初二数学下册证明题(中等难题含答案).docx
- 格式:docx
- 大小:76.61 KB
- 文档页数:9
人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。
初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证..如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。
一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
ABDC1)如图,在等腰ΔABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连结AP 交BC 于点E ,连结BP 交AC 于点F 。
(1)证明:∠CAE=∠CBF ; (2)证明:AE=BF ;2)如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
3)已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC4)如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD,求证:CD = 2BD5)如图所示。
在△ABC 中,D 、E 分别是AC 和AB 上 的一点,BD 与CE 交于点O ,给出下列四个条件: ①DCO EBO ∠=∠; ②CDO BEO ∠=∠;③CD BE =;④OC OB =。
(1) 上述四个条件中,哪两个条件可以判定△ABC 是等腰三角形(用序号写出所有的情形))2(选择)1(小题中的一种情形,证明△ABC 是等腰三角形。
6)已知:如图,在□ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD , E 在AD 上,BE =12 cm ,CE =5 cm .求□ABCD 的周长和面积. 7)如图,AB=CD ,AD=BC ,EF 经过AC 的中点O ,分别交AB 、CD 于E 、F 。
求证:OE=OF.A E D C B8)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂 足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.9)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种 做法合理吗?为什么?10) 如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF .11)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.12)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE (1)写出图中一对全等的三角形,并写出它们的所有对应角; (2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变, 请找出这个规律.13)如图,已知点M 、N 分别是边BC 、CA 的中点,BN=QN ,AM=PM 。
初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
DCEBGAF三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。
(第23题)EDBAF五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD交于点O ,且AC ⊥BD ,DH ⊥BC 。
⑴求证:DH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。
六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形?(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。
……第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky 的图象过点D ,则其 解析式为 。
一、选择题1.如图,在ABC ∆中,∠ACB =90°,∠A =30°,BC =2,点D 在AB 上,连结CD ,将ADC ∆沿CD 折叠,点A 的对称点为E ,CE 交AB 于点F ,下列结论正确的个数是( )①当BF =BC 时,EF =23-2;②当BF =BC 时,DEF ∆为直角三角形;③当DEF ∆为直角三角形,EF =23-2;④当DE 平行ABC ∆的边时,∠BCE =30°A .1B .2C .3D .42.如图,在等腰△ABC 中,5AB AC ==,6BC =,O 是△ABC 外一点,O 到三边的垂线段分别为OD ,OE ,OF ,且::1:4:4OD OE OF =,则AO 的长度为( )A .5B .6C .407D .80173.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( )A .6B 33C .63D .94.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列说法中,不正确的有( )①不在角的平分线上的点到这个角的两边的距离不相等; ②三角形两内角的平分线的交点到各边的距离相等; ③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等, ⑤到三角形三个顶点距离相等的点有1个 A .0个B .1个C .2个D .3个6.如图,点123,,,A A A A ,…在同一直线上,111122223,,AB A B A B A A A B A A ===,3334A B A A =,……,若B 的度数为x ,则1n n n A B A +∠的度数为( )A .()111802n x -︒- B .()11802n x ︒- C .()111802n x +︒- D .()211802n x +︒-7.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个8.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .29.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( )A .65°B .105°C .55°或105°D .65°或115°11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上 D .:DACABCSS=1:212.