2017_2018版高中数学第二章数列2.3.1等差数列的前n项和学业分层测评新人教A版必修5
- 格式:doc
- 大小:80.52 KB
- 文档页数:5
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
2017-2018版高中数学第二章数列2.5.1 等比数列的前n项和学业分层测评新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018版高中数学第二章数列2.5.1 等比数列的前n项和学业分层测评新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018版高中数学第二章数列2.5.1 等比数列的前n项和学业分层测评新人教A版必修5的全部内容。
2.5.1 等比数列的前n项和(建议用时:45分钟)[学业达标]一、选择题1.设{a n}是公比为q的等比数列,S n是它的前n项和,若{S n}是等差数列,则q等于( )A.1 B.0 C.1或0 D.-1【解析】因为S n-S n-1=a n,又{S n}是等差数列,所以a n为定值,即数列{a n}为常数列,所以q=错误!=1.【答案】A2.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.错误!B.-错误!C。
错误!D.-错误!【解析】设公比为q,∵S3=a2+10a1,a5=9,∴错误!∴错误!解得a1=错误!,故选C。
【答案】C3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A.190 B.191C.192 D.193【解析】设最下面一层灯的盏数为a1,则公比q=错误!,n=7,由错误!=381,解得a1=192。
【答案】C4.设数列1,(1+2),…,(1+2+22+…+2n-1),…的前n项和为S n,则S n的值为()A.2n B.2n-nC.2n+1-n D.2n+1-n-2【解析】法一:特殊值法,由原数列知S1=1,S2=4,在选项中,满足S1=1,S2=4的只有答案D。
新人教A 版高中数学选择性必修第二册第四章数列:课时分层作业(六) 等差数列前n 项和的性质(建议用时:40分钟)一、选择题1.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .1B [等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.]2.已知等差数列{a n }的前n 项和为S n ,若S 10=10,S 20=60,则S 40=( ) A .110 B .150 C .210D .280D [∵等差数列{a n }前n 项和为S n ,∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等差数列, 故(S 30-S 20)+S 10=2(S 20-S 10),∴S 30=150.又∵(S 20-S 10)+(S 40-S 30)=2(S 30-S 20),∴S 40=280.故选D.]3.在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017A[由题意知,数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,其公差为1,所以S 2 0182 018=S 11+(2 018-1)×1=-2 018+2 017=-1.所以S 2 018=-2 018.]4.两个等差数列{a n }和{b n },其前n 项和分别为S n ,T n ,且S n T n =7n +2n +3,则a 2+a 20b 7+b 15=( )A .49B .378C .7914D .14924D [因为等差数列{a n }和{b n },所以a 2+a 20b 7+b 15=2a 112b 11=a 11b 11,又S 21=21a 11,T 21=21b 11,故令n =21有S 21T 21=7×21+221+3=14924,即21a 1121b 11=14924,所以a 11b 11=14924,故选D.]5.11×3+12×4+13×5+14×6+…+1n (n +2)等于( ) A .1n (n +2)B .12⎝ ⎛⎭⎪⎫1-1n +2C .12⎝ ⎛⎭⎪⎫32-1n +1-1n +2D .12⎝ ⎛⎭⎪⎫1-1n +1 C [通项a n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴原式=12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2.] 二、填空题6.已知等差数列{a n }中,S n 为其前n 项和,已知S 3=9,a 4+a 5+a 6=7,则S 9-S 6=________.5 [∵S 3,S 6-S 3,S 9-S 6成等差数列,而S 3=9,S 6-S 3=a 4+a 5+a 6=7,∴S 9-S 6=5.]7.在数列{a n }中,a 1=12 019,a n +1=a n +1n (n +1)(n ∈N *),则a 2 019的值为________.1 [因为a n +1=a n +1n (n +1)(n ∈N *),所以a n +1-a n =1n (n +1)=1n -1n +1,a 2-a 1=1-12, a 3-a 2=12-13, …a 2 019-a 2 018=12 018-12 019,各式相加,可得a 2 019-a 1=1-12 019,a 2 019-12 019=1-12 019, 所以a 2 019=1,故答案为1.]8.数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________.820 [因为a n +1-a n =n +2,所以a 2-a 1=3, a 3-a 2=4,a 4-a 3=5,…,a n -a n -1=n +1(n ≥2),上面n -1个式子左右两边分别相加得a n -a 1=(n +4)(n -1)2,即a n =(n +1)(n +2)2, 所以a 39=40×412=820.] 三、解答题9.已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n =(2n +1)∶(3n -2),求a 9b 9的值.[解] 法一:a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57.法二:∵数列{a n },{b n }均为等差数列, ∴设S n =A 1n 2+B 1n ,T n =A 2n 2+B 2n . 