开关集成稳压电源
- 格式:ppt
- 大小:2.13 MB
- 文档页数:48
开关稳压电源的工作原理
开关稳压电源的工作原理是通过采用开关器件(如MOSFET 等)和一系列电子元器件来控制输入电压的开关状态,从而实现对输出电压的稳定调节。
工作原理如下:
1. 输入电压经过整流(如桥式整流电路)并通过滤波电容进行滤波处理,以去除电源中的交流成分和波动。
2. 基于控制电路内部的反馈机制,比较输入电压与期望输出电压之间的差异,以确定开关器件的开关状态。
3. 当输入电压过低时,控制电路将开关器件导通,让电流通过电感储能,进而提高输出电压。
4. 当输入电压过高时,控制电路将开关器件断开,使电感储能的电流通过输出电容器供电,从而降低输出电压。
5. 控制电路根据反馈信息连续地监测和调整开关器件的开关状态,以使输出电压始终维持在设定的稳定值。
6. 为了提供更加稳定的输出电压,开关稳压电源通常还包括过电压保护、过载保护、短路保护等功能。
通过不断地开关和调整开关器件的状态,开关稳压电源可以实
现对输入电压的有效调节,从而保证输出电压的稳定性和可靠性。
一、水声设备电源电源分为交流电源和直流电源,就水声设备而言,主要应用为直流稳压电源。
直流电源可分为线性稳压电源和开关稳压电源。
线性稳压电源就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。
与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。
它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功率管工作在饱或及截止区即开关状态。
线性电源和开关电源的区别:1、工作方式不同(1)线性电源的调整管工作在放大状态,因而发热量大,效率低(不高于50%),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。
(2)开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。
但开关电源输出的直流上面会叠加较大的纹波,另外开关管工作时会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。
2、内部结构不同(1)开关电源利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,缺点是纹波和开关噪声较大,适用于对纹波和噪声要求不高的场合。
(2)线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,纹波噪声小,最大的缺点是效率低。
它们各有有缺点在应用上互补共存。
3、适用要求不一样效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方多选用线性电源。
稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。
二、直流电源主要参数1、源电压效应输入电压的变化引起输出量变化的效应,改变量是源电压,被测量是输出电压的稳态值。
%100max ⨯∆=oNU U U S其中 S U — 源电压效应系数(电压调整率),这个值越小越好,是衡量稳压电源性能的一个重要指标。
开关型稳压电源的工作原理开关型稳压电源是一种通过开关元件进行高效能稳压的电源设备。
它采用开关元件( 通常为晶体管或MOSFET)以高频率开关的方式来调整输出电压,从而实现稳压。
以下是开关型稳压电源的主要工作原理:1.整流:首先,交流电源输入会经过整流电路,将交流电转换为直流电。
这通常使用整流桥等元件实现。
2.滤波:直流电经过整流后可能会包含一些脉动成分,为了去除这些脉动,通常使用滤波电容进行滤波处理,使输出电压更趋于稳定。