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.14.在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.15.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.16.等腰三角形周长为20,一边长为4,则另两边长为______.17.如图,OA ,OB 分别是线段MC 、MD 的垂直平分线,MD =5cm ,MC =7cm ,CD =10cm ,一只小蚂蚁从点M 出发,爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径的长度为_____.18.如图,DE ∥BC ,AE =DE =1,BC =3,则线段CE 的长为_____.19.如图,已知:30MON ︒∠=,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,112A B A ∆、223A B A ∆、334A B A ∆⋯均为等边三角形,若11OA =,则9910A B A ∆的边长为________.20.如图,∠AOB =30°,点P 在∠AOB 的内部,OP =6cm ,点E 、F 分别为OA 、OB 上的动点,则△PEF 周长的最小值为________cm .三、解答题21.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ; (2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.22.如图,在△ABE 中,AB=AE ,AD=AC ,∠BAD=∠EAC ,BC 、DE 交于点O . 求证:(1)△ABC ≌△AED ; (2)OB=OE .23.如图,在四边形ABCD 中,90,A ABC BCD BDC ∠=∠=︒∠=∠,过点C 作CE BD ⊥,垂足为E .求证:AB CE =24.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F . (1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明25.如图,ABC 中,C 90∠=︒,10cm AB =,6cm BC ,若动点P 从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm ,设运动的时间为t 秒.(1)出发几秒后,BCP 是等腰直角三角形?请说明理由; (2)当t 为何值时,BCP 为等腰三角形?(直接写出答案);(3)另有一点Q ,从点B 开始,按B→C 的路径运动,且速度为每秒0.5cm ,若P ,Q 两点同时出发,当P ,Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系?26.如图,在ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,CD 的垂直平分线FM 交AC 于点F ,交BC 于点M .(1)求ADE ∠的度数;(2)ADF 是什么三角形?说明理由.(3)若将题目中“100BAC ∠=︒”改为“∠BAC =120°”,且FM =4,其他条件不变,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由勾股定理可求A C 的长,利用折叠的性质和等腰三角形的性质依次计算可得①②正确.利用直角三角形分类讨论可知EF 有两种情况,③不正确,由平行内错角角相等可知④正确; 【详解】 解:①∵BF =BC ,且∠ABC =60°,∴BCF ∆为等边三角形,BF =CF =BC =2,ACAB =4, ∵ADC ∆沿CD 折叠,∴CE =ACEF =CE -CF ,故①正确; ②当BF =BC 时,∠EFD =∠BFC =60°, ∴∠DEF =∠A =30°,∠EDF =90°, ∴EDF ∆为直角三角形,故②正确;③当DEF ∆为直角三角形时,此处要分情况讨论,当∠EDF =90°时, ∵∠DEF =∠A =30°,∴∠EFD =60°=∠BFC ,EF =EC -CF-2, 当∠EFD =90°时,∵∠ABC =60°,∠BCF =30°,∴FCEF =EC -FC ,综上所述,EF ,故③错误; ④当DE 平行于ABC ∆的边时,∵DE ∥BC ,∴∠EDF =∠ABC =60°, ∵∠DEC =30°,∴∠BCF =∠DEC =30°,故④正确, 故选C 【点睛】本题考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CA ,学会运用分类讨论是解题的关键.2.D解析:D 【分析】连接OA,OB,OC ,由OD:OE:OF=1:4:4,设OD=x ,OE=4x ,OF=4x ,根据OE=OF ,得到AO 为∠BAC 的角平分线,再根据AB=AC ,得到AO ⊥BC ,根据三线合一及勾股定理求出AD=4,再根据ABC ABO ACO BCO S S S S =+-△△△△,得到方程求解即可. 【详解】解:连接OA,OB,OC, 由OD:OE:OF=1:4:4,设OD=x,OE=4x,OF=4x , ∵OE=OF ,∴AO 为∠BAC 的角平分线, 又∵AB=AC , ∴AO ⊥BC ,∴AD 为△ABC 的中线, ∴A 、D 、O 三点共线, ∴BD=3, 在Rt △ABD 中,==4,∴ABC ABO ACO BCO S S S S =+-△△△△ ∴12=10x+10x−3x ,∴x=1217∴AO=4+1217=8017. 故选:D .【点睛】本题考查了角平分线的判定及性质,熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式是解题的关键.3.B解析:B 【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题. 【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥, 223EF DE ∴== 3EM DM ∴=∵∠PEM =30°,∠PME =90°, ∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =,故1DP ,同法可得2PF =,则1223PD PE PF ++++= 故选:B . 【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键.4.B解析:B 【分析】根据线段垂直平分线求出AD=BD ,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC ,即可得出答案. 