又S n T n =2n +13n -2,∴令S n =tn (2n +1),T n =tn (3n -2),t ≠0,且t ∈R . ∴a n =S n -S n -1=tn (2n +1)-t (n -1)(2n -2+1) =tn (2n +1)-t (n -1)(2n -1) =t (4n -1)(n ≥2), b n =T n -T n -1=tn (3n -2)-t (n -1)(3n -5) =t (6n -5)(n ≥2).∴a n b n =t (4n -1)t (6n -5)=4n -16n -5(n ≥2), ∴a 9b 9=4×9-16×9-5=3549=57. 10.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . [解] (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 因为S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3. 所以数列{a n }的通项公式为a n =13-3n . (2)b n =113-3n10-3n=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n于是T n =b 1+b 2+…+b n=13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n1010-3n.11.(多选题)已知数列{a n }为等差数列,其前n 项和为S n ,若S n =S 13-n (n ∈N *且n <13),有以下结论,则正确的结论为( )A .S 13=0B .a 7=0C .{a n }为递增数列D .a 13=0AB [对B ,由题意,S n =S 13-n ,令n =7有S 7=S 6⇒S 7-S 6=0⇒a 7=0,故B 正确.对A ,S 13=13(a 1+a 13)2=13a 7=0.故A 正确.对C ,当a n =0时满足S n =S 13-n =0,故{a n }为递增数列不一定正确.故C 错误.对D ,由A ,B 项,可设当a n =7-n 时满足S n =S 13-n ,但a 13=-6.故D 错误. 故AB 正确.]12.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( )A .12B .14C .16D .18B [S n -S n -4=a n +a n -1+a n -2+a n -3=80, S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30, 由S n =n (a 1+a n )2=210,得n =14.]13.(一题两空)设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项的值是________,项数是________.11 7 [设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数为2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.]14.一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d 为________.5 [设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27, 解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.]15.设S n 为等差数列{a n }的前n 项和,且a 2=15,S 5=65.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n =S n -10,求数列{|b n |}的前n 项和R n .[解](1)设等差数列{a n }的公差为d ,则⎩⎨⎧a 2=a 1+d =15,S 5=5a 1+5×42d =65,解得⎩⎪⎨⎪⎧a 1=17,d =-2, ∴a n =a 1+(n -1)d =17-2(n -1)=-2n +19.(2)由(1)得S n =n (a 1+a n )2=-n 2+18n ,∴T n =-n 2+18n -10. 当n =1时,b 1=T 1=7;当n ≥2且n ∈N *时,b n =T n -T n -1=-2n +19. 经验证b 1≠17,∴b n =⎩⎪⎨⎪⎧7,n =1,-2n +19,n ≥2.当1≤n ≤9时,b n >0;当n ≥10时,b n <0.∴当1≤n ≤9时,R n =|b 1|+|b 2|+…+|b n |=b 1+b 2+…+b n =-n 2+18n -10; 当n ≥10时,R n =|b 1|+|b 2|+…+|b n |=b 1+b 2+…+b 9-(b 10+b 11+…+b n )=2(b 1+b 2+…+b 9)-(b 1+b 2+…+b 9+b 10+b 11+…+b n )=-T n +2T 9=n 2-18n +152,综上所述:R n =⎩⎪⎨⎪⎧-n 2+18n -10,1≤n ≤9,n 2-18n +152,n ≥10.。
2.3.2 等差数列前n 项和的综合应用(建议用时:45分钟)[学业达标]一、选择题1.等差数列前n 项和为S n ,若a 3=4,S 3=9,则S 5-a 5=( ) A .14 B .19 C .28 D .60【解析】 在等差数列{a n }中,a 3=4,S 3=3a 2=9,∴a 2=3,S 5-a 5=a 1+a 2+a 3+a 4=2(a 2+a 3)=2×7=14.【答案】 A2.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值为确定的常数,则下列各数中也是常数的是( )A .S 7B .S 8C .S 13D .S 15【解析】 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3(a 1+6d )=3a 7=3×a 1+a 132=313×a 1+a 132=313S 13. 于是可知S 13是常数. 【答案】 C3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9【解析】 因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,所以⎩⎪⎨⎪⎧22-3k ≥0,22-k +,所以193≤k ≤223.因为k ∈N *,所以k =7. 故满足条件的n 的值为7. 