1.如图,圆 O 的直径 AB=6,C 为圆周上一点,BC=3,过点 C 作圆的切线
l,过 A 作 l 的垂线 AD,垂足为 D,则线段 CD 的长为
.
解析:∵直线 l 是圆 O 的切线, ∴∠ACD=∠ABC, ∠BCE=∠BAC. 又 AB 是直径,∴AC⊥BC. ∵BC=3,AB=6,
∴∠ABC=60°.∴AC=3 3.
证明:连接 DF,如图所示,
∵AD 是∠BAC 的平分线,∴∠BAD=∠DAC. ∵∠EFD=∠BAD,∴∠EFD=∠DAC. ∵BC 切☉O 于 D,∴∠FDC=∠DAC. ∴∠EFD=∠FDC.∴EF∥BC. 当已知条件中出现圆的切线时,借助于弦切角定理,常用角的关系 证明两条直线平行:(1)内错角相等,两条直线平行;(2)同位角相等,两条 直线平行;(3)同旁内角互补,两条直线平行等.证题时可以根据图形与已 知合理地选择.
☉O,AD⊥AC,∠C=32°,∠B=110°,则∠BAD=
.
错解:∵AD⊥AC, ∴∠BAD 是弦切角. ∴∠BAD=∠C.
又∠C=32°,∴∠BAD=32°.
错因分析:错解中,误认为∠BAD 是弦切角,其实不然,虽然 AD⊥AC,但 AD 不是切线.
正解:∵∠C+∠B+∠BAC=180°, ∴∠BAC=180°-∠C-∠B=38°.
∴∠ACE=∠ABC.
∴∠ACE=∠BCD.
(2)∵∠ECB=∠CDB,∠EBC=∠BCD, ∴△BDC∽△ECB.∴BBCE = CBDC, 即 BC2=BE×CD.
5.如图,AB 是半圆 O 的直径,C 是圆周上一点(异于点 A,B),过点 C 作 圆 O 的切线 l,过点 A 作直线 l 的垂线 AD,垂足为点 D.AD 交半圆于 点 E.求证:CB=CE.