【详解】解:∵DE 垂直平分AB , ∴AD=BD ,∠AED=90°, ∴∠A=∠ABD , ∵∠ADE=40°, ∴∠A=90°-40°=50°, ∴∠ABD=∠A=50°, ∵AB=AC , ∴∠ABC=∠C=12(180°-∠A )=65°, ∴∠DBC=∠ABC-∠ABD=65°-50°=15°, 故选:B . 【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C 【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可. 【详解】①根据角平分线的判定可知①正确; ②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误, ∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.6.C解析:C【分析】根据等腰三角形的性质和三角形外角的性质进行求解计算【详解】解:∵在△ABA 1中,∠B=x ,AB=A 1B ,∴∠BA 1A=1802x ︒-, ∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠A 1B 1A 2=∠A 1A 2B 1=12∠BA 1A=21180180222x x ︒-︒-⨯=; 同理可得,∠A 2B 2A 3=∠A 2A 3B 2=12∠A 1B 1A 2=231180180222x x ︒-︒-⨯=; ∴∠A n B n A n +1=()111802n x +︒- 故选:C .【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,准确识图,找出规律是解答此题的关键.7.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.8.C解析:C【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可. 【详解】解:过P 作//PF BC 交AC 于F , //PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒, APF ∴∆是等边三角形,AP PF AF ∴==,PE AC ⊥,AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,AE EF =,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.9.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒, 145AC AB BE AE ==+=+=,在Rt △ACE 中,2222543CE AC AE =-=-=;故答案选A .【点睛】本题主要考查了等腰三角形的性质,准确计算是解题的关键.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:AB AC BC=====∴AC=BC,222AB AC BC=+,∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.2【分析】根据含30°角的直角三角形的性质可求解CD的长然后利用AAS 证明△BDH≌△ADC可得HD=CD进而求解【详解】解:∵AD⊥BC∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD的长,然后利用AAS证明△BDH≌△ADC,可得HD=CD,进而求解.【详解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠HBD+∠BHD=90°,∵∠CAD=30°,AC=4,∴122CD AC==,∵BE⊥AC,∴∠HBD+∠C=90°,∴∠BHD=∠C,∵∠ABD=45°,∴∠BAD=45°,∴BD=AD,在△BDH和△ADC中,BHD CBDH ADCBD AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH≌△ADC(AAS),∴HD=CD=2,故点H到BC的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.14.【分析】如图过点C 作CH ⊥x 轴于H 证明△AHC ≌△BOA (AAS )可得结论【详解】解:如图过点C 作CH ⊥x 轴于H ∵∠AHC=∠CAB=∠AOB=90°∴∠BAO+∠CAH=90°∠CAH+∠ACH=解析:(3,2)【分析】如图,过点C 作CH ⊥x 轴于H .证明△AHC ≌△BOA (AAS ),可得结论.【详解】解:如图,过点C 作CH ⊥x 轴于H .∵∠AHC=∠CAB=∠AOB=90°,∴∠BAO+∠CAH=90°,∠CAH+∠ACH=90°,∴∠ACH=∠BAO ,在△AHC 和△BOA 中,AHC AOB ACH OAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AHC ≌△BOA (AAS ),∴AH=OB ,CH=OA ,∵A (2,0),B (0,1),∴OA=CH=2,OB=AH=1,∴OH=OA+AH=3,∴C (3,2).故答案为:(3,2).【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.15.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题解析:3 3n 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====1332=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵1113312AC B S ∆=⨯= ∴34(1)n n S n =+. 故答案为:38,34(1)n n + 【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.16.88【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案【详解】解:若等腰三角形的腰为长为4设底边长为x则有x+4×2=20解得:x=12此时三角形的三边长为4412解析:8,8【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案.【详解】解:若等腰三角形的腰为长为4,设底边长为x,则有x+4×2=20,解得:x=12,此时,三角形的三边长为4,4,12,∵4+4<12,∴不可以组成三角形;若等腰三角形的底边为4,设腰长为x,则有2x+4=20,解得:x=8,∵4+8>8,∴可以组成三角形;∴三角形的另两边的长分别为8,8.故答案为:8,8.