号,将不等式化为不等式组:﹣3≤x P﹣3≤3,解此不等式组,得:0≤x P≤6,∴当S △PAB≤6时,点P的横坐标x的取值范围为0≤x P≤6点评:本题考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、三角形的面积、解不等式(组)等知识点题目难度不大,失分点在于第(3)问,点P在线段AB的左右两侧均有取值范围,注意不要遗漏。
【2013年中考攻略】专题2:待定系数法应用探讨在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。
然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。
待定系数法是数学中的基本方法之一。
它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。
应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。
比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。
例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。
这里的A,B,C就是有待于确定的系数。
代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。
例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。
这里的k就是有待于确定的系数。
消除待定系数法通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。
例如:“已知b2a3=,求a ba b-+的值”,解答此题,只需设定b2=ka3=,则a=3k b=2k,,代入a ba b-+即可求解。
这里的k就是消除的待定参数。
应用待定系数法解题的一般步骤是:(1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式;(2)根据恒等式列出含有待定的系数的方程(组);(3)解方程(组)或消去待定系数,从而使问题得到解决。
在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。
下面通过2011年和2012年全国各地中考的实例探讨其应用。
中考专题: 圆与函数综合题1、如图,平面直角坐标系中,以点C (22为半径的圆与轴交于A 、B 两点.(1)求A 、B 两点的坐标;(2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式.2、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线2y x bx c =++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.3、如图,抛物线2y ax bx c =++的对称轴为轴,且经过(0,0116)两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2),(1)求a,b,c 的值;(2)求证:点P 在运动过程中,⊙P 始终与轴相交;(3)设⊙P 与轴相交于M ()1x ,0,N ()()212x ,0x x 两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。
4、如图,二次函数y =x 2+bx -3b +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),交y 轴于点C ,且经过点(b -2,2b 2-5b -1).(1)求这条抛物线的解析式;(2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标;(3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x 轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标.5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O 中,MN 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°,AB =3,CD =4,则BD = 。
江苏省2013年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图①商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转A CB DF E (第7题)盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,A D EB CF (第16题) (第17题) (第18题) 各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)AD C B26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动A C D 图① A C D 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.。
中考数学总复习《圆与二次函数结合型》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,二次函数()20y x bx c a =-++≠的图像经过点()1,0A -,()3,0B 交y 轴于点C ,点E 为该二次函数图象上第一象限内一动点.(1)b =__________,c =__________; (2)如图①,连接AE 与BC 相交于点P ,当PBEPACSS-的值最大时,求点E 的坐标;(3)如图①,过点E 作EH x ⊥轴于H 点,交直线BC 于点F ,以EF 为直径的M 与BC 交于点R ,当EFR 周长最大时,求点E 的坐标.2.已知半径为5的A 与平面直角坐标系交于O ,B 两点,二次函数2y ax bx c =++的图像顶点C 在A 上并经过O ,B 两点,且8OB =,如图1所示.(1)求二次函数的解析式; (2)如图2,连结OC ,若点D 为A 上一点,当30BOD ∠=︒时,求线段OD 的长;(3)如图3,连结OC ,若A 上有一点N ,连结BN 使BN OC ∥,连结ON 并与CA 的延长线交于点M ,求:OM MN 的值.3.如图,已知二次函数2449y x =-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C 的半径为5,P 为C 上一动点.(1)点B,C的坐标分别为B________,C________.(2)连接PB,若E为PB的中点,连接OE,则OE的最大值 ________.(3)是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若152PACS△=,求点P的坐标;(3)如图乙,过A,B,P三点作①M,过点P作PE①x轴,垂足为D,交①M于点E.点P 在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.5.如图,二次函数y=﹣56x2+bx+c与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB①AC.(1)求该二次函数的关系式;(2)经过点B作直线BD①AB,与x轴交于点D,与二次函数的图象交于点E,连接AE,请判断①ADE的形状,并说明理由;(3)若直线y=kx+1与圆A相切,请直接写出k的值.6.