3.开关调节:开关型稳压电源的核心是开关调节部分。
这部分包括一个开关元件(通常为晶体管或MOSFET)、一个能够调整开关频率的控制电路和一个输出变压器。
4.开关频率调节:控制电路会根据输出电压的变化情况,调整开关频率。
通过高频率的开关操作,可以更精细地控制输出电压,实现稳压。
5.变压器工作:输出变压器是一个重要的组成部分,通过开关调节,可以改变变压器的工作状态,从而调整输出电压。
通过变压器的变压比例,可以实现输出电压的调节。
6.反馈控制:稳压电源通常采用反馈控制,通过比较输出电压与设定的目标电压,产生一个误差信号。
这个误差信号用于调整开关频率,使输出电压保持稳定。
7.过载和过压保护:开关型稳压电源通常配备有过载和过压保护机制,以防止电源或负载发生故障时损坏设备。
这些保护机制可以通过监测电流和电压进行触发。
8.输出滤波:最后,输出电压还可能通过输出滤波电路进行进一步的滤波,以确保输出信号的纯净性。
开关型稳压电源以其高效能和小体积的特点在电子设备、通信设备、计算机等领域得到广泛应用。
由于采用开关调节的方式,开关型稳压电源相比线性稳压电源能够更有效地调整电压,减少功耗和体积。
开关型直流稳压电源的工作原理“哇塞,你们知道那个神奇的小盒子是干啥的不?”有一天,我和小伙伴们在我家做作业,突然停电了。
这时候,我爸爸拿出一个小盒子,接上一些线,然后灯就亮了。
我们都好奇得不得了,这到底是啥玩意儿呢?这个小盒子呀,就是开关型直流稳压电源。
它就像一个小魔法师,能把电变得稳稳当当的。
它有几个关键部件呢。
有个大大的变压器,就像一个大力士,能把电压变高或者变低。
还有一些电容和电感,就像小卫士一样,能把电变得更平滑。
那它是咋工作的呢?首先,它从插座里把电吸进来,就像小怪兽吃东西一样。
然后变压器开始工作啦,把高电压变成我们需要的低电压。
接着,电容和电感就上场了,它们把电变得滑溜溜的,没有一点波浪。
最后,稳稳的直流电就出来啦,可以给我们的台灯、电脑啥的供电。
开关型直流稳压电源的主要技术可厉害啦。
它就像一个聪明的小精灵,能快速地开关电,把不好的电都挡在外面。
它通过不断地开关,把交流电变成直流电,还能把电压稳定在一个固定的值。
就像我们玩游戏的时候,要遵守规则一样,电也得有个规矩,不能乱跳乱蹦。
这个小魔法师一样的电源在我们生活中的应用可多啦。
比如说,我们的手机充电器就是一种开关型直流稳压电源。
它能把家里的交流电变成手机需要的直流电,让我们的手机能充上电。
还有我们的电脑也需要它,没有它,电脑就没法工作啦。
就像我们人需要吃饭才能有力气一样,这些电器也需要稳定的电才能好好工作。
我觉得开关型直流稳压电源真的好神奇呀,它虽然小小的,但是作用可大啦。
它能让我们的生活更方便,让我们的电器都能好好工作。
我们应该好好爱护它,让它为我们的生活带来更多的好处。
直流开关稳压电源设计一、设计背景及意义随着电子技术的飞速发展,各类电子设备对电源的需求日益增长。
直流开关稳压电源以其高效、稳定、体积小、重量轻等优点,在通信、计算机、家用电器等领域得到了广泛应用。
设计一款性能优越、可靠性高的直流开关稳压电源,对于提高电子设备的整体性能具有重要意义。
二、设计目标1. 输出电压范围:12V±1V;2. 输出电流:2A;3. 转换效率:≥85%;4. 工作温度范围:25℃~+85℃;5. 具有过压、过流、短路保护功能;6. 体积小,便于安装。
三、设计方案1. 电路拓扑选择本设计采用开关电源的主流拓扑——反激式变换器。
反激式变换器具有电路简单、体积小、效率高等优点,适用于中小功率电源设计。
2. 主控芯片选型选用ST公司的STM32F103系列微控制器作为主控芯片,该芯片具有高性能、低功耗、丰富的外设资源等特点,能够满足开关电源的设计需求。
3. 功率开关管选型功率开关管是开关电源的核心元件,本设计选用N沟道MOSFET作为功率开关管。