【点睛】本题考查等腰三角形的定义和性质,利用分类讨论思想解题是关键.17.10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论【详解】解:设CD与OA的交点为E与OB的交点为F∵OAOB分别是线段MCMD的垂直平分线∴ME=CEMF=DF∴小蚂蚁爬行的路径解析:10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论.【详解】解:设CD与OA 的交点为E,与OB的交点为F,∵OA、OB分别是线段MC、MD的垂直平分线,∴ME=CE,MF=DF,∴小蚂蚁爬行的路径最短=CE+EF+DF=CD=10cm,故答案为:10cm.【点睛】本题考查了轴对称的性质-最短路径的问题,线段的垂直平分线的性质,解题的关键是熟练掌握知识点.18.【分析】由平行线的性质可得∠ADE=∠B由AE=DE=1可得∠ADE=∠DAE易得∠DAE=∠B可得AC=BC易得结果【详解】解:∵DE∥BC∴∠ADE=∠B∵AE =DE=1∴∠ADE=∠DAE∴∠解析:【分析】由平行线的性质可得∠ADE=∠B,由AE=DE=1,可得∠ADE=∠DAE,易得∠DAE=∠B,可得AC=BC,易得结果.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵AE=DE=1,∴∠ADE=∠DAE,∴∠DAE=∠B,BC=3,∴AC=BC=3,∴CE=AC﹣AE=3﹣1=2,故答案为:2.【点睛】本题主要考查了平行线的性质和等腰三角形的性质等,关键是运用性质定理得出AC=BC=3.19.【分析】利用等边三角形的性质得到∠B1A1A2=60°A1B1=A1A2则可计算出∠A1B1O=30°所以A1B1=A1A2=OA1利用同样的方法得到A2B2=A2A3=OA2=2OA1A3B3=A解析:256【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A n B n=A n A n+1=2n-1•OA1.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1=1,∴A1B1=A1A2=OA1=1,同理可得A2B2=A2A3=OA2=2OA1=2,∴A3B3=A3A4=OA3=2OA2=22•OA1=22,A4B4=A4A5=OA4=2OA3=23•OA1=23,…,∴A n B n=A n A n+1=2n-1•OA1=2n-1.则△A9B9A10的边长为28=256.故答案为:256.【点睛】本题考查了规律型:图形的变化类,等边三角形的性质以及等腰三角形的性质,解决本题的关键是根据图形的变化寻找规律.20.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.三、解答题21.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】 (1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°,∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H ,ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 22.(1)见解析;(2)见解析【分析】(1)利用SAS 定理证明△ABC ≌△AED ;(2)利用△BAC ≌△EAD 全等的性质,得到角与边的关系,进一步证明即可.【详解】证明:(1)∵∠BAD=∠EAC ,∴∠BAD+∠DAC=∠EAC+∠DAC ,即∠BAC=∠EAD ,在△BAC 和△EAD 中,AB AE BAC EAD AC AD ⎧⎪∠∠⎨⎪⎩=== , ∴△BAC 和≌△EAD ;(2)∵△BAC ≌△EAD ,∴∠ABC=∠AED ,∵AB=AE ,∴∠ABE=∠AEB ,∴∠OBE=∠OEB ,∴OB=OE .【点睛】题考查的是全等三角形的判定和性质、等腰三角形的性质和判定,掌握全等三角形的判定定理和等腰三角形的性质定理是解题的关键.23.证明见解析.【分析】用“角角边”证明△ABD ≌ECB 即可.【详解】证明:∵90A ABC ∠=∠=︒,∴∠ABD+∠ADB=90°,∠ABD+∠DBC=90°,∴∠ADB=∠DBC ,∵BCD BDC ∠=∠,∴BD=BC ,∵∠A=∠BEC=90°,∴△ABD ≌△ECB∴AB CE =.【点睛】本题考查了等腰三角形的判定和全等三角形的判定与性质,解题关键是找准全等三角形,依据等腰三角形的判定和同角的余角相等证明全等.24.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.25.(1)出发9秒后,BCP 是等腰直角三角形;(2)当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【分析】(1)由题意得出BC=CP ,即可得出结果;(2)△BCP 为等腰三角形时,分三种情况进行讨论:①CP=CB ;②BC=BP ;③PB=PC ;即可得出答案.(3)若直线PQ 把△ABC 的周长分成的两部分之间是1:2,则一部分为8,另一部分为16,分两种情况,即可得出答案.【详解】解:(1)如下图,在Rt △ABC 中,根据勾股定理可得 22221068AC AB BC cm =-=-=,当△BCP 为等腰直角三角形时,CP=BC=6cm ,即AP=AC-CP=2cm ,∴6102922BC AB AP t ++++===(秒), 故出发9秒后,BCP 是等腰直角三角形;(2)△BCP 为等腰三角形时,分三种情况:①如果CP=CB ,点P 在AC 上,由(1)可知t=9(秒);如果CP=CB ,点P 在AB 上,如下图,作CD ⊥AB ,则1122ABC S AC BC AB CD ∆=⋅=⋅, 即11861022CD ⨯⨯=⨯⋅,解得CD=4.8cm , ∴22 3.6BD BC CD =-=cm ,∵CP=CB,CD ⊥AB ,∴PD=BD=3.6cm ,67.2 6.622BC BP t ++===(秒), ②如果BC=BP ,那么点P 在AB 上,BP=6cm ,此时66622BC BP t ++===(秒); ③如果PB=PC ,那么点P 在BC 的垂直平分线与AB 的交点处,即在AB 的中点,此时 65 5.522BC BP t ++===(秒); 综上可知,当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)6120.5Q t ==秒,8610122p t ++==, 故12秒时,两点停止运动, 108624ABC C cm ∆=++=,①当P 在AB 上时,若13ABC BQ BP C ∆+=,即0.5268t t +-=,解得t=5.6(秒),①当P 在AC 上时,若23ABC BQ AB AP C ∆++=, 即0.52616t t +-=,解得t=8.8(秒),综上所示,当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【点睛】本题考查了勾股定理,等腰三角形的判定,三角形的周长的计算.