计算机图形学发展
- 格式:doc
- 大小:39.00 KB
- 文档页数:6
计算机图形学技术的发展趋势一、引言计算机图形学作为一门跨学科的领域,涉及计算机科学、数学、物理学和艺术等多个方面。
它的发展和应用对于计算机科学和现代工业文化的发展具有重要意义。
本文将从三个方面分析计算机图形学技术的发展趋势:硬件技术、软件技术和应用领域。
二、硬件技术的发展趋势随着科技的不断进步,计算机的硬件技术也在不断革新。
从20世纪60年代的数码计算机到20世纪90年代的图形工作站,再到如今的高性能计算机和云计算技术,计算机的硬件性能越来越强大。
在这个背景下,计算机图形学技术不断向着高保真度、高可靠性和高实时性的方向发展。
1.显卡技术的进步随着芯片制造技术和计算硬件的不断革新和发展,现代显卡的性能大幅度提升,显存容量也越来越大。
同时,极客们正在开发新的GPU加速技术,实现将计算机图形学技术从固体终端设备、如台式机和笔记本电脑,转移到服务器和移动平台设备,如手机、平板电脑和嵌入式设备上。
这一趋势为图形技术的高保真度和实时性提供了极其可靠的硬件支持。
2.多核处理器的普及多核处理器的出现极大地影响了计算机硬件技术的发展。
多核架构的发展使得计算机拥有了更高效的并发计算能力。
计算机图形学技术从单核时代向多核时代的转移,充分利用并行计算能力,充分利用了现代计算机硬件架构的特性,大幅度提高图形计算的性能和效率。
三、软件技术的发展趋势计算机图形学的软件技术属于多学科交叉的领域,除了计算机科学之外,也涉及到许多其他的学科。
图形学领域有许多不同的软件工具,例如OpenGL、Unity、Maya、Adobe等。
这些工具的发展给用户提供了更多的选择和更高的水平,使得计算机图形学技术有了更加广泛的应用。
1.虚拟现实与增强现实领域的发展虚拟现实和增强现实是计算机图形学技术应用领域之一,有望成为未来应用的主流。
虚拟现实技术和应用正在展现出惊人的发展速度,从游戏、数字娱乐到工业制造、医学和训练等领域都有广泛的应用前景。
增强现实技术则将计算机图形学技术应用于更多现实场景下,能够在用户的视觉感知上提供更为丰富的信息。
计算机科学中的图形学和虚拟现实技术图形学和虚拟现实技术是现代计算机科学中非常重要的学科,它们的发展使得计算机技术的应用范围不断扩大,为了更好的展示这两个学科的发展历程和应用场景,本文将分为四个部分讨论。
一、图形学的发展历程图形学是研究计算机图形处理技术的学科,其发展历程可以分为三个阶段。
1. 1960年代至1980年代早期,主要是关注于二维图形的处理和显示,如线性代数、几何学、扫描转换、裁剪等。
2. 1980年代至1990年代,主要是关注于三维图形的处理和显示,如照明模型、渲染技术、纹理映射和三维几何建模等。
3. 1990年代至今,主要是关注于实时图形处理技术,如游戏图形引擎、虚拟现实技术和视频处理技术等。
二、虚拟现实技术的应用场景虚拟现实技术是一种基于计算机图形学实现的技术,它可以构建虚拟的三维环境,让用户在其中进行交互,它的应用场景非常广泛。
1. 游戏娱乐:虚拟现实技术在游戏娱乐行业中的应用非常广泛,它可以为用户提供身临其境的游戏体验。
2. 医疗教育:虚拟现实技术可以用于医疗教育服务,如手术模拟、病例研究和医学学习等。
3. 建筑设计:虚拟现实技术可以用于建筑设计与模拟,可以在虚拟环境中构建建筑模型,进行设计和演示。
4. 汽车航空:虚拟现实技术可以用于汽车和航空领域,例如设计车身外形、模拟驾驶等。
三、图形学在计算机游戏中的应用计算机游戏是图形学应用最广泛的领域之一,图形学技术在游戏开发中扮演着极为重要的角色。
下面是图形学在计算机游戏中的具体应用。
1. 游戏引擎:游戏引擎是指游戏开发者使用的软件工具,旨在简化游戏开发流程。
游戏引擎中包含着大量的图形学代码,如渲染引擎、物理模拟引擎、动画引擎、碰撞检测引擎等。
2. 渲染技术:渲染可以将三维模型转换为二维图形,然后将图形显示在屏幕上。
计算机游戏中采用的渲染技术包括光栅化、光线追踪、镜面反射和阴影生成等。
3. 动画技术:动画技术可以让游戏中的角色、物品进行動態操作。
计算机图形学发展与应用计算机图形学是计算机科学中的重要学科, 是通过计算机技术来生成、处理、表示和交互数字图像或动画的学科。
在现代社会的各个领域, 计算机图形学都起着不可替代的作用, 具有广泛的应用前景。
本文将对计算机图形学的发展和应用做一个概述, 以期给读者更深入的了解和认识。
一、计算机图形学的发展计算机图形学的发展可以追溯到20世纪50年代。
当时, 计算机已经开始出现, 并且学者们开始使用计算机来解决一些图形学问题。
到了1960年代末, 计算机图形学得以发展成为一个独立的学科, 并且开始应用于生产和娱乐行业。
70年代, 计算机图形学的应用范围进一步扩大, 开始用于卡通动画、影视特效等。
同时, 由于计算机技术的快速发展, 图形学硬件设备也随之进步, 如色彩显示器、图形加速卡等, 为图形学应用提供了更便捷和高效的工具。
80年代初, 计算机图形学的一系列成果开始被广泛应用于诸如汽车、飞机、船舶等工业制造中。
此外, 在建筑设计、室内设计、产品设计、CAD等领域中也得到广泛应用。
到了90年代, 计算机图形学的应用进一步扩大, 如3D电影、虚拟现实、游戏、数字艺术等领域中。
同时, 计算机图形学也在医学、航空航天、地质、气象等领域中起到了重要作用。
二、计算机图形学的应用1.工业制造领域计算机图形学在工业制造领域中的应用包括CAD.CAM、CAE等。
利用计算机辅助设计软件, 可以快速、准确地完成工业产品的设计、制造、测试等整个过程, 大大提高了生产效率和产品质量。
2.建筑设计领域计算机图形学在建筑设计领域中的应用包括CAD.BIM等。
利用计算机辅助设计软件, 可以生成清晰、准确的平面图、立面图、立体图等, 为建筑设计师、施工人员和资金方提供了更好的决策依据。
3.文化创意领域计算机图形学在文化创意领域中的应用包括3D电影、虚拟现实、游戏、数字艺术等。
它们给人们带来更真实、更丰富的视觉体验, 同时也对文化创意产业的发展起到了重要推动作用。
计算机图形学的应用与未来发展趋势随着计算机技术的飞速发展,计算机图形学逐渐在各个领域中得到了广泛的应用。
作为一门涉及到图像、绘制技术、图形模型、光线追踪等内容的学科,计算机图形学早已不再局限于传统的图像处理、动画制作等领域,而是涉及到了更多的层面,不断探索着新的应用领域。
本文将从应用和未来发展趋势两个方面来探讨计算机图形学的现状和未来。
一、计算机图形学的应用1、游戏制作游戏制作是计算机图形学的重要应用领域之一。
随着游戏的日益普及,游戏制作的需求量也越来越大。
如今的游戏作品已经不再是简单的2D图像展示,而是追求更加真实的3D场景模拟、精细的效果制作和逼真的物理引擎模拟,这也要求计算机图形学能够提供更加强大、精细、稳定的技术支持。
2、虚拟现实虚拟现实的出现,让人们的体验从传统的观看、听取等模式转变成为了完全身临其境的感受。
虚拟现实所涉及到的图像处理、图形建模等技术正是计算机图形学的核心领域,只有这些技术不断得到更新和提升,才能给人们带来更加深入、逼真、丰富的体验。
3、工业设计工业设计也是计算机图形学的应用领域之一。
通过计算机图形学提供一套完整、高效、准确的图像处理、渲染、建模等技术,可以为工业设计带来更加便捷的操作、更高的效率、更加准确的设计结果。
4、医学影像分析随着医学影像系统的不断发展,医学影像分析也成为了计算机图形学的一大应用领域。
在医学领域,计算机图形学可以用于影像处理、3D建模、立体显示等方面,提供准确、细致、高精度的技术支持。
二、计算机图形学的未来发展趋势1、多模态技术多模态技术是计算机图形学的未来发展方向之一。
通过多模态技术,可以实现物体的多维度、多角度的显示与处理,更加逼真、全面地呈现出物体的真实特征。
2、虚拟现实和增强现实虚拟现实和增强现实是计算机图形学发展的热门方向。
虚拟现实的发展,将重新定义我们对于世界的认知方式,增强现实则可以在现实场景下展现虚拟物体,为人们的视觉体验提供更加多样、丰富的选择。
计算机图形学的应用与发展趋势计算机图形学是研究计算机对图像和图形的处理、生成和显示的学科领域。
它涉及了计算机图像的创建、呈现和处理技术,以及与图形有关的算法、软件和硬件的研究。
随着计算机技术的快速发展,计算机图形学已经在各个领域得到广泛应用,并且呈现出一些明显的发展趋势。
一、虚拟现实技术的兴起虚拟现实技术是计算机图形学的一个重要应用领域。
它通过对虚拟环境的模拟,使用户能够感受到身临其境的沉浸式体验。
虚拟现实技术已经在娱乐、教育、医疗等领域得到广泛应用。
随着硬件设备的不断改进,如头盔显示器和手部控制器等,虚拟现实技术将进一步提升用户体验,拓展应用领域。
二、增强现实技术的发展增强现实技术是在现实场景中叠加虚拟图像的技术。
它通过识别和跟踪真实环境中的物体,将虚拟图像与之结合,使用户能够感知到增强的现实。
增强现实技术已经广泛应用于游戏、广告、设计等领域。
未来,随着计算机视觉和感知技术的进一步发展,增强现实技术有望在人机交互、智能制造等领域实现更广泛的应用。
三、计算机图形渲染技术的提升计算机图形渲染技术是指将三维模型转化为二维图像的过程。
它在游戏、电影、动画等领域扮演着至关重要的角色。
随着计算机硬件的发展和算法的改进,图形渲染技术越来越接近真实感,物理光照模型、阴影算法和纹理映射等方面得到了长足的进步。
未来,图形渲染技术将更好地满足对真实感和表现力的要求。
四、人工智能与计算机图形学的结合人工智能在计算机图形学中的应用也是一个重要的发展趋势。
机器学习和深度学习等人工智能技术为计算机图形学提供了新的思路和方法。
例如,通过深度学习可以实现图像的内容生成,利用生成对抗网络可以生成逼真的虚拟图像。
人工智能和计算机图形学的结合将进一步推动图形技术的发展,并拓展更多应用领域。
综上所述,计算机图形学在虚拟现实技术、增强现实技术、图形渲染技术和人工智能等方面都有着广泛的应用和发展。
随着技术的不断进步和创新,计算机图形学将在各个领域发挥更加重要的作用,为人们带来更多的惊喜和便利。
计算机图形学的发展和应用计算机图形学是计算机科学中一门重要的学科,它是利用计算机来创造、处理、存储和呈现图像的技术。
随着计算机技术的发展,计算机图形学逐渐成为计算机科学中一个重要而独立的领域,其应用范围也日益广泛。
一、计算机图形学的发展历程计算机图形学起源于20世纪60年代,当时主要应用于计算机仿真和视觉效果方面。
1963年,伊万·苏泽兰(Ivan Sutherland)发明了第一台基于交互式图形的计算机-画图程序Sketchpad,它是第一款实现计算机交互的图形软件,可以通过电路板和光笔来实现图形图像的绘制和编辑。
1969年,伊万·苏泽兰又发明了第一款基于矢量绘图的计算机图形系统,称为Sketchpad-2,它可以实现对图像的放大和缩小,旋转和平移等操作。
1970年代,计算机图形学开始应用于计算机辅助设计(CAD)和计算机辅助制造(CAM)方面,此外还应用于天文学、医学、地理信息系统(GIS)等领域。
1980年代,计算机图形学的发展速度加快,图形工具的性能大幅度提高,计算机游戏、3D动画和特效效果得以迅速发展。
1990年代,计算机图形学的发展又迈出了一个新的阶段,它开始承担起了虚拟现实(VR)和增强现实(AR)等领域的任务。
如今,随着计算机硬件和软件的不断更新和发展,计算机图形学也在不断优化和拓展,为人类社会的发展做出着重要的贡献。
二、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中扮演着重要的角色。
它帮助游戏开发者创造出更加真实、惟妙惟肖的游戏场景和角色形象,让游戏玩家更加沉浸于游戏世界中。
随着3D图形技术的进步,现代游戏中所展现的场景和人物已经达到了以往难以想象的高度。
2. 医学计算机图形学在医学中的应用十分广泛,例如是利用计算机图形学技术来建立人体模型,并对人体模型进行操作和分析,这样医生在为病人制定治疗方案时,可以更加准确地进行定位和操作,避免手术操作的风险。
计算机图形学的新进展近年来,计算机图形学在不断推陈出新,掀起了一股技术革新的浪潮。
随着计算机硬件的发展和应用范围的不断扩大,计算机图形学已经广泛应用于游戏开发、虚拟现实、真人互动、CAD设计等多个领域,并带来了业界的巨大变革。
本文将从计算机图形学的发展历程、技术进步以及应用范围等方面进行分析和探讨。
一、计算机图形学的发展历程计算机图形学是一门研究如何在计算机上表示和处理几何形状的学科。
早在20世纪50年代,计算机图形学的开创者已经开始研究将计算机应用于几何图形的建模和显示方面,从而使得人们可以通过计算机来呈现复杂的几何形状,并产生出具有生动感和真实感的图像。
在计算机图形学的发展历程中,经历了几个重要的发展阶段:1、线框图形学时代60年代初期,最开始的计算机图形学主要是以线框图为主要表现方式。
它用数学方法描述几何物体,并将这些物体的顶点通过特殊的算法联结在一起,形成了一个个透视图。
这种方式的好处是在不同方向下,可以显示出不同的视点和效果,但生成的图像却缺乏真实感和生动感。
2、光栅图形学时代70年代初期,随着计算机硬件的发展,计算能力和储存能力有了大幅提高,人们开始尝试使用光栅图形学技术来表现复杂的图像。
光栅图形学是一种基于像素点的图形学方法,通过将几何图形划分为像素点,再通过计算对像素点进行着色、渲染和阴影等操作,最终可以呈现出非常逼真的图像。
这种方式的好处是可以产生出具有生动感和真实感的画面,但是它产生的图像却非常占用计算机的处理能力和存储空间。
3、基于物理的图形学时代80年代开始,基于物理的图形学开始得到关注,它将所有的图形处理与物理实验结合起来,通过计算物理效应和光的传播路径等等,使得硬件效果更加逼真。
这种方式的好处是能够产生出非常真实的图像,但是要求计算机的处理能力非常高。
4、深度学习时代到了21世纪,随着人工智能、深度学习等技术的发展,计算机图形学进入了全新的时代。
在深度学习的框架下,图像处理也可以自动实现,人类只需定义一个“目标函数”(例如特定的画风),深度学习就会自己探索和学习那些图像有这个特定风格,得到一个平滑的结果。
计算机图形图像技术发展历史概述计算机图形图像技术是计算机科学和图形学领域的重要分支,它涵盖了计算机生成的图像、图形处理和图形显示等各个方面。
随着计算机技术的飞速发展,图形图像技术也经历了多个阶段的演进和变革。
本文将对计算机图形图像技术的发展历史做一个概述。
一、1950-1960年代:计算机图形学的起步阶段在计算机诞生的早期阶段,由于计算能力有限,计算机图形学的发展非常有限。
1950年代,人们开始尝试使用计算机生成一些简单的图形,如直线、圆等。
而在1960年代,随着计算机硬件、软件以及算法的不断改进,计算机图形学逐渐得到了更多的关注和发展。
二、1970-1980年代:基础算法的提出与优化在1970年代,Bresenham提出了著名的Bresenham算法,这个算法可以高效地画出一条给定斜率的直线,其被广泛应用于计算机图形学中。
同时,随着处理器速度的提高以及内存容量的增加,计算机图形学得以取得更大的突破。
在1980年代,人们开始研究曲线和曲面的绘制算法,并取得了一定的成果。
三、1990年代:三维图形学的兴起进入1990年代,随着计算机性能的进一步提升,三维图形学逐渐兴起并得到了广泛应用。
同时,图形处理单元(GPU)的问世也推动了三维图形学的发展。
人们能够生成更加逼真的三维模型,模拟现实世界中的光照、材质等效果,为电影、游戏等行业带来了巨大的进步。
四、2000年代:计算机动画技术的突破2000年代,计算机动画技术取得了重大突破。
随着硬件设备和软件工具的不断创新,计算机动画的制作变得更加容易和高效。
人们开始利用计算机生成更加生动、逼真的动画效果,并应用于电影、广告等领域。
此外,虚拟现实技术也在这一时期得到了快速发展,使用户能够沉浸在虚拟的三维环境中。
五、2010年代至今:计算机视觉和人工智能的融合进入2010年代,计算机视觉和人工智能的迅速发展为计算机图形图像技术带来了新的机遇和挑战。
通过人工智能算法的引入,计算机能够更加准确地识别和分析图像中的内容,并进行智能化的图像处理。
计算机图形学的应用与发展计算机图形学是一门将数学、物理学、计算机科学等学科相结合的交叉学科,它是现代计算机科学的一块重要领域。
计算机图形学研究和开发一些技术和工具,以产生计算机生成的图像或动画。
这些图像和动画可以被用于广告、电视、电影和计算机游戏等许多领域。
本文将探讨计算机图形学的应用与发展。
一、计算机图形学的起源计算机图形学发展自数学几何,最早建立于20世纪60年代初。
早期的计算机图形学以矢量图像为主,这种图像只包含简单的几何对象,如线段、圆弧、多边形等。
随着计算机硬件和软件的发展,计算机图形学的应用领域也越来越广泛。
二、计算机图形学的应用1. 游戏开发计算机游戏是计算机图形学最常见的应用领域之一。
游戏中的图像和动画是游戏开发者用计算机生成的。
在游戏开发中,开发者不仅需要关注游戏玩法和游戏物理模拟,还需要关注游戏画面呈现。
游戏画面的好坏直接关系到游戏的好坏。
2. 广告制作计算机图形学在广告领域也有很多应用。
广告中的场景、人物和特效都是通过计算机生成的。
这种方式比真实拍摄更加灵活,不受场地、时间等限制。
3. 电影和电视制作电影和电视的特效制作也离不开计算机图形学。
特效的制作需要运用大量的计算机图形学技术,如三维建模、贴图、渲染等。
通过这些技术,逼真的特效可以以更低的成本得到。
三、计算机图形学的发展1. 硬件发展计算机图形学的发展离不开硬件的提升。
目前,计算机显卡可以直接处理图形学计算,这使得图形学渲染速度得到了很大提升。
2. 三维技术的发展三维技术是计算机图形学的一个重要分支。
它可以构建逼真的三维场景,让人们感受到身临其境的感觉。
经过多年的技术发展,三维技术已经非常成熟,应用也非常广泛。
3. 虚拟现实技术的发展虚拟现实是计算机图形学的又一重要分支。
虚拟现实技术模拟现实场景或创造虚拟场景,与人进行交互,让人感受到身临其境的感觉。
虚拟现实技术的应用越来越广泛,除了电影、游戏等领域外,在医学、教育、机器人等领域也有了广泛应用。
计算机图形学的发展1963年,伊凡•苏泽兰(Ivan Sutherland)在麻省理工学院发表了名为《画板》的博士论文,它标志着计算机图形学的正式诞生。
至今已有三十多年的历史。
此前的计算机主要是符号处理系统,自从有了计算机图形学,计算机可以部分地表现人的右脑功能了,所以计算机图形学的建立具有重要的意义。
近年来,计算机图形学在如下几方面有了长足的进展:1、智能CADCAD 的发展也显现出智能化的趋势,就目前流行的大多数CAD 软件来看,主要功能是支持产品的后续阶段一一工程图的绘制和输出,产品设计功能相对薄弱,利用AutoCAD 最常用的功能还是交互式绘图,如果要想进行产品设计,最基本的是要其中的AutoLisp语言编写程序,有时还要用其他高级语言协助编写,很不方便。
而新一代的智能CAD 系统可以实现从概念设计到结构设计的全过程。
例如,德国西门子公司开发的Sigraph Design软件可以实现如下功能:(1)从一开始就可以用计算机设计草图,不必耗时费力的输入精确的坐标点,能随心所欲的修改,一旦结构确定,给出正确的尺寸即得到满意的图纸;(2)这个软件中具有关系数据结构,当你改变图纸的局部,相关部分自动变化,在一个视图上的修改,其他视图自动修改,甚至改变一个零件图,相关的其它零件图以及装配图的相关部分自动修改:(3)在各个专业领域中,有一些常用件和标准件,因此,希望有一个参数化图库。
而Sigraph不用编程只需画一遍图就能建成自己的图库;(4)Sigraph还可以实现产品设计的动态模拟用于观察设计的装置在实际运行中是否合理等等。
智能CAD的另一个领域是工程图纸的自动输入与智能识别,随着CAD技术的迅速推广应用,各个工厂、设计院都需将成千上万张长期积累下来的设计图纸快速而准确输入计算机,作为新产品开发的技术资料。
多年来,CAD 中普遍采用的图形输入方法是图形数字化仪交互输入和鼠标加键盘的交互输入方法.很难适应工程界大量图纸输入的迫切需要。
因此,基于光电扫描仪的图纸自动输入方法已成为国内外CAD工作者的努力探索的新课题。
但由于工程图的智能识别涉及到计算机的硬件、计算机图形学、模式识别及人工智能等高新技术内容,使得研究工作的难点较大。
工程图的自动输入与智能识别是两个密不可分的过程,用扫描仪将手绘图纸输入到计算机后,形成的是点阵图象。
CAD 中只能对矢量图形进行编辑,这就要求将点阵图象转化成矢量图形。
而这些工作都让计算机自动完成。
这就带来了许多的问题。
如(1)图象的智能识别;(2)字符的提取与识别;(3)图形拓扑结构的建立与图形的理解;(4)实用化的后处理方法等等。
国家自然科学基金会和863计划基金都在支持这方面的研究,国内外已有一些这方面的软件付诸实用,如美国的RVmaster,德国的VPmax,以及清华大学,东北大学的产品等。
但效果都不很理想,还未能达到人们企盼的效果。
2 计算机美术与设计2.1 计算机美术的发展1952年.美国的Ben .Laposke用模拟计算机做的波型图《电子抽象画》预示着电脑美术的开始(比计算机图形学的正式确立还要早)。
计算机美术的发展可分为三个阶段:(1)早期探索阶段(1952 1968年)主创人员大部分为科学家和工程师,作品以平面几何图形为主。
1963年美国《计算机与自动化》杂志开始举办年度“计算机美术比赛”。
代表作品:1960年Wiuiam Ferrter为波音公司制作的人体工程学实验动态模拟.模拟飞行员在飞机中各种情况;1963年Kenneth Know Iton的打印机作品《裸体》。
1967年日本GTG小组的《回到方块》。
(2)中期应用阶段(1968年~1983年)以1968年伦敦第一次世界计算机美术大展一“控制论珍宝 (Cybernehic Serendipity1为标志,进入世界性研究与应用阶段;计算机与计算机图形技术逐步成熟,一些大学开始设置相关课题,出现了一些CAD应用系统和成果,三维造型系统产生并逐渐完善。
代表作品:1983年美国IBM 研究所Richerd Voss设计出分形山(可到网站“分形频道hrtp:ttfracta1.126.tom 中查找有关“分形”的知识)。
(3)应用与普及阶段(1984年~现在)以微机和工作站为平台的个人计算机图形系统逐渐走向成熟,大批商业性美术(设计)软件面市;以苹果公司的MAC 机和图形化系统软件为代表的桌面创意系统被广泛接受,CAD成为美术设计领域的重要组成部分。
代表作品:1990年Jefrey Shaw的交互图形作品“易读的城市f The legible city) 。
2.2 计算机设计学(Computer Des i gn i cs)包括三个方面:环境设计(建筑、汽车)、视觉传达设计(包装)、产品设计。
CAD对艺术的介入,分三个应用层次:(1)计算机图形作为系统设计手段的一种强化和替代;效果是这个层次的核心(高精度、高速度、高存储)。
(2)计算机图形作为新的表现形式和新的形象资源。
(3)计算机图形作为一种设计方法和观念。
3 计算机动画艺术3.1 历史的回顾计算机动画技术的发展是和许多其它学科的发展密切相关的。
计算机图形学、计算机绘画、计算机音乐、计算机辅助设计、电影技术、电视技术、计算机软件和硬件技术等众多学科的最新成果都对计算机动画技术的研究和发展起着十分重要的推动作用50年代到60年代之间,大部分的计算机绘画艺术作品都是在打印机和绘图仪上产生的。
一直到60年代后期,才出现利用计算机显示点阵的特性,通过精心地设计图案来进行计算机艺术创造的活动。
70年代开始.计算机艺术走向繁荣和成熟 1973 年,在东京索尼公司举办了“首届国际计算机艺术展览会”80年代至今,计算机艺术的发展速度远远超出了人们的想象在代表计算机图形研究最高水平的历届SIGGRAPH年会上,精彩的计算机艺术作品层出不穷。
另外,在此期间的奥斯卡奖的获奖名单中,采用计算机特技制作电影频频上榜,大有舍我其谁的感觉。
在中国,首届计算机艺术研讨会和作品展示活动于1995年在北京举行它总结了近年来计算机艺术在中国的发展,对未来的工作起到了重要的推动作用。
3.2 计算机动画在电影特技中的应用计算机动画的一个重要应用就是制作电影特技可以说电影特技的发展和计算机动画的发展是相互促进的。
1987年由著名的计算机动画专家塔尔曼夫妇领导的MIRA 实验室制作了一部七分钟的计算机动画片《相会在蒙特利尔》再现了国际影星玛丽莲•梦露的风采。
1988年,美国电影《谁陷害了兔子罗杰》 (WhoFramed Roger Rabbit?)中二维动画人物和真实演员的完美结合,令人膛目结舌、叹为观止其中用了不少计算机动画处理。
1991年美国电影《终结者II:世界末日》展现了奇妙的计算机技术。
此外,还有《侏罗纪公园》(Jurassic Park)、《狮子王》、《玩具总动员》(Toy Story)等。
3.3 国内情况我国的计算机动画技术起步较晚。
1990年的第11届亚洲运动会上,首次采用了计算机三维动画技术来制作有关的电视节目片头。
从那时起,计算机动画技术在国内影视制作方面得到了讯速的发展,继而以3D Studio 为代表的三维动画微机软什和以Photostyler、Photoshop等为代表的微机二维平面设计软件的普及,对我国计算机动画技术的应用起到了推波助谰的作用。
计算机动画的应用领域十分宽广除了用来制作影视作品外,在科学研究、视觉模拟、电子游戏、工业设计、教学训练、写真仿真、过程控制、平面绘画、建筑设计等许多方面都有重要应用,如军事战术模拟。
4 科学计算可视化科学计算的可视化是发达国家八十年代后期提出并发展起来的一门新兴技术,它将科学计算过程中及计算结果的数据转换为几何图形及图象信息在屏幕上显示出来并进行交互处理,成为发现和理解科学计算过程中各种现象的有力工具。
1987年2月英国国家科学基金会在华盛顿召开了有关科学计算可视化的首次会议。
会议一致认为“将图形和图象技术应用于科学计算是一个全新的领域” 科学家们不仅需要分析由计算机得出的计算数据,而且需要了解在计算机过程中数据的变化。
会议将这一技术定名为“科学计算可视化(Visualization in Scientific Computing)”。
科学计算可视化将图形生成技术图象理解技术结合在一起,它即可理解送入计算机的图象数据.也可以从复杂的多维数据中产生图形。
它涉及到下列相互独立的几个领域:计算机图形学、图象处理、计算机视觉、计算机辅助设计及交互技术等。
科学计算可视按其实现的功能来分,可以分为三个档次:(1)结果数据的后处理;(2)结果数据的实时跟踪处理及显示;(3)结果数据的实时显示及交互处理。
4.1 国外科学计算可视化现状(1)分布式虚拟风洞这是美国国家宇航局(Ames)研究中心的研究项目,包括连接到一台超能计算机上的两个虚拟屏幕。
这一共享的分布式虚拟环境用来实现三维不稳定流场。
两个人协同工作,可在一个环境中从不同视点和观察方向同一流场数据。
(2)PHTHFINDER这是美国国家超级计算机应用中心(NCSA)的研究项目.是在交互分布环境下研究大气流体的软件。
PHTHFINDER通过多个相联系的模型来研究暴风雨。
(3)狗心脏CT数据的动态显示这也是NCSA的研究项目,它利用远程的并行计算资源.用体绘制技术实现CT扫描三维数据场动态显示。
其具体内容是显示一个狗的心脏跳动周期的动态图像。
(4)燃烧过程动态模型的可视化这是美国西北大学的研究项目.可以显示发生在非烧热的气体燃烧中复杂的空问瞬态图象。
火焰位于两个同心圆柱之间.可燃混合气体从内圆柱注入,燃烧所生成的物质通过外圆柱送出。
(5)胚胎的可视化依利诺大学芝加哥分校研制了一个在工作站和超级计算机上实现的可视亿应用软件。
其内容是对一个七周的人类胚胎实现交互的三维显示,是由卫生和医学国家博物馆所得到的数据重构而成的。
这一项目表示了对人类形态数据实现远程访问和在网络资源中实现分布计算的可能性。
最近美国还将做整个人体的可视化,他们将两个自愿者(一男一女)做成了切片,男的被切了1780片,厚度约1毫米,女的被切了5400片,厚度约O.3毫米,数据量很大。
概括起来有以下几点:a)科学计算可视化技l术在美国的著名国家实验室及大学中已经从研究走向应用,应用范围涉及天体物理、生物学、气象学、空气动力学、数学、医学图象等领域。
科学计算可视化的技术水平正在从后处理向实时跟踪和交互控制发展。
b)美国在实现科学计算可视化时,已经将超级计算机、光纤高速网、高性能工作站及虚拟环境四者结合起来,显示了这一领域技术发展的重要方向。
就三维数据场的显示算法而言,当数据场分布密集而规则时(如cT扫描数据)多采用体绘制技术,这种算法效果好,但计算费时。