【答案】 B4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27【解析】 ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9-S 6=2S 6-3S 3=2×36-3×9=45.【答案】 B5.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1nB.n +1n C.n -1nD.n +12n【解析】 ∵S奇=a 1+a 3+…+a 2n +1=n +a 1+a 2n +12,S偶=a 2+a 4+…+a 2n =n a 2+a 2n2.又∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n.故选B. 【答案】 B 二、填空题6.已知等差数列{a n }中,S n 为其前n 项和,已知S 3=9,a 4+a 5+a 6=7,则S 9-S 6=________.【解析】 ∵S 3,S 6-S 3,S 9-S 6成等差数列,而S 3=9,S 6-S 3=a 4+a 5+a 6=7,∴S 9-S 6=5.【答案】 57.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________.【解析】 ∵a n =⎩⎪⎨⎪⎧S 1,n =,S n -S n -1,n ,∴a n =2n -10.由5<2k -10<8, 得7.5<k <9,∴k =8. 【答案】 88.首项为正数的等差数列的前n 项和为S n ,且S 3=S 8,当n =________时,S n 取到最大值.【解析】 ∵S 3=S 8,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴a 6=0,∵a 1>0, ∴a 1>a 2>a 3>a 4>a 5>a 6=0,a 7<0. 故当n =5或6时,S n 最大. 【答案】 5或6 三、解答题9.已知等差数列{a n }中,a 1=9,a 4+a 7=0.(1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值? 【解】 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)·d =11-2n . (2)法一:a 1=9,d =-2,S n =9n +n n -12·(-2)=-n 2+10n=-(n -5)2+25,∴当n =5时,S n 取得最大值.法二:由(1)知a 1=9,d =-2<0,∴{a n }是递减数列. 令a n ≥0,则11-2n ≥0,解得n ≤112.∵n ∈N *,∴n ≤5时,a n >0,n ≥6时,a n <0. ∴当n =5时,S n 取得最大值.10.若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n .【解】 ∵a 1=13,d =-4,∴a n =17-4n .当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -2d =13n +n n -2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n =2×13+1×42-(15n -2n 2)=2n 2-15n +56.∴T n =⎩⎪⎨⎪⎧15n -2n 2,n ,2n 2-15n +56,n[能力提升]1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18【解析】 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30, 由S n =n a 1+a n2=210,得n =14.【答案】 B2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6【解析】 因a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以公差d =a m +1-a m =1, 由S m =m a 1+a m2=0,得a 1=-2,由a m =-2+(m -1)·1=2,解得m =5,故选C.【答案】 C3.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.【解析】 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.【答案】 11 74.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2. (1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项; (3){S n }有多少项大于零? 【解】 (1)S n =na 1+n n -2d =12n +n n -2×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-⎝⎛⎭⎪⎫n -1322+1694,n ∈N *,∴当n =6或7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减. {S n }有最大值,最大项是S 6,S 7,S 6=S 7=42. (3)由图象得{S n }中有12项大于零.。
等比数列性质(建议用时:45分钟)[学业达标]一、选择题1.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A.递增数列B.递减数列C.常数数列D.摆动数列【解析】 因为等比数列{a n }的公比为q =-14,a 1=2,故a 2<0,a 3>0,…所以数列{a n }是摆动数列.【答案】 D2.对任意等比数列{a n },下列说法一定正确的是( ) A.a 1,a 3,a 9成等比数列 B.a 2,a 3,a 6成等比数列 C.a 2,a 4,a 8成等比数列 D.a 3,a 6,a 9成等比数列【解析】 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.【答案】 D3.已知数列{a n }满足log 3a n +1=log 3a n +1(a ∈N +),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A.-5B.-15C.5D.15【解析】 ∵log 3a n +1=log 3a n +1,∴a n +1=3a n , ∴数列{a n }是以3为公比的等比数列, ∴a 2+a 4+a 6=a 2(1+q 2+q 4)=9,∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=35, ∴log 1335=-5.