利用分类讨论的思想是解(2)题的关键.26.(1)∠ADE =20°;(2)△ADF 是等腰三角形,证明见解析;(3)AB=16.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠B 和∠C ,求出∠BDE ,即可求出答案;(2)根据垂直平分线的性质定理和等边对等角可求得∠FDC ,再根据三线合一和直角三角形两锐角互余可求得∠DAF 和∠ADF 得出它们相等即可得出△ADF 为等腰三角形;(3)可求得∠C=30°根据30°角所对直角边是斜边的一般可得FC ,可证明△ADF 为等边三角形即可求得AF ,从而求得AC ,继而求得AB .【详解】解:(1)∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=12×(180°-∠BAC )=40°, ∵BD=BE ,∴∠BDE=∠BED=12×(180°-∠B )=70°, ∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=20°;(2)△ADF 是等腰三角形,理由是:∵CD 的垂直平分线MF 交AC 于F ,交BC 于M ,∴DF=CF ,∵∠C=40°,∴∠FDC=∠C=40°,∵AD ⊥BC ,∴∠ADC=90°,∴∠DAF=90°-∠C=50°,∴∠ADF=50°,∴∠DAF=∠ADF,∴AF=DF,∴△ADF是等腰三角形;(3)∵∠BAC=120°,AB=AC,∴∠B=∠C=1×(180°-∠BAC)=30°,2又∵AD是BC边上的中线,∴AD⊥BC,∴∠DAC=90°-∠C=60°,∵CD的垂直平分线MF,∴∠FMC=90°,DF=FC,∴∠FDC=∠C=30°,∴∠ADF=∠ADC-∠FDC=60°,∠AFD=∠C+∠FDC=60°,∴△ADF为等边三角形,AF=DF=FC,∵MF=4,∴FC=2MF=8,∴AF= 8,∵AC=AF+CF=8+8=16,∵AB=AC,∴AB=16.【点睛】本题考查了线段垂直平分线性质,等边三角形的性质和判定,含30°角的直角三角形的性质,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.。
D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。
求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。
从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。
一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .243.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( ) A .8,10,12 B .3,4,5 C .5,12,13 D .7,24,25 5.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°6.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠. 其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④ 7.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 9.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .510.如图,在ABC 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E 和点C 为圆心、大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAE ∠的度数为( )A .15︒B .25︒C .30D .35︒11.如图,ABC 中,36A ∠=︒,72C ∠=︒,BD 平分ABC ∠,//ED BC ,则图中等腰三角形的个数是( )A .3B .4C .5D .612.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,6cm AC =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,连接BD .则ABD △的面积最大值为_________2cm .15.如图,在ABC 中,AB AC =,AD 平分BAC ∠,PD 垂直平分AB 连接BD 并延长,交边AC 于点E .若BCE 是等腰三角形,则BAC ∠的度数为________.16.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.17.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.18.如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,△ABC 的面积为60,AB =16,BC =14,则DE 的长等于_____.19.上午10时,一艘船从A 处出发以每小时25海里的速度向正北航行,中午12时到达B 处,从A 、B 两点观望灯塔C ,测得42DAC ∠=︒,84DBC ︒∠=,则B 到灯塔C 的距离是________海里.20.如图,ABC 是等边三角形,AD 是BC 边上的高,且6,33,AB AD E ==是AC 的中点,P 是AD 上的一个动点,PC 与PE 的和最小为______.三、解答题21.已知A (3, 5),B (-1, 2),C (1, 1).(1)在所给的平面直角坐标系中作出△ABC ;(2)△ABC 是直角三角形吗?请说明理由.22.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ;(2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.23.如图,在Rt ABC △中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =.(1)求B 的度数;(2)求CN 的长.24.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.25.