如图,在平面直角坐标系xOy中,将二次函数21y x=-的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求22+的最大值;PA PB(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.7.如图,二次函数223y ax ax a=--(a<0)的图象与x轴交于A,B两点(点B在点A 的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的①M经过点C.(1)请直接写出C,D的坐标(用含a的代数式表示);(2)求抛物线的函数表达式;(3)①M上是否存在点E,使得①EDB=①CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请说明理由.8.如图1,二次函数23y ax ax b =-+(a 、b 为参数,其中a<0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D .(1)若10b a =-,求tan CBA ∠的值(结果用含a 的式子表示);(2)若ABC ∆是等腰三角形,直线AD 与y 轴交于点P ,且:2:3AP DP =.求抛物线的解析式;(3)如图2,已知4b a =-,E 、F 分别是CA 和CB 上的动点,且35EF AB =,若以EF 为直径的圆经过点C ,并交x 轴于M 、N 两点,求MN 的最大值.9.如图,y 关于x 的二次函数()()333y x m x m m=-+-图象的顶点为M ,图象交x 轴于A 、B 两点,交y 轴正半轴于点D .以AB 为直径作圆,圆心为点C ,定点E 的坐标为()3,0-,连接ED .(0m >)(1)求用m 表示的A 、B 、D 三点坐标;(2)当m 为何值时,点M 在直线ED 上?判定此时直线ED 与圆的位置关系; (3)当m 变化时,用m 表示AED △的面积.10.如图,抛物线22y ax x c =-+经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D .(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APBABCSS=的点P 的坐标;(3)M 是过A 、B 、C 三点的圆,连接MC 、MB 、BC ,求劣弧CB 的长.11.如图,二次函数()21y x a =-+与x 轴相交于点A ,B ,点A 在x 轴负半轴,过点A 的直线y x b =+交该抛物线于另一点D ,交y 轴正半轴于点H .(1)如图1,若1OH =,求该抛物线的解析式; (2)如图1,若点P 是线段HD 上一点,当113AH AD AP+=时,求点P 的坐标(用含b 的代数式表示);(3)如图2,在(1)的条件下,设抛物线交y 轴于点C ,过A ,B ,C 三点作Q ,经过点Q 的直线y hx q =+交Q 于点F ,I ,交抛物线于点E ,G .当EI GI FI =+时,求22h 的值.12.如图(1),二次函数25y ax x c =-+的图像与x 轴交于()4,0A -,(),0B b 两点,与y 轴交于点()0,4C -.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E '是圆在x 轴上方圆弧上的动点(点E '不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ',线段AE 的对应线段为A E '',连接E C ',A A ',A A '的延长线交直线E C '于点N ,求AA CN'的值.13.如图,y 关于x 的二次函数3()(3)3y x m x m m=-+-图象的顶点为M ,图象交x 轴于A 、B 两点,交y 轴正半轴于D 点.以AB 为直径作圆,圆心为C .定点E 的坐标为(3,0)-,连接ED .(0)m >(1)写出A 、B 、D 三点的坐标;(2)当m 为何值时M 点在直线ED 上?判定此时直线与圆的位置关系;(3)当m 变化时,用m 表示AED △的面积S ,并在给出的直角坐标系中画出S 关于m 的函数图象的示意图.14.抛物线2y ax bx c =++交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为1x =,(3,0)B 和(0,3)C -(1)求二次函数2y ax bx c =++的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M N 、两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.15.如图,抛物线()230y ax bx a =+-≠与x 轴交于()3,0A -,()1,0B 两点,与y 轴交于点C ,直线y x =-与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH EF ⊥于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,过点B 作C 的切线切点为点D ,求切点D 的坐标.参考答案: 1.(1)2,3(2)点E 的坐标为()1,4(3)点E 的坐标315,24⎛⎫ ⎪⎝⎭2.(1)()21482y x =--+ (2)433+或433-(3)563.(1)()3,0 ()0,4-;(2)552+;(3)1122,55⎛⎫- ⎪⎝⎭或()1,2--或4535,455⎛⎫-- ⎪ ⎪⎝⎭或4535,455⎛⎫-- ⎪ ⎪⎝⎭4.(1)y =12x 2﹣x ﹣4;(2)P (3,﹣52);(3)没有变化,2 5.(1)y =﹣56x 2﹣376x ﹣11;(2)①ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或26.(1)245y x x =-++;(2)38417+;(3)25. 7.(1)C 的坐标为(0,﹣3a ),D 的坐标为(1,﹣4a );(2)223y x x =-++;(3)(4,1)、(85,15-). 8.(1)tan①CBA=-2a ;(2)26364622y x x =-++;(3)MN 的最大值=22 9.(1)()0A m -,,()30B m ,和()03D m ,(2)当1m =时,点M 在直线ED 上;直线ED 与C 相切(3)()()223330322333322m m m S m m m ⎧-+<<⎪⎪=⎨⎪->⎪⎩10.(1)2=23y x x --(2)()1,0-或()4,5(3)52π11.(1)223y x x =-- (2)点P 的坐标为22223,11b b b b b b ⎛⎫++ ⎪++⎝⎭(3)2220113h =-12.(1)254y x x =--- 1b(2)不存在(3)113.(1)(,0)A m -,(3,0)B m 和(0,3)D m ;(2)当1m =时,M 点在直线DE 上,直线ED 与C 相切(3)当03m <<时233322S m m =-+,当3m >时2_33322S m m =. 14.(1)2=23y x x --(2)(1,6)-(3)1172+或1172-+ 15.(1)()0,3C - 223y x x =+-(2)2128 (3)()1,3-或412,55⎛⎫-- ⎪⎝⎭。