【答案】 A4.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,则成等比数列,则此未知数是( )A.3B.27C.3或27D.15或27【解析】 设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,a -2=3b ,解得⎩⎪⎨⎪⎧a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 【答案】 C5.已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n(n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A.n (2n -1)B.(n +1)2C.n 2D.(n -1)2【解析】 因为{a n }为等比数列,所以a 5·a 2n -5=a 2n . 由a 5·a 2n -5=22n(n ≥3),得a 2n =22n.又因为a n >0,所以a n =2n,所以log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2,故选C.【答案】 C 二、填空题6.在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. 【解析】 ∵a 1a 2a 3…a 10=(a 3a 8)5=265, ∴a 3a 8=213.∵a 3=16=24,∴a 8=29=512. 又∵a 8=a 3q 5,∴q =2,∴a 7=a 8q =5122=256.【答案】 2567.在右列表格中,每格填上一个数字后,使每一横行成等差数列,每纵列成等比数列,则x +y +z 的值为________.【解析】 ∵x 2=24,∴x =1.∵第一行中的数成等差数列,首项为2,公差为1,故后两格中数字分别为5,6. 同理,第二行后两格中数字分别为2.5,3.∴y =5·⎝ ⎛⎭⎪⎫123,z =6·⎝ ⎛⎭⎪⎫124. ∴x +y +z =1+5·⎝ ⎛⎭⎪⎫123+6·⎝ ⎛⎭⎪⎫124=3216=2.【答案】 28.某单位某年十二月份的产值是同年一月份产值的m 倍,那么该单位此年的月平均增长率是________.【解析】 由题意可知,这一年中的每一个月的产值成等比数列,求月平均增长率只需利用a 12a 1=m ,所以月平均增长率为11m -1. 【答案】11m -1三、解答题9.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,求p +q 的值.【解】 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,又a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列.∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,①或⎩⎪⎨⎪⎧2a =b -2,ab =4,②解①得⎩⎪⎨⎪⎧a =4,b =1,解②得⎩⎪⎨⎪⎧a =1,b =4,∴p =5,q =4,∴p +q =9.10.在等比数列{a n }中,a 4=23,a 3+a 5=209.(1)求数列{a n }的通项公式;(2)若数列{a n }的公比大于1,且b n =log 3a n2,求证:数列{b n }为等差数列,并求其前n项和S n .【导学号:18082098】【解】 (1)设等比数列{a n }的公比为q ,则q ≠0,a 4q +a 4q =209.因为a 4=23,所以1q +q =103,解得q =13或q =3.当q =13时,a 1=18,所以a n =18×⎝ ⎛⎭⎪⎫13n-1=2×33-n;当q =3时,a 1=281,所以a n =281×3n -1=2×3n -5.(2)证明:由(1)及数列{a n }的公比大于1, 得q =3,a n =2×3n -5,所以b n =log 3a n2=log 33n -5=n -5,所以b n -b n -1=1(常数). 又因为b 1=log 3a 12=-4,所以数列{b n }是首项为-4,公差为1的等差数列. 所以S n =n b 1+b n2=12n 2-92n . [能力提升]1.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( ) A.±2 B.±4 C.2 D.4 【解析】 ∵T 13=4T 9. ∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9. ∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15, ∴(a 8·a 15)2=4.∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0.∴a 8a 15=2. 【答案】 C2.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )A.16B.14C.4D.49【解析】 ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0,∴b 7=a 7=4. ∴b 6b 8=b 27=16. 【答案】 A3.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.【解析】 由题意知,数列{b n }有连续四项在集合{-53,-23,19,37,82}中,说明{a n }有连续四项在集合{-54,-24,18,36,81}中,由于{a n }中连续四项至少有一项为负,∴q <0.又∵|q |>1,∴{a n }的连续四项为-24,36,-54,81. ∴q =36-24=-32,∴6q =-9. 【答案】 -94.在等差数列{a n }中,公差 d ≠0,a 2是a 1与a 4的等比中项.已知数列a 1,a 3,ak 1,ak 2,…,ak n ,…成等比数列,求数列{k n }的通项k n .【解】 依题设得a n =a 1+(n -1)d ,a 22=a 1a 4, ∴(a 1+d )2=a 1(a 1+3d ),整理得d 2=a 1d , ∵d ≠0,∴d =a 1,得a n =nd .∴由已知得d,3d ,k 1d ,k 2d ,…,k n d ,…是等比数列.又d ≠0,∴数列1,3,k 1,k 2,…,k n ,…也是等比数列,首项为1,公比为q =31=3,由此得k 1=9.等比数列{k n }的首项k 1=9,公比q =3, ∴k n =9×q n -1=3n +1(n =1,2,3,…),即得到数列{k n }的通项为k n =3n +1.。
数列的前n 项和与等差数列的前n 项和A 级 基础巩固一、选择题1.在等差数列{a n }中,已知a 4+a 5=12,则S 8等于()A .12B .24C .36D .48解析:由于a 4+a 5=12,故a 1+a 8=12,又S 8=8(a 1+a 8)2,所以S 8=8×122=48. 答案:D2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 为()A .1B .53C .2D .3 解析:因为S 3=(a 1+a 3)×32=6,而a 3=4,所以a 1=0,所以d =a 3-a 12=2. 答案:C3.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为()A .9B .10C .19D .29解析:钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.所以钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.所以n =19时,剩余钢管根数最少,为10根.答案:B4.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =()A .12B .14C .16D .18解析:因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案:B5.(多选)已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =3n +39n +3,则使得a n b n 为整数的正整数n 的值为()A .2B .3C .4D .14解析:由题意得S 2n -1T 2n -1=(2n -1)(a 1+a 2n -1)2(2n -1)(b 1+b 2n -1)2=(2n -1)a n (2n -1)b n =a n b n ,则a n b n =S 2n -1T 2n -1=3(2n -1)+39(2n -1)+3=3n +18n +1=3+15n +1, 由于a n b n为整数,则n +1为15的正约数,则n +1的可能取值有3、5、15,因此,正整数n 的可能取值有2、4、14.答案:ACD二、填空题6.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 解析:设等差数列{a n }公差为d ,由题意可得: ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.答案:207.设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.解析:设数列{a n }的公差为d ,S 3=6,S 4=12,所以⎩⎪⎨⎪⎧3a 1+3×22d =6,4a 1+4×32d =12, 解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+6×52d =30. 答案:308.设等差数列{a n }的前n 项和为S n ,若S 3=2a 3,S 5=15,则a 2 019=________.解析:在等差数列{a n }中,由S 3=2a 3知3a 2=2a 3,而S 5=15,则a 3=3,于是a 2=2,从而其公差为1,首项为1,因此a n =n ,故a 2 019=2 019. 答案:2 019三、解答题9.等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .解:(1)设数列{a n }的首项为a 1,公差为d .则⎩⎪⎨⎪⎧a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2. 所以a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242,得方程242=12n +n (n -1)2·2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式为b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,又b 1=S 1=2,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.B 级 能力提升1.(多选)已知数列{a n }的前n 项和S n (S n ≠0),且满足a n +4S n -1S n =0(n ≥2),a 1=14,则下列说法错误的是()A .数列{a n }的前n 项和为S n =4nB .数列{a n }的通项公式为a n =14n (n +1)C .数列{a n }为递增数列D .数列⎩⎨⎧⎭⎬⎫1S n 为递增数列 解析:数列{a n }的前n 项和为S n (S n ≠0),且满足a n +4S n -1S n =0(n ≥2),a 1=14, 所以S n -S n -1+4S n -1S n =0,化为:1S n -1S n -1=4, 所以数列⎩⎨⎧⎭⎬⎫1S n 是等差数列,公差为4, 所以1S n =4+4(n -1)=4n ,可得S n =14n, 所以n ≥2时,a n =S n -S n -1=14n -14(n -1)=-14n (n -1), 所以a n=⎩⎪⎨⎪⎧14(n =1),-14n (n -1)(n ≥2), 对选项逐一进行分析可得,A 、B 、C 三个选项错误,D 选项正确. 答案:ABC2.(2019·全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和,若a 3=5,a 7=13,则S 10=________. 答案:1003.设数列{a n }的前n 项和为S n ,点⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)均在函数y =3x -2的图象上. (1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,求数列{b n }的前n 项和T n .解:(1)依题意,得S n n=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=1也适合.即a n =6n -5.(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =b 1+b 2+…+b n =12[⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1]=12⎝ ⎛⎭⎪⎫1-16n +1=3n 6n +1.。