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.3.C解析:C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故C选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算.5.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD 1, ∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.6.B解析:B【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD 即可判断①;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断②;作OG ⊥MC 于G ,OH ⊥MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断④;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由△AOC ≌△BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出△COM ≌△BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断③;【详解】∵ ∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD,在△AOC和△BOD中,OA OBOC ODAOC BOD=⎧⎪=⎨⎪∠=∠⎩,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,故②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,故④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD∴∠COM=∠BOM,∵MO平分∠BMC∴∠CMO=∠BMO,在△COM和△BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∴△COM≌△BOM(ASA)∴OB=OC,∵OA=OB,∴OA=OC 与OA >OC 矛盾,故③错误;故选:B .【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.7.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥,∴12CF BF BC ==, 在Rt △OEF 中, ∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒,∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.8.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.9.A解析:A【分析】由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH ⊥BC 交BC 于点H ,如图所示:∵∠A=∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3,故DP的长不可能是2,故选:A.【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.10.A解析:A【分析】根据作图过程可得,AP是EC的垂直平分线,可得AE=AC,∠ADB=∠ADC=90°,再根据∠B=45°,∠C=2∠CAD,即可求出∠CAD的度数,进而即可求解.【详解】解:由作图过程可知:AP是EC的垂直平分线,也是∠CAE的角平分线,∴AE=AC,∠ADB=∠ADC=90°,∵∠B=45°,∴∠BAD=45°,∵∠C=2∠CAD,∴3∠CAD=90°,∴∠CAD=30°,∴∠EAD=30°,=45°-30°=15°.∴BAE故选:A.【点睛】本题考查了作图−基本作图,直角三角形的性质,解决本题的关键是掌握基本作图方法.11.C解析:C【分析】利用三角形内角和定理,平行线的性质,角平分线的定义求出各个角,再根据等腰三角形的判定定理,即可判断.【详解】解:∵∠A=36°,∠C=72°,∴∠ABC=180°−72°−36°=72°,∴∠ABC=∠C,∴△ABC是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴△AED是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠EDB=∠EBD=36°,∴△ABD,△BDE都是等腰三角形,∵∠BDC=180°-72°-36°=72°,∴∠C=∠BDC=72°,∴△BDC是等腰三角形,∴等腰三角形有5个,故选:C.【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握等腰三角形的判定定理,属于中考常考题型.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD=⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.cm2【分析】过点作于点作于点连接由直角三角形的性质可得cmcmcm 由可证△△可得由三角形面积公式可求则时有最大值【详解】解:cmcmcmcm 当点从点滑动到点时得△过点作于点作于点连接且且△△当时有解析:cm 2【分析】过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',由直角三角形的性质可得BC =,AB =,ED DF ==cm ,由“AAS ”可证△D NE ''≅△D MF '',可得D N D M ''=,由三角形面积公式可求111222AD B S BC AC AC D N BC D M '''=⨯+⨯⨯-⨯⨯△,则E D AC ''⊥时,AD B S '△有最大值.【详解】解:6AC =cm ,30A ∠=︒,45DEF ∠=︒, 233BC ∴==cm ,43AB =cm ,32ED DF ==cm ,当点E 从点A 滑动到点C 时,得△E D F ''',过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',90MD N '∴∠=︒,且90E D F '''∠=︒,E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=,∴△D NE ''≅△()D MF AAS '',D N D M ''∴=,AD B ABC AD C BD C S S S S '''=+-△△△△当E D AC ''⊥时,AD B S '△有最大值,1111123(623)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=-⨯△ AD B S '∴△最大值1123(623)32(1239236)2=-⨯=cm 2. 