根据设计指标,选用IRF530N型号MOSFET,其导通电阻低,可降低开关损耗,提高转换效率。
4. 输出整流滤波电路设计输出整流滤波电路采用肖特基二极管和LC滤波电路。
肖特基二极管具有正向压降低、开关速度快的特点,适用于开关电源整流。
LC滤波电路能有效抑制输出电压纹波,提高输出电压稳定性。
5. 保护电路设计为实现过压、过流、短路保护功能,设计如下保护电路:(1)过压保护:在输出端设置一个电压比较器,当输出电压超过设定值时,触发保护动作,切断功率开关管的驱动信号。
(2)过流保护:在功率开关管源极串联一个取样电阻,实时监测电流值。
当电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。
(3)短路保护:在输出端设置一个电流比较器,当输出电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。
四、实验验证与优化1. 搭建实验平台,对设计的直流开关稳压电源进行测试,观察输出电压、电流、效率等参数是否符合设计要求。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um —矩形脉冲最大电压值;T —矩形脉冲周期;T1 —矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电原基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
第五讲 CRT电视机的开关稳压电源CRT电视机的开关稳压电源与液晶电视机的开关稳压电源有很多区别,无功率因素校正(PFC)电路,所用的PWM芯片习惯上也不一样,输出的直流电压种类较多,保护电路的保护方式也有区别。
为此作单独介绍。
一、PWM控制器和大功率场效应管组合-FSCQ1265RT简介F S C Q l265R T是新一代开关电源变换器,它具有很高的功率变换率和很低电磁辐射E M I,完全取代以往使用的STR6700、6707、6709、KA5Q1265RF 等开关稳压变换器,它特别适用于对噪声很敏感的设备如彩电和音频设备。
FSCQl265RT是一个集成脉宽调制(PWM)控制器和大功率SenseFET场效应管的组合,这种设计有利于使用最少的外部元器件,在这里PWM控制器包含有集成固定频率振荡器、欠压搜索电路、引导边缘消隐电路(LEB)、优化门驱动器,内部软启动电路以及为环补偿和自保电路,内含温度补偿精密电流源,如果与分离的MOSFET和PWM 控制器组合方案相比较,它既降低成本、减少尺寸和重量,而且提高效率、改善生产能力,使系统更加稳定可靠运行。
FSCQ1265RT比早期的KA5Q1265RF有许多优点,起动电流仅为20〜50μA,是原来的五分之一,峰值电流为7A,提高了1A。
它的工作电压范围是85V∼265V.。
最大输出功率:170W(输入交流电压220V左右时),140W(输入交流电压90V左右时)。
1、主要性能优化准谐振变换器(QRC);为低于1W的待机功耗下运行提供先进的突变模式;脉冲电流峰值允许可达7A;内设置过载保护OLP,并能自动重新启动;内设置过压保护OVP,并能自动重新启动;内设有异常过流保护AOCP,采用门限方式;内部设有过热切断TSD,采用门限方式;设置具有延时的欠压闭锁(UVLO)功能;很低启动电流,仅有25 μA;很低运行电流,典型值为6mA;内设有高电压功率管SenseFET;内设有软启动,仅需20ms;为适应宽域输入,设置扩展准谐振切换。
基于LM2576-5的BUCK电路一.概述传统78xx系列三端稳压管为线性稳压器件,工作效率低(仅为30%~50%),发热量大,最大只能提供的1A的电流。
LM2576系列开关稳压集成电路是线性三端稳压器件的替代品,由于它以PWM形式工作,所以具有更可靠的工作性能、较高的工作效率(70%~90%)和较强的输出电流驱动能力。
二.原理1.LM2576简介LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。
LM2576系列包括LM2576(最高输入电压40V)及LM2576HV(最高输入电压60V)二个系列。
各系列产品均提供有3.3V(-3.3)、5V(-5.0)、12V(-12)、15V(-15)及可调(-ADJ)等多个电压档次产品。
此外,该芯片还提供了工作状态的外部控制引脚。
各管脚定义:1脚为输入,2脚为输出,3脚为公共地,4脚为反馈,5脚为使能。
LM2576系列开关稳压集成电路的主要特性如下:●最大输出电流:3A;●最高输入电压:LM2576为40V,LM2576HV为60V;●输出电压:3.3V、5V、12V、15V和ADJ(可调)等可选;●振东频率:52kHz;●转换效率:75%~88%(不同电压输出时的效率不同);●控制方式:PWM;●工作温度范围:-40℃~+125℃●工作模式:低功耗/正常两种模式可外部控制;●工作模式控制:TTL电平兼容;●所需外部元件:仅四个(不可调)或六个(可调);●器件保护:热关断及电流限制;●封装形式:TO-220或TO-263。
2.LM2576开关电源工作原理LM2576工作原理为基本的BUCK开关电路,如下图:LM2576内部原理图和典型工作电路,如下图:三.实际应用1.电路图T2-NS4-1T1-NS4-15V T2-NS4-2T1-NS4-2C400.1uT10U4LM2576-5Vin 1Vf4Vout 2ON/OFF 5GND3T11L1150u/3AC360.1uD37MUR460D39MUR460T22+C371000u/16V +C68470u/25V+C34470u/25VR641k/1W+C35470u/25V+C381000u/16V D41MUR4602.工作原理二极管D37,D39和电解电容C34,C35,C68为前级变压器输出整流电路,T22处的电压即是LM2576-5的直流输入电压。
开关稳压电源的工作原理一、开关稳压电源的概述开关稳压电源是一种广泛应用于电子设备中的电源,其具有高效率、精确稳压和较小体积等特点。
本文将详细讨论开关稳压电源的工作原理,以及其中涉及的元器件和电路。
二、开关稳压电源的组成开关稳压电源主要由输入滤波电路、变压器、整流电路、滤波电路、功率开关元件、控制电路和输出稳压电路等组成。
2.1 输入滤波电路输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,保证电源的稳定性和可靠性。
常见的输入滤波电路包括电容滤波、电感滤波和RC滤波等。
2.2 变压器变压器是开关稳压电源中的重要组成部分,用于将输入电源的交流电压变换为适合后续电路工作的直流电压。
其结构主要包括输入线圈、输出线圈和铁芯。
2.3 整流电路整流电路的作用是将变压器输出的交流电压转换为直流电压。
常用的整流电路有单相桥式整流电路和三相桥式整流电路,其中桥式整流电路具有高效率和较低功率损耗的优点。
2.4 滤波电路滤波电路用于去除整流电路输出的直流电压中的纹波和杂散干扰,使输出电压更加稳定。
常见的滤波电路有电容滤波电路和电感滤波电路。
2.5 功率开关元件功率开关元件是开关稳压电源中的核心部件,主要有晶体管和MOS管。
通过控制它们的导通和截止,可以实现对电源输出的精确控制。
2.6 控制电路控制电路用于对功率开关元件进行控制,保证输出电压的稳定性和可调节性。
常见的控制电路有反馈控制电路、比例积分控制电路和脉宽调制控制电路等。
2.7 输出稳压电路输出稳压电路用于保持输出电压的稳定性,避免电压波动对负载造成影响。
常见的输出稳压电路有电压稳定二极管、稳压芯片和反馈电路等。
三、开关稳压电源的工作原理开关稳压电源的工作原理可以简单概括为以下几个步骤:1.输入电源经过输入滤波电路后,进入变压器进行变压变流,得到合适的交流电压。
2.变压器输出的交流电压通过整流电路,转换为脉冲状的直流电压。
3.直流电压经过滤波电路进行纹波滤除,得到较为稳定的直流电压。
开关稳压电源的工作原理一、引言开关稳压电源是一种常见的电源类型,它能够将输入电压稳定输出,并且具有高效率、小体积等优点。
本文将介绍开关稳压电源的工作原理。
二、开关稳压电源的基本结构开关稳压电源由输入滤波器、变压器、整流滤波器、开关管、控制电路和输出滤波器等组成。
输入滤波器用于去除输入电压中的高频噪声,使得变压器能够正常工作。
变压器将输入电压变换为所需的输出电压和电流。
整流滤波器用于将交流信号转换为直流信号,并去除残余交流信号。
开关管是核心部件,它通过控制通断时间来调节输出电压和输出功率。
控制电路用于控制开关管的通断时间,以实现恒定输出和保护功能。
输出滤波器用于去除残余高频噪声和纹波。
三、开关稳压电源的工作原理1. 输入滤波当输入交流信号进入输入端口时,首先经过一个低通RC滤波器,去除高频噪声和干扰信号。
然后进入变压器。
2. 变压器变压器将输入电压变换为所需的输出电压和电流。
变压器一般采用双绕组结构,包括一个主绕组和一个副绕组。
主绕组与输入端口相连,副绕组与输出端口相连。
当开关管导通时,主绕组中的磁能量会被传递到副绕组中,从而使得输出电压和电流增加。
3. 整流滤波经过变压器的信号是交流信号,需要通过整流滤波器将其转换为直流信号。
整流滤波器一般采用二极管桥式整流电路,将交流信号转换为直流信号,并通过滤波电容去除残余交流信号和纹波。
4. 开关控制开关管是开关稳压电源的核心部件,它通过控制通断时间来调节输出电压和输出功率。
当开关管导通时,变压器中的磁场能量会被传递到输出端口,从而使得输出电压和电流增加;当开关管断开时,则没有磁场能量传递到输出端口,从而使得输出电压和电流减小。
控制开关管的通断时间是开关稳压电源的关键,一般采用PWM(脉冲宽度调制)技术实现。
PWM技术通过改变开关管导通和断开时间的比例来控制输出电压和输出功率。
PWM技术具有精度高、反应速度快等优点。
5. 输出滤波经过开关管控制后的信号仍然存在高频噪声和纹波,需要通过输出滤波器去除。
开关稳压电源的工作原理
开关稳压电源是一种通过开关电路控制输入电源的开关状态,从而实现稳定输出电压的电源。
其工作原理主要包括以下几个方面:
1. 输入滤波电路:开关稳压电源的输入端通常会加入滤波电路,用于滤除输入电源中的杂散信号和电磁干扰。
2. 整流电路:输入电源经过滤波电路后,会进入整流电路。
整流电路通过二极管或桥式整流电路将交流电转换为直流电。
3. 开关变换器:开关稳压电源的核心部件是开关变换器。
开关变换器由开关管、变压器和输出滤波电路组成。
其中,开关管根据控制信号的要求对输入电源进行开关动作,变压器用于改变电压平均值和叠加高频信号,输出滤波电路则用于滤除高频噪声。
4. 反馈控制电路:开关稳压电源通常会添加反馈控制电路,用于监测输出电压并与设定值进行比较,从而调整开关管的开关频率和占空比,以实现稳压功能。
当输出电压低于设定值时,反馈控制电路使开关频率增加,提高占空比,增加输出功率;当输出电压高于设定值时,反馈控制电路降低开关频率,减小占空比,降低输出功率。
5. 输出稳压电路:最后,开关稳压电源的输出端加入稳压电路,用于提供稳定
的输出电压。
总的来说,开关稳压电源通过对输入电源进行开关控制,并通过反馈控制电路来调整开关频率和占空比,使输出电压保持在设定值附近。
其通过高效能的开关变换器实现高转换效率,并且具有稳定输出、快速响应和较低的功率损耗等优点。