2013年数学中考分类复习 二次函数的图象和性质2一、选择题1.(2010福建福州)已知二次函数y =Ax 2+Bx +C 的图象如图所示,则下列结论正确的是( )A .a >0B .c <0C .b 2-4ac <0D .a +b +c >0(第10题)【答案】D2.(2010 河北)如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x3),则点B 的坐标为A .(2,3)B .(3,2)C .(3,3)D .(4,3) 【答案】D3.(2010 山东莱芜)二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 4.(2010年贵州毕节)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )(第9题图)图5【答案】C.5.(2010年贵州毕节)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21 【答案】A.6.(2010湖北荆门)二次函数y =ax 2+bx+c 的图象如图所示,下列结论错误的是 A .ab <0 B .ac <0 C .当x <2时,函数值随x 的增大而增大;当x >2时,函数值随x 的增大而减小 D .二次函数y =ax 2+bx+c 的图象与x 轴的交点的横坐标就是方程ax 2+bx+c =0的根。
【答案】B7.(2010 湖南株洲)二次函数23y x mx =-+的图象与x 轴的交点如图所示,根据图中信息可得到m 的值是 .【答案】48.(2010 四川成都)把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ) (A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =- 【答案】D9.(2010山东潍坊)已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是( ).A .-32<x <2 B .x >2或x <-32 C .-2<x <32D . x <-2或x >32【答案】C10.(2010湖北荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到? A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位 D .向右平移1个单位 【答案】D 二、填空题1.(2010 湖南株洲)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = .【答案】112x - 2.(2010湖南郴州)将抛物线y =x 2 +1向下平移2个单位,•则此时抛物线的解析式是_____________. 【答案】 y =x 2 -1 三、解答题1.(2010江苏泰州)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)【答案】⑴ ∵抛物线经过点D (29,3-) ∴29)3(212=+-⨯-c ∴c=6.⑵过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M , ∵AC 将四边形ABCD 的面积二等分,即:S △ABC =S △ADC ∴DE =BF 又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM∴DM =BM 即AC 平分BD ∵c =6. ∵抛物线为6212+-=x y ∴A (0,32-)、B (0,32)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y . ⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN=,于是以A 点为圆心,AB=为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H .(1)求证:AH AD =EFBC ;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.【答案】解:(1)∵ 四边形EFPQ 是矩形,∴ EF ∥QP . ∴ △AEF ∽△ABC .又∵ AD ⊥BC , ∴ AH ⊥EF .∴ AH AD =EFBC(2)由(1)得AH 8=x 10. AH =45x .∴ EQ =HD =AD -AH =8-45x ,∴ S 矩形EFPQ =EF ²EQ =x (8-45x ) =-45x 2+8 x =-45(x -5)2+20.∵ -45<0, ∴ 当x =5时,S 矩形EFPQ 有最大值,最大值为20.(3)如图1,由(2)得EF =5,EQ =4.∴ ∠C =45°, ∴ △FPC 是等腰直角三角形. ∴ PC =FP =EQ =4,QC =QP +PC =9.分三种情况讨论:① 如图2.当0≤t <4时,设EF 、PF 分别交AC 于点M 、N ,则△MFN 是等腰直角三角形.∴ FN =MF =t .∴S =S 矩形EFPQ -S Rt △MF N =20-12t 2=-12t 2+20;②如图3,当4≤t <5时,则ME =5-t ,QC =9-t .∴ S =S 梯形EMCQ =12[(5-t )+(9-t )]³4=-4t +28;(第21题)第21题图1③如图4,当5≤t≤9时,设EQ交AC于点K,则KQ=QC=9-t.∴S=S△K QC=12(9-t)2=12( t-9)2.第21题图2 第21题图3 第21题图4 综上所述:S与t的函数关系式为:S=221204)24285)1(9)9)2t tt tt t⎧-+<⎪⎪--<⎨⎪⎪-<⎩ (0, (4, (5.≤≤≤3.(2010福建福州)如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线y=16x2+bx+c过O、A两点.(1)求该抛物线的解析式;(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作⊙O1的切线OP,P为切点(点P与点C不重合).抛物线上是否存在点Q,使得以PQ为直径的圆与⊙O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.【答案】解:(1)把O(0,0)、A(5,0)分别代入y=16x2+bx+c,得2550.6cb c=⎧⎪⎨++=⎪⎩,解得5,60.bc⎧=-⎪⎨⎪=⎩∴该抛物线的解析式为y=16x2-56x.(2)点C在该抛物线上.理由:过点C作CD⊥x轴于点D,连结OC,设AC交OB于点E.∵点B在直线y=2x上,∴B(5,10)∵点A、C关于直线y=2x对称,∴OB⊥AC,CE=AE,BC⊥OC,OC=OA=5,BC=BA=10.又∵A B⊥x轴,由勾股定理得OB=55.∵S Rt△OAB=12AE²OB=12OA·AB,∴AE=25,∴AC=45.∵∠OBA十∠CAB=90°,∠CAD+∠CAB=90°,∴∠CAD=∠OBA.又∵∠CDA=∠OAB=90°,∴△CDA∽△OAB.(第22题图1) (第22题图2)∴CD OA =AD AB =ACOB∴ CD =4,AD =8 ∴ C (-3,4) 当x =-3时,y =16³9-56³(-3)=4.∴ 点C 在抛物线y =16x 2-56x 上.(3)抛物线上存在点Q ,使得以PQ 为直径的圆与⊙O 1相切.过点P 作P F ⊥x 轴于点F ,连结O 1P ,过点O 1作O 1H ⊥x 轴于点H . ∴ CD ∥O 1H ∥BA . ∵ C (-3,4),B (5,10),∴ O 1是BC 的中点. ∴ 由平行线分线段成比例定理得AH =DH =12AD =4,∴ OH =OA -AH =1.同理可得O 1H =7. ∴ 点O 1的坐标为(1,7). ∵ BC ⊥OC , ∴ OC 为⊙O 1的切线.又∵OP 为⊙O 1的切线, ∴ OC =OP =O 1C =O 1P =5.∴ 四边形OPO 1C 为正方形. ∴ ∠COP =900. ∴ ∠POF =∠OCD . 又∵∠PFD =∠ODC =90°, ∴ △POF ≌△OCD .∴ OF =CD ,PF =OD . ∴ P (4,3). 设直线O 1P 的解析式为y =kx+B (k ≠0). 把O 1(1,7)、P (4,3)分别代人y =kx+B ,得743k b k b +=⎧⎨+=⎩,. 解得43253k b ⎧=-⎪⎪⎨⎪=⎪⎩,.∴ 直线O 1P 的解析式为y =-43x +253.若以PQ 为直径的圆与⊙O 1相切,则点Q 为直线O 1P 与抛物线的交点,可设点Q 的坐标为(m ,n ),则有n =-43m +253,n =16m 2-56M∴ -43m +253=16m 2-56M .整理得m 2+3m -50=0,解得m =-3±2092∴ 点Q 的横坐标为-3+2092或-3-2092.4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =AC 与直线x =4交于点E .(1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.第22题图【答案】解:(1)点C 的坐标.设抛物线的函数关系式为2(4)y a x m =-+,则1604am a m +=+=⎧⎨⎩63a m=-=∴所求抛物线的函数关系式为2(4)63y x =--+…………①设直线AC 的函数关系式为,y kx b =+则402k bk b -+=+=⎧⎨⎩33k b ==.∴直线AC 的函数关系式为33y x =+,∴点E的坐标为把x =4代入①式,得24)y =-+=,∴此抛物线过E 点. (2)(1)中抛物线与x 轴的另一个交点为N (8,0),设M (x ,y ),过M 作MG ⊥x 轴于G ,则S △CMN =S△MNG +S 梯形MGBC —S △CBN =111(8)(2)(82)222x y yx -++--⨯-⨯=2233()632y x x x -=-++-=-+-=25)22x -∴当x =5时,S △CMN 25.(2010湖南邵阳)如图(十四),抛物线y =2134x x -++与x 轴交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。
与园和二次函数有关的数学经典中考压轴题解析1. 经过x 轴上(10)(30)A B -,,,两点的抛物线2y ax bx c =++交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的G 经过点C ,求解下列问题: (1)用含a 的代数式表示出C D ,的坐标; (2)求抛物线的解析式; (3)如图,当0a <时,能否在抛物线上找到一点Q ,使B D Q △为直角三角形?你能写出Q 点的坐标吗?2. 如图(十二),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤).(1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式;②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516?3. (本题满分10分)D COGy x(30)B ,(10)A -, O M AP N y lm x BO MAP Ny l mxBE PF 图十二已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.4. 解答题:本题满分14分.20. 阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2) 求△CAB 的铅垂高CD 及CAB S △;(3) 设点P 是抛物线(在第一象限内)上的一个动点,xyF -2 -4-6A C EPDB5 2 1 24 6 G C y BA BC铅垂高水平宽 ha图12-1是否存在一点P ,使S △P AB =89S △CAB ,若存在, 求出P 点的坐标;若不存在,请说明理由.5. (本小题10分)如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(03)--,、,,点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式; (2)若设点P 的横坐标为m ,用含m 的代数式表示线段PF 的长. (3)求PBC △面积的最大值,并求此时点P 的坐标.6(本题满分10分)已知:直线6y x =+交x y ,轴于A C ,两点,经过A O ,两点的抛物线2(0)y a x b x a =+<交直线AC 于B 点.xyB F O AC Px =1 (第25题)(1)求A C ,两点坐标;(2)求出抛物线的函数关系式; (3)以B 点为圆心,以AB 为半径作B ,将B 沿x 轴翻折得到D ,试判断直线AC与D 的位置关系并求BD 的长; (4)若E 为B 优弧ACO 上一动点,连结AE OE ,,问在抛物线上是否存在一点M ,使:2:3MOA AEO ∠∠=,若存在,试求出点M 的坐标;若不存在,试说明理由..7. (本小题12分)在平面直角坐标系中,已知(40)A -,,(10)B ,,且以AB 为直径的圆交y 轴的正半轴于点(02)C ,,过点C 作圆的切线交x 轴于点D .(1)求过A B C ,,三点的抛物线的解析式 (2)求点D 的坐标(3)设平行于x 轴的直线交抛物线于E F ,两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由?AOCDxB图9y yxO C DB A 4-128. (本题满分9分)已知Rt △ABC ,∠ACB =90o ,AC =4,BC =3,CD ⊥AB 于点D ,以D 为坐标原点,CD 所在直线为y 轴建立如图所示平面直角坐标系. (1)求A ,B ,C 三点的坐标;(2)若⊙O 1,⊙O 2分别为△ACD ,△BCD 的内切圆,求直线12O O 的解析式;(3)若直线12O O 分别交AC ,BC 于点M ,N ,判断CM 与CN 的大小关系,并证明你的结论.9.(本小题满分10分)已知(1)A m -,与(233)B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.10.(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);CDMABxy 1O2ON(第28题) A B C x y11 1-1- O A A 80100(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明); (3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.11.已知双曲线k y x =与直线14y x =相交于A ,B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A ,B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM ,BM 分别与y 轴相交于P ,Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.12.(本题9分)如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于G32.4 49.8 H E F53.844.047.1 35.1 47.8 50.0 (第25题图2) (第28题) y O · AD xB C E N M ·(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且2AO BO ==,AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高. (1)OH 的长度等于 ;k = ,b = .(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-上有一点E ,满足以D N E ,,为顶点的三角形与AOB △相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E 点(简要说明理由);并进一步探索对符合条件的每一个E 点,直线NE 与直线AB 的交点G 是否总满足102PB PG <,写出探索过程.13. (本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(50),,顶点D 在⊙O 上运动. (1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.D (第29题)xyNOM P AC B2-H 51D CB AO xy第27题14. .已知二次函数21(0)y ax bx c a =++≠的图像经过三点(10),,(30)-,,302⎛⎫- ⎪⎝⎭,. (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数22y x=(0x >)的图像与二次函数21y ax bx c =++(0a ≠)的图像在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图像,写出这两个相邻的正整数;(4分) (3)若反比例函数2k y x=(00k x >>,)的图像与二次函数21y ax bx c =++(0a ≠)的图像在第一象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.(5分)15. (本题满分12分)如图甲,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF BD ,之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线时,如图丙,①中的结论是否仍然成立,为什么?y x 1 O 2 3 4 4 321 1-2- 3- 4- 1-2- 3-第29题图 图甲A B D FEC 图乙 A BDE CF 图丙 A B D C E(2)如果AB AC ≠,90BAC ≠∠,点D 在线段BC 上运动.试探究:当ABC △满足一个什么条件时,CF BC ⊥(点C F ,重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若42AC =,3BC =,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值.16. (本题满分14分)已知:矩形ABCD 中,1AB =,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E .(1)如果直线l 与边BC 相交于点H (如图1),AM =31AC 且AD =a ,求AE 的长;(用含a 的代数式表示)(2)在(1)中,又直线l 把矩形分成的两部分面积比为2∶5,求a 的值;(3)若AM =41AC ,且直线l 经过点B (如图2),求AD 的长; (4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM =41AC .设AD 长为x ,△AEF 的面积为y ,求y 与x 的函数关系式,并指出x 的取值范围.(求x 的取值范围可不写过程)ADCBE HMl图1ADCBE M图2l17. (本小题满分8分)探索研究如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.18. (本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.x lQC PA OB HRyOxy EPDA B M C19. .如图1,正方形ABCD 和正三角形EFG 的边长都为1,点E F ,分别在线段AB AD ,上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):α153045607590x0.03 0 0.29 y0.290.130.03(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.(参考数据:62623 1.732sin150.259sin 750.96644-+==≈,≈,≈.)20. (本题满分12分)AH FD G C BE 图1图2B (E )A (F ) D C GH ADCB图3H H DACB图4在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?21(本题14分)如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<<t ). (1)求直线2l 的解析式.(2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式. (3)试探究:当t 为何值时,△PCQ 为等腰三角形? .22. (本题满分12分) 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理AB C M N D 图2 OA B C M N P 图1 O A BC M N P 图3 O由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).23. (本题满分12分,每小题满分各4分)在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.24(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;D C B A ① D C BA ③ D CB A ② (第25题图) CM O xy12 3 4 1- 图7 A 1 B D y x b =+(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.25. (本小题12分)已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ xy BC ODA MN N ′ xy BC OA M N26. 如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 , 当90α=°时,BPBQ的值是 ; (2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求BPBQ的值; ②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积.(3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使12BP BQ =?若存在,请直接写出点P 的坐标;若不存在,请说明理由.QCBAO xPA 'B 'C 'α(图1)y(Q ) CBAO x PA 'C '(图3)yB ' Q CB AO x P A ' B 'C '(图2)y CB AOyx(备用图)(第26题)27. 将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将O P Q △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(3)连结AC ,将O P Q △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.28. .如图,已知直线112y x =-+交坐标轴于B A ,两点,以线段AB 为边向上作正方形ABCD ,过点C D ,A ,的抛物线与直线另一个交点为E . (1)请直接写出点D C ,的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上E C , 两点间的抛物线弧所扫过的面积.图1OP A xBDC Q y (第24题图) 图2OPA xBC Q yE O ABC DEy x29. (本题14分)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.30. .如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直.线.AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.ABC D E RP H Q (第24题图)31. 已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.数学中考压轴题解析(2)答案1. .解:(1)设抛物线的解析式为(1)(3)y a x x =+- ·············································· 1分 则2(23)y a x x =--2(1)4a x a =-- ····································································· 2分 则点D 的坐标为(14)D a -, ··············································································· 3分 点C 的坐标为(03)C a -, ·················································································· 4分 (2)过点D 作DE y ⊥轴于E ,如图①所示:则有DEC COB △∽△ ···········································5分DE ECCO OB =∴133a a =-∴26题图y xDBCA EOD CGyE21a =∴ 1a =± ·················································7分 抛物线的解析式为223y x x =--或223y x x =-++ ·····8分 (3)0a <时,1a =-,抛物线223y x x =-++,这时可以找到点Q ,很明显,点C 即在抛物线上,又在G 上,90BCD ∠=°,这时Q 与C 点重合 点Q 坐标为(03)Q ,················································9分 如图②,若DBQ ∠为90°,作QF y ⊥轴于F ,DH x ⊥轴于H可证Rt Rt DHB BFQ △∽△有DH HB BF FQ= 则点Q 坐标2(23)k k k -++,即242323k k k =--- 化简为22390k k --= 即(3)(23)0k k -+=解之为3k =或32k =-由32k =-得Q 坐标:3924Q ⎛⎫-- ⎪⎝⎭, ···································································· 10分 若BDQ ∠为90° 如图③,延长DQ 交y 轴于M , 作DE y ⊥轴于E ,DH x ⊥轴于H 可证明DEM DHB △∽△ 即DE EMDH HB=则142EM=得12EM =,点M 的坐标为702⎛⎫⎪⎝⎭,DM 所在的直线方程为1722y x =+ 则1722y x =+与223y x x =-++的解为12x =,得交点坐标Q 为11524⎛⎫⎪⎝⎭, ···················· 11分 即满足题意的Q 点有三个,(03),,391152424⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,, ············································ 12分2. (1)当0x =时,4y =;当0y =时,4x =.(40)04A B ∴,,(,); ··················· 2分DH O Gy x(30)B ,(10)A -,E FQ图②DM O G y x(30)B ,(10)A -,EH 图③(2)1OM OA MN AB ON OB ∴==∥,,211122OM ON t S OM ON t ∴==∴==,·; ··· 4分 (3)①当24t <≤时,易知点P 在OAB △的外面,则点P 的坐标为()t t ,,F 点的坐标满足4x t y t =⎧⎨=-+⎩,,即(4)F t t -,, 同理(4)E t t -,,则24PF PE t t t ==-=-(4-), ············································ 6分 所以2MPN PEF OMN PEF S S S S S =-=-△△△△2221111324248822222t PE PF t t t t t =-=---=-+-·()(); ······························ 8分 ②当02t <≤时,2221151544221622S t t ==⨯⨯⨯=,,解得125052t t =-<=>,,两个都不合题意,舍去; ····································· 10分当24t <≤时,22358822S t t =-+-=,解得34733t t ==,, 综上得,当73t =或3t =时,2S 为OAB △的面积的516. ···································· 12分注:解答题用其它方法解答,请参照评分.3. 解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ ············· 2分解得150a b c =-⎧⎪=⎨⎪=⎩·········································· 3分故抛物线的函数关系式为25y x x =-+ ··········· 4分 (2)C 在抛物线上,2252,6m m ∴-+⨯=∴= ·5分 C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上 ∴6266k b k b '=+⎧⎨'-=+⎩解得3,12k b '=-=∴直线BC 的解析式为312y x =-+ ····························································· 6分设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= ························································· 7分 (3)存在P ,使得OCD ∽CPE ··································································· 8分设P (,)m n ,90ODC E ∠=∠=︒故2,6CE m EP n =-=-若要OCD ∽CPE ,则要OD DC CE EP =或OD DCEP CE=即6226m n =--或6262n m =-- 解得203m n =-或123n m =-又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m =-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)- ······························································ 10分 (只写出一个点的坐标记9分)其它解法参照此标准计分.4. 解:(1)设抛物线的解析式为:4)1(21+-=x a y ········································· 1分把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ········································· 3分 设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为(03), ································ 4分把(30)A ,,(03)B ,代入b kx y +=2中 解得:13k b =-=,所以32+-=x y ······································································ 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2 所以CD =4-2=2 ······································································ 8分13232CAB S =⨯⨯=△(平方单位) ·············································· 10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ()30<<x ,△P AB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ······················ 12分 由S △P AB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为315()24, ······························································ 14分5. .解:(1)设二次函数的解析式为2(0)y ax bx c a a b c =++≠,、、为常数,由抛物线的对称性知B 点坐标为(30),,依题意得:09303a b c a b c c ⎧-+=⎪++=⎨⎪=-⎩ ··········································· 1分 解得:332333a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪⎪=-⎪⎩ ······················································· 2分∴所求二次函数的解析式为2323333y x x =-- ··········· 3分 (2)P 点的横坐标为m ,P ∴点的纵坐标为2323333m m -- ······························ 4分 设直线BC 的解析式为(0)y kx b k k b =+≠,、是常数,依题意,得303k b b +=⎧⎪⎨=-⎪⎩xy BFO A CPx =1(第25题)333k b ⎧=⎪∴⎨⎪=-⎩故直线BC 的解析式为333y x =- ····································································· 5分 ∴点F 的坐标为333m m ⎛⎫- ⎪ ⎪⎝⎭,233(03)3PF m m m ∴=-+<< ········································································ 6分 (3)PBC △的面积12CPF BPF S S S PF BO =+=△△· =221333933323228m m m ⎛⎫⎛⎫⨯-+⨯=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭∴当32m =时,PBC △的最大面积为938 ····························································· 8分把32m =代入2323333y m m =--得534y =- ∴点P 的坐标为35324⎛⎫- ⎪ ⎪⎝⎭, ················································································· 10分6. (1)当0x =时,6y =,C ∴点坐标为(06)C ,当0y =时,60x +=,6x ∴=- A ∴点坐标为(60)A -, ···································· 2分(2)抛物线2(0)y ax bx a =+<经过(60)A -,,(00)O ,∴对称轴32b x a=-=-(6b a ∴= 26y a x a x ∴=+以(60)A -,代入得13a =-,2b =-)当3x =-时,代入6y x =+得363y =-+= B ∴点坐标为(33)-,2(3)3y a x ∴=++ 以(60)A -,代入得:20(63)3a =-++ 13a ∴=-∴函数解析式为2123y x x =-- ········································································ 4分(3)AB 与D 相切,理由如下:连结ADA O O C= 45BAO ∴=∠根据对称性质:45BAO DAO ==∠∠ 点(33)D --,90BAD ∴=∠AB ∴与D 相切 ··························································································· 5分 又336BD =--= BD ∴的长为6 ······························································· 6分 (4)存在这样的点M ,使得:2:3MOA AEO =∠∠ ··········································· 7分 点M 在抛物线上,过M 作MP x ⊥轴于F 设M 点横坐标为x ,则纵坐标为2123x x -- 1452AEO ABO ==∠∠而:2:3MOA AEO =∠∠ 245303M O A ∴=⨯=∠ ·········································· 8分 又3tan 303= 212333x x x --∴=解得:63x =-± ································· 9分 当63x =-+时,21(63)2(63)1233y =-⨯-+--+=-+1(63123)M ∴-+-+,当63x =--时,21(63)2(63)1233y =-⨯-----=--2(63123)M ∴----, ·············································································· 10分 (类似上述解答参照给分)7. .解:(1)令二次函数2y ax bx c =++,则164002a b c a b c c -+=⎧⎪++=⎨⎪=⎩··························································································· 1分 12322a b c ⎧=-⎪⎪⎪∴=-⎨⎪=⎪⎪⎩··································································································· 2分 ∴过A B C ,,三点的抛物线的解析式为213222y x x =--+ ·································· 4分。
2013年数学中考试题专题3——二次函数与圆
7、(2013•内江)如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.
(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.
.
=
x
=
>
∴MG=
∴y=﹣)﹣
(+
∵a=﹣
>
点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.
(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.
DF=x
)当=2
再证出△BOD∽△FHB,==
求出点
=
==
最后根据即可求出点∴DF=x
===2
得:,=
===
得:
A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
解析:(1)把点(b -2,2b 2
-5b -1)代入解析式,得
2b 2-5b -1=(b -2)2+b (b -2)-3b +3, ……………1′
解得b =2.
∴抛物线的解析式为y =x 2+2x -3. ……………2′
(2)由x 2+2x -3=0,得x =-3或x=1.
∴A (-3,0)、B (1,0)、C (0,-3).
抛物线的对称轴是直线x =-1,圆心M 在直线x =-1上. ……………3′
∴设M (-1,n ),作MG ⊥x 轴于G ,MH ⊥y 轴于H ,连接MC 、MB .
∴MH =1,BG =2. ……………4′
∵MB =MC ,∴BG 2+MG 2=MH 2+CH 2,
即4+n 2=1+(3+n )2,解得n=-1,∴点M (-1,-1) ……………5′
(3)如图,由M (-1,-1),得MG =MH .
∵MA =MD ,∴Rt △AMG ≌RtDMH ,∴∠1=∠2.
由旋转可知∠3=∠4. ∴△AME ≌△DMF .
若△DMF 为等腰三角形,则△AME 为等腰三角形. ……………6′
设E (x ,0),△AME 为等腰三角形,分三种情况:
①AE =AM =5,则x=5-3,∴E (5-3,0);
②∵M 在AB 的垂直平分线上,
∴MA =ME =MB ,∴E (1,0) ……………7′
③点E 在AM 的垂直平分线上,则AE =ME . AE =x +3,ME 2=MG 2+EG 2=1+(-1-x )2,∴(x +3)2=1+(-1-x )2,解得x =47-,∴E (4
7-,0).
∴所求点E 的坐标为(5-3,0),(1,0),(47-
,0) ……………8′
16、(2013•自贡压轴题)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.
(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA 面积的最大值;
(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
=,
,
,
y=x
x
BF•MF+)•OF+
(++
x+
m m
AF===3
OQ==
QE=OQ=
,即
B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.(1)求经过A、B、C三点的抛物线所对应的函数解析式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.
(,
=2
﹣,
(,
(,)代入得:
=,=,
=
二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣2
3
,
0),以0C为直径作半圆,圆心为D.
(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.
=,由此求得
,
解得,
∴BE=
=,
解得,
=,
=
+t
+t
(1)求证:不论k为何实数时,此方程总有两个实数根;
(2)设k<0,当二次函数y=x2+kx+k﹣的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式;
(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?
=4
|==
,BC=2
38、(2013•遵义压轴题)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),
且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;
(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
﹣
=2
(
y=﹣
x x+2=0
∴BC=2
;
∴D(
,
解得:
﹣
41、(2013年深圳市)如图6-1,过点A (0,4)的圆的圆心坐标为C (2,0),B 是第一象限圆弧上的一点,且BC ⊥AC ,抛物线c bx x y ++-=22
1经过C 、B 两点,与x 轴的另一交点为D 。
(1)点B 的坐标为( , ),抛物线的表达式为
(2)如图6-2,求证:BD//AC
(3)如图6-3,点Q 为线段BC 上一点,且AQ=5,直线AQ 交⊙C 于点P ,求AP 的长。
解析:。