课时跟踪检测(八) 等差数列的前n 项和层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.若等差数列{a n }的前5项的和S 5=25,且a 2=3,则a 7等于( ) A .12 B .13 C .14D .15解析:选B ∵S 5=5a 3=25,∴a 3=5. ∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.故选B.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27 解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m+3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是______,项数是______.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15. (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值. 解:(1)设{a n }的首项、公差分别为a 1,d . 则⎩⎪⎨⎪⎧a 1+9d =18,a 1+2d =-3,解得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n ) =32⎝ ⎛⎭⎪⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k2,解得k =2 016.故选C.3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N +),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B 因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,所以⎩⎪⎨⎪⎧22-3k ≥0,22-k +,所以193≤k ≤223.因为k ∈N +,所以k =7. 故满足条件的n 的值为7.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选 D ∵a nb n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12n -b 1+b 2n -12n -=A 2n -1B 2n -1=n -+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则满足S n <0的n 的最大值为________. 解析:因为a 10<0,a 11>0,且a 11>|a 10|, 所以a 11>-a 10,a 1+a 20=a 10+a 11>0, 所以S 20=a 1+a 202>0.又因为a 10+a 10<0, 所以S 19=a 10+a 102=19a 10<0,故满足S n <0的n 的最大值为19. 答案:197.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式; (2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值.解:(1)∵S 4=28,∴a 1+a 42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0, ∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3.(2)由(1),知S n =2n 2-n ,∴b n =S nn +c =2n 2-nn +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列, ∴b 1+b 3=2b 2,即2×62+c =11+c +153+c ,解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22. (1)数列{a n }前多少项和最大? (2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53. 令a n >0,得n <533, ∴当n ≤17,n ∈N +时,a n >0; 当n ≥18,n ∈N +时,a n <0, ∴{a n }的前17项和最大. (2)当n ≤17,n ∈N +时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -2d =-32n 2+1032n . 当n ≥18,n ∈N +时, |a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n ) =2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎪⎨⎪⎧-32n 2+1032n ,n ≤17,n ∈N +,32n 2-1032n +884,n ≥18,n ∈N +.。
[课时作业]页[A 组 基础巩固]1.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-1解析:由题意,得⎩⎪⎨⎪⎧ a n =11,S n =35,即⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1. ★答案★:D2.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .2解析:由S 2=4,S 4=20,得2a 1+d =4,4a 1+6d =20,解得d =3.★答案★:C3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. ★答案★:C4.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15解析:由S 5=5a 3=25,∴a 3=5.∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.★答案★:B5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6 解析:当n =1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n )-[(n -1) 2-9(n -1)]=2n -10.综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k =8.★答案★:B6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. ★答案★:277.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n =________.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d =10,a 1=-80. ∴S n =-80n +n (n -1)2×10=0, ∴-80n +5n (n -1)=0,n =17.★答案★:178.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13(a 1+a 13)2=13×8=104. ★答案★:1049.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .解析:(1)由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4. ∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510.∴n =20.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.解析:(1)设{a n }的首项,公差分别为a 1,d .则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32⎝⎛⎭⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17B .S 15C .S 13D .S 7 解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.★答案★:C2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d =a m +1-a m =1,由S m =(a 1+a m )m 2=0, 知a 1=-a m =-2,a m =-2+(m -1)=2,解得m =5.★答案★:C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________. 解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. ★答案★:14.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n >6),则数列的项数n =________,a 9+a 10=________.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324,∴n =18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36. ★答案★:18 365.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 解析:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎡ -32(n -1)2+ ⎦⎤2052(n -1)=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n =3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n , 当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502, 所以T n=⎩⎨⎧ -32n 2+2052n (n ≤34),32n 2-2052n +3 502(n ≥35).6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解析:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n ·(n -1)2×12=14n 2-94n .。
2.3.1 等差数列的前n 项和
(建议用时:45分钟)
[学业达标]
一、选择题
1.在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20
D .25
【解析】 S 5=5× a 1+a 5 2=5× a 2+a 4 2=5×6
2=15.
【答案】 B
2.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9
S 5
等于( )
A .1
B .-1
C .2
D.12
【解析】 S 9S 5=9
2 a 1+a 9 52 a 1+a 5 =9×2a 5
5×2a 3
=
9a 55a 3=95×5
9
=1. 【答案】 A
3.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n 等于( ) A .9 B .10 C .11
D .12
【解析】 ∵a 3+a 5=2a 4=14,∴a 4=7.
d =a 4-a 13
=2,
S n =na 1+n n -1 2
·d
=n +
n n -1
2
×2=n 2
=100,
∴n =10. 【答案】 B
4.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.17
2
B.192
C .10
D .12
【解析】 ∵公差为1,
∴S 8=8a 1+8× 8-1
2×1=8a 1+28,S 4=4a 1+6.
∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=1
2,
∴a 10=a 1+9d =12+9=19
2.故选B.
【答案】 B
5.若数列{a n }的通项公式是a n =(-1)n
(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12
D .-15
【解析】 a 1+a 2+…+a 10
=-1+4-7+10+…+(-1)10
·(3×10-2)
=(-1+4)+(-7+10)+…+[(-1)9
·(3×9-2)+(-1)10
·(3×10-2)] =3×5=15. 【答案】 A 二、填空题
6.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =________.
【解析】 a 4+a 6=a 1+3d +a 1+5d =6,①
S 5=5a 1+1
2
×5×(5-1)d =10,②
由①②联立解得a 1=1,d =1
2.
【答案】 1
2
7.已知数列{a n }中,a 1=1,a n =a n -1+1
2(n ≥2),则数列{a n }的前9项和等于______.