故答案为:(1239236)cm 2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定AD B S '△有最大值时的图形位置是本题的关键.15.45°或36°【分析】设∠BAD=∠CAD=α根据三角形内角和定理和三角形外角的性质表示∠EBC ∠BEC 和∠C 再分三种情况讨论即可【详解】解:∵AD 平分∴设∠BAD=∠CAD=α∵AB=AC ∴∠AB解析:45°或36°.【分析】设∠BAD=∠CAD=α,根据三角形内角和定理和三角形外角的性质表示∠EBC 、∠BEC 和∠C ,再分三种情况讨论即可.【详解】解:∵AD 平分BAC ∠,∴设∠BAD=∠CAD=α,∵AB=AC ,∴∠ABC=∠C=1802902αα︒-=︒-, ∵PD 垂直平分AB ,∴AD=BD , ∴∠ABD=∠BAD=α,∠EBC=∠ABC-∠ABE=902α︒-,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC 时,∴∠BEC=∠C ,即903αα︒-=,解得22.5α=︒,∴245BAC α∠==︒;当BE=CE 时,∠EBC=∠C ,此时E 点和A 点重合,舍去;当BC=CE 时,∴∠EBC=∠BEC ,即9023αα︒-=,解得18α=︒,∴236BAC α∠==︒,故答案为:45°或36°.【点睛】本题考查三角形外角的性质,等腰三角形的性质,三角形内角和定理,垂直平分线的性质.掌握方程思想,能正确表示相关角是解题关键.16.9【分析】过点O 作OE ⊥AB 于EOF ⊥AC 与F 连接OA 根据角平分线的性质求出OEOF 根据三角形面积公式计算得到答案【详解】解:过点O 作OE ⊥AB 于EOF ⊥AC 于F 连接OA ∵OB 平分∠ABCOD ⊥BC解析:9【分析】过点O 作OE ⊥AB 于E ,OF ⊥AC 与F ,连接OA ,根据角平分线的性质求出OE 、OF ,根据三角形面积公式计算,得到答案.【详解】解:过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB 平分∠ABC ,OD ⊥BC ,OE ⊥AB ,∴OE =OD =1,同理可知,OF =OD =1,∴△ABC 的面积=△OAB 的面积+△OAC 的面积+△OBC 的面积, =12×AB ×OE +12×AC ×OF +12×BC ×OD , =12×18×1, =9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.17.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH=⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴= 11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.18.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 19.50【分析】根据题意得到证明BC=AB 即可得解;【详解】根据题意得:海里∵∴∴∴海里;故答案是50【点睛】本题主要考查了等腰三角形的判定与性质结合方位角计算是解题的关键解析:50【分析】根据题意得到C BAC ∠=∠,证明BC=AB ,即可得解;【详解】根据题意得:22550AB =⨯=海里,∵42DAC ∠=︒,84DBC ︒∠=,∴42C DBC DAC ∠=∠-∠=︒,∴C BAC ∠=∠,∴50BC AB ==海里;故答案是50.【点睛】本题主要考查了等腰三角形的判定与性质,结合方位角计算是解题的关键.20.【分析】连接BE 与AD 交于点P 连接CP 则BE 的长度即为PE 与PC 和的最小值根据三角形的面积公式即可证出从而得出结论【详解】如图连接BE 与AD 交于点P 连接CP ∵△ABC 是等边三角形AD ⊥BC ∴AD 垂直 解析:33【分析】连接BE ,与AD 交于点P ,连接CP ,则BE 的长度即为PE 与PC 和的最小值,根据三角形的面积公式即可证出33BE AD ==,从而得出结论.【详解】如图,连接BE ,与AD 交于点P ,连接CP∵△ABC 是等边三角形,AD ⊥BC ,∴AD 垂直平分BC ,BC=AC∴PC=PB ,∴PE+PC=PB+PE=BE ,根据两点之间线段最短,BE 的长就是PE+PC 的最小值,∵E 是AC 的中点,∴BE ⊥AC∵ABC S =12BC·AD=12AC·BE 6,33AB AD ==6AB BC AC ∴===∴BE=AD=33 即PC 与PE 的和最小值是33故答案为:33. 【点睛】本题考查了最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.三、解答题21.(1)见解析;(2)是,理由见解析【分析】(1)在平面直角坐标系中描出A 、B 、C 三点,再顺次连接三点即可做出△ABC ; (2)利用网格特点,分别求出AB 2、AC 2、BC 2,再根据勾股定理的逆定理判断即可.【详解】(1)如图所示;(2)△ABC 是直角三角形,理由为:∵AB 2=42+32=25,AC 2=22+42=20,BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°.【点睛】本题考查平面直角坐标系、勾股定理及其逆定理,熟练掌握网格结构和平面直角坐标系,准确找出对应点的位置,会利用勾股定理的逆定理判断直角三角形是解答的关键. 22.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】(1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°, ∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H ,ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 23.(1)30B ∠=︒;(2)2.【分析】(1)先利用直角三角形的两个锐角互余,得到一个等式,再利用平行线的性质,角平分线的性质,用B 的代数式表示这个等式,转化为B 的方程求解即可;(2)利用30°角所对的直角边等于斜边的一半计算MN ,再利用平行线的性质,角平分线的性质证明CN=MN ,问题得证.【详解】(1)∵CM 平分ACB ∠,MN 平分AMC ∠,∴ACM BCM ∠=∠,AMN CMN ∠=∠,又∵//MN BC ,∴AMN B ∠=∠,CMN BCM ∠=∠,∴B BCM ACM ∠=∠=∠,∵90A ∠=︒,∴90B ACB ∠+∠=︒,∴30B ∠=︒;(2)由(1)得,30AMN B ∠=∠=︒又∵90A ∠=︒ ∴12AN MN =∵1AN =∴2MN = ∵MCN CMN ∠=∠∴MN NC =,∴2CN =. 【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,直角三角形的性质,根据条件,熟练将问题与相应的知识准确对接是解答关键.24.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD≌△CBF,∴AD=CF,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.25.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB 平分∠ABC .(3)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE,则∠DAE=∠DEA,∵∠DAC=∠DEC,∴∠CAE=∠CEA,∴AC=EC,∵AC≠EC,∴DA≠DE;若DA=AE,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。
一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC 中,PD ,PE 分别是AC ,BC 边的垂直平分线,且分别与AB 交于点M ,N 连接CM ,CN .有下列四个结论:①P A B ∠=∠+∠;②ACB MCN P ∠=∠+∠;③ACB ∠与P ∠是互为补角;④MCN △的周长与AB 边长相等其中正确结论的个数是( )A .1B .2C .3D .43.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .24 4.如图,AE 与BF 交于点O ,点O 在CG 上,根据尺规作图的痕迹,判断下列说法正确的是( )A .BAE GCE ∠=∠B .点O 到ABC 三边的距离相等C .AO BO CO ==D .OG OE OF ==5.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个6.如图,在ABC ∆中,90C ∠=︒,15B ∠=︒,DE 垂直平分AB ,交BC 于点E ,BE=10cm ,则AC 等于( )A .6cmB .5cmC .4cmD .3cm7.如图,直线AB ,CD 交于点O ,若AB ,CD 是等边△MNP 的两条对称轴,且点P 在直线CD 上(不与点O 重合),则点M ,N 中必有一个在( )A .∠AOD 的内部B .∠BOD 的内部C .∠BOC 的内部D .直线AB 上 8.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 9.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠. 其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④ 10.如图,AB AC =,CD CE =.过点C 的直线FG 与DE 平行,若38A ∠=︒,则1∠为( )A .42°B .54.5°C .58°D .62.5°11.在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 12.如图,直线a ,b 相交形成的夹角中,锐角为52°,交点为O ,点A 在直线a 上,直线b 上存在点B ,使以点O ,A ,B 为顶点的三角形是等腰三角形,这样的点B 有( )A .1个B .2个C .3个D .4个二、填空题13.小华的作业中有一道题:“如图,,AC BD 在AB 的同侧,1,4,4AC BD AB ===,点E 为AB 的中点.若120CED ∠=︒,求CD 的最大值.”哥哥看见了,提示他将ACE 和BDE 分别沿CE 、DE 翻折得到A CE '△和B DE ',连接A B ''.最后小华求解正确,得到CD 的最大值是__________.14.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为___________.15.等腰三角形周长为20,一边长为4,则另两边长为______.16.如图,在ABC 中,AE BC ⊥于点,E BD AC ⊥于点D .点F 是AB 的中点,连接,DF EF ,设,DFE x ACB y ∠=∠=︒︒,求y 关于x 的函数关系式_________.17.如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O ,若∠B =50°,则∠AOC =_____.18.已知:在ABC 中,90ACB ∠=︒,42AC BC ==,点D 在AB 上,连接CD ,若5CD =,则AD 的长为________.19.如图,在等腰直角三角形ABC 中,90,1BAC AB AC ∠=︒==.点P 在边BC 上(不与B ,C 重合),连结AP .按以下步骤作图:①以点B 为圆心,适当长为半径作弧,分别交,BC BA 于点D ,E .②以点P 为圆心,BD 长为半径作弧l ,交PA 于点G ,③以点G 为圆心,DE 长为半径作弧,交弧l 于点F ,④过点P ,F 作射线PF 交AC 于点Q .若APQ 为等腰三角形,则BP 的长为________.20.等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是_________.三、解答题21.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段DE ,点A 、B 、D 、E 均在小正方形的顶点上.(1)在方格纸中画出以AB 为一边的锐角等腰三角形ABC ,点C 在小正方形的顶点上,且ABC 的面积为10;(2)在方格纸中画出以DE 为一边的直角三角形DEF ,点F 在小正方形的顶点上,且DEF 的面积为5;(3)连接CF ,则线段CF 长为________________.22.如图,在等腰ABC 中,AB AC =,045ACB ︒<∠<︒,点C 关于直线AB 的对称点为点D ,连接BD 与CA 的延长线交于点E ,在BC 上取点F ,使得BF DE =,连接AF .(1)依题意补全图形.(2)求证:AF AE =.23.如图,在四边形ABCD 中,90B ∠=︒,AC 平分BAD ∠,DE AC ⊥,AB AE =.(1)求证:AC AD =.(2)若BC CD ⊥,试判断ACD △的形状,并说明理由.24.已知,如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线(1)若∠B=30°,∠ACD=45°,AB=2,求BC 的长.(2)若点G 是线段CE 的中点,连接DG ,当DG ