第5章 气体动理论
- 格式:ppt
- 大小:1.35 MB
- 文档页数:58
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
第五章 气体动理论练 习 一一. 选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为1p 和2p ,则两者的大小关系是( C )(A ) 21p p >; (B ) 21p p <; (C ) 21p p =; (D ) 不确定的。
2. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m. 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为( D )(A ) 2x v =m kT 3; (B ) 2x v = (1/3)m kT 3 ; (C ) 2x v = 3kT /m ; (D ) 2x v = kT/m 。
3. 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,0N 为阿伏伽德罗常数,下列各式中哪一式表示气体分子的平均平动动能( A )(A )pV M m ⋅23; (B ) pV M Mmol⋅23; (C ) npV 23; (D ) 023N pV M M mol ⋅。
4. 关于温度的意义,有下列几种说法,错误的是( D ) (A ) 气体的温度是分子平动动能的量度;(B ) 气体的温度是大量气体分子热运动的集体表现,具有统计意义; (C ) 温度的高低反映物质内部分子运动剧烈程度的不同; (D ) 从微观上看,气体的温度表示每个气体分子的冷热程度。
二.填空题1. 在容积为10-2m 3的容器中,装有质量100g 的气体,若气体分子的方均根速率为200m/s ,则气体的压强为ap 51034⨯。
2. 如图1所示,两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为30K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = 210k ,2O T = 240k 。
( N 2的摩尔质量为28×10-3kg/mol,O 2的摩尔质量为32×10-3kg/mol)3.分子物理学是研究大量微观粒子的集体运动的统计表现 的学科, 它应用的方法是 统计学 方法。
第5章气体动理论一、选择题1.两种不同的理想气体,若它们的最概然速率相等,则它们的()。
A.平均速率相等,方均根速率相等B.平均速率相等,方均根速率不相等C.平均速率不相等,方均根速率相等D.平均速率不相等,方均根速率不相等【答案】A【解析】因为平均速率、方均根速率与最概然速率一样,都与成正比,成反比。
2.范德瓦耳斯方程中()。
A.实际测得的压强是,体积是VB.实际测得的压强是p,体积是VC.实际测得的压强是p,V是1mol范氏气体的体积D.实际测得的压强是;1mol范氏气体的体积是(V-b)【答案】C3.1mol单原子分子理想气体从状态A变为状态B,如果不知是什么气体,变化过程也不知道,但A、B两态的压强、体积和温度都知道,则可以求出()。
A.气体所做的功B.气体内能的变化C.气体传给外界的热量D.气体的质量【答案】B【解析】单原子分子的自由度i=3,摩尔数ν=1,内能是状态量,只取决于状态(温度);内能的变化只与始末状态有关,与是什么气体,经历什么变化过程无关。
4.按照经典的能均分定理,由刚性双原子分子组成的理想气体的定体摩尔热容量是理想气体常数R的()。
A.1倍B.1.5倍C.2倍D.2.5倍【答案】D【解析】刚性双原子分子的自由度是i=5,其定体摩尔热容量。
5.质量为m,摩尔质量为M的理想气体,经历了一个等压过程,温度增量为ΔT,则内能增量为()。
A.B.C.D.【答案】B二、填空题1.在平衡态下,已知理想气体分子的麦克斯韦速率分布函数为f(υ)、分子质量为m、最概然速率为υp,试说明下列各式的物理意义:(1)表示______;(2)表示______。
【答案】(1)分布在0~∞速率区间的分子数占总分子数的百分比;(2)分子平动动能的平均值。
2.某种刚性双原子分子理想气体,处于温度为T的平衡态,则其分子的平均平动动能为______,平均转动动能为______,平均总能量为______,lmol气体的内能为______。