开关稳压电源设计方案一 设计要求1、分析题目要求,设计并制作如图一所示的开关稳压电源:R LU 1=开关稳压电源图一基本要求:① 输出电压0U 可调范围:30V ~36V ;② 最大输出电流max 0I :2A ;③ 2U 从15V 变到21V 时,电压调整率()A I S O u 2%2=≤;④ O I 从0到2A 时,负载调整率)18%(52V U S I =≤;⑤ 输出噪声纹波电压峰-峰值()A I V U V U V U O Opp 2,36,18102===≤; ⑥ DC/DC 变换器的效率)2,36,18%(70002A I V U V U ===≥η;⑦ 具有过流保护功能,动作电流()A I th O 2.05.2±=。
二 方案论证及选择首先我们需要确定出系统设计方案。
在基本要求中,第 ④⑤⑦对总体方案的影响不大,这些指标都只与器件选择、制作工艺等因素有关,所以,我们主要对第 ⑥两条指标分析。
1、整流电路方案方案一:半波整流优点:单相板波整流电路是最简单的一种整流电路,结构简单,使用元件少。
缺点:输出波形脉动大,直流成分比较低,变压器的利用率低,容易饱和。
方案二:全波整流与半波整流电路相比,在相同的变压器副边电压下,对二级管的参数要求是一样的,并且还具有输出电压高、变压器利用率高、脉动系数小等优点。
因此本次设计采用方案二。
2、滤波电路方案方案一:电感滤波电感滤波电路适用于大电流负载,为特性比较硬,由于采用了电感,所以电路比较笨重。
方案二:电容滤波电容滤波电路结构简单,适用于小电流负载。
因电感没有现成的,需要自己缠制,所以制作麻烦且体积较大。
在这里我们选择电容滤波电路进行滤波,即选择方案二。
3、控制方案的选择对第⑥条指标分析,要求变换器整体效率大于或等于70%,对小功率电源来说有点高,计算有,在72W的额定功率、70%效率下,变换器的损耗不能超过21.6W,所以,不论是功率变换器构成的主电路,还是控制电路,都应该尽量简单。
一种实用的精密复合式开关稳压电源介绍一种双路输出的高效、精密、复合式开关稳压电源的设计方法。
该电源既具有开关电源的高效,同时又具有线性稳压电源的稳压特性好的特点,因而是一种集开关电源与线性电源优点于一身的较为理想的实用化电源。
当前众多开关稳压电源,虽然体积小,效率高,但输出电压的纹波较大,尤其对于多路输出开关电源,通常不能同时保证多路输出的高稳定性。
传统的线性稳压电源输出电压稳定性虽高,但缺点是电源效率低,还必须配备笨重的工频变压器。
为此,本文介绍了一种双路输出的复合式开关稳压电源,该电源采用TOPSwitch器件作为前级稳压器,给低压差线性稳压器LT1528提供直流输入电压,然后利用低压差线性稳压器LT1528获得高质量的稳压输出。
实验证明该电路具有良好的性能,有很高的实用性。
1 复合式开关电源的设计复合式开关电源的电路构成框图如图1所示,该电源主要由TOPSwitch器件与低压差线性集成稳压器(LowDropoutRegulator)LT1528CT构成。
1.1 TOPSwitch器件TOPSwitch系列芯片是PowerIntergretion公司生产的开关电源专用集成电路。
TOPSwitch-Ⅱ只有3个引出端,漏极D为主电源输入端、控制端C为控制信号输入端、源极S是电源公共端,也是控制电路的基准点。
该芯片将脉宽调制PWM控制系统的全部功能集成到三端芯片中,内部结构功能框图如图2所示,包括脉宽调制器、功率开关场效应管MOSFET、自动偏置电路、护电路、高压启动电路和环路补偿电路等。
使用该芯片设计的单端反激式开关电源,电路结构简洁、成本低、且性能非常可靠。
1.2 低压差线性集成稳压器LT1528低压差集成稳压器是近年来问世的高效率线性稳压集成电路。
传统的三端集成稳压器普遍采用电压控制型,为保证稳压效果,输入输出压差一般取2~4 V 以上,否则不能正常工作。
低压差稳压器采用电流控制型,并且选用低压降的晶体管作为内部调整管,能够把输入输出压差降低到0.6 V以下,大大提高了电源的转换效率。