【解析】 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为1
2的等差数
列,故S 9=9a 1+9× 9-1 2×1
2
=9+18=27.
【答案】 27 8.若数列⎩⎨
⎧
⎭⎬⎫1n n +1 的前n 项和为S n ,且S n =19
20,则n =________.
【解析】 S n =11×2+12×3+…+1n n +1 =1-12+12-13+13-14+…+1n -1n +1
=1-1n +1=n n +1
. 由已知得
n
n +1=1920
, 解得n =19. 【答案】 19 三、解答题
9.等差数列{a n }中,a 10=30,a 20=50. (1)求数列的通项公式; (2)若S n =242,求n .
【解】 (1)设数列{a n }的首项为a 1,公差为d .
则⎩
⎪⎨
⎪⎧
a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩
⎪⎨
⎪⎧
a 1=12,
d =2,
∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n . (2)由S n =na 1+
n n -1
2
d 以及a 1=12,d =2,S n =242,
得方程242=12n +
n n -1
2
×2,即n 2
+11n -242=0,解得n =11或n =-22(舍去).故
n =11.
10.在我国古代,9是数学之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环形的石板铺成(如图232所示),最高一层的中心是一块天心石,围绕它的第1圈有9块石板,从第2圈开始,每1圈比前1圈多9块,共有9圈,则:
图232
(1)第9圈共有多少块石板? (2)前9圈一共有多少块石板?
【解】 (1)设从第1圈到第9圈石板数所成数列为{a n },由题意可知{a n }是等差数列,其中a 1=9,d =9,n =9.
由等差数列的通项公式,得第9圈石板块数为:
a 9=a 1+(9-1)·d =9+(9-1)×9=81(块).
即第9圈共有81块石板.
(2)由等差数列前n 项和公式,得前9圈石板总数为:
S 9=9a 1+
9× 9-1 2d =9×9+9×8
2
×9=405(块). 即前9圈一共有405块石板.
[能力提升]
1.如图233所示将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *
)个点,相应的图案中总的点数记为a n ,则a 2+a 3+a 4+…+a n 等于( )
图233
A.3n
2
2 B.n n +1
2 C.
3n n -1
2
D.
n n -1
2
【解析】 由图案的点数可知a 2=3,a 3=6,a 4=9,a 5=12,所以a n =3n -3,n ≥2, 所以a 2+a 3+a 4+…+a n = n -1 3+3n -3
2
=
3n n -1
2
. 【答案】 C
2.已知命题:“在等差数列{a n }中,若4a 2+a 10+a ( )=24,则S 11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )
A .15
B .24
C .18
D .28
【解析】 设括号内的数为n ,则4a 2+a 10+a (n )=24, ∴6a 1+(n +12)d =24.
又S 11=11a 1+55d =11(a 1+5d )为定值, 所以a 1+5d 为定值. 所以
n +12
6
=5,n =18.
【答案】 C
3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2
m =0,S 2m -1=38,则m =________.
【解析】 因为{a n }是等差数列, 所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2
m =0,得2a m
-a 2
m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即 2m -1 a 1+a 2m -1 2=38,
即(2m -1)×2=38,解得m =10.
【答案】 10
4.S n 为数列{a n }的前n 项和.已知a n >0,a 2
n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =
1
a n a n +1
,求数列{b n }的前n 项和.
【解】 (1)由a 2
n +2a n =4S n +3,① 可知a 2
n +1+2a n +1=4S n +1+3.②
②-①,得a 2
n +1-a 2
n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2
n +1-a 2
n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.
又a 2
1+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.
所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知
b n =1a n a n +1=1
2n +1 2n +3
=12⎝ ⎛⎭
⎪⎫12n +1-12n +3.
设数列{b n }的前n 项和为T n ,则
T n =b 1+b 2+…+b n =
12⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫
15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =
n
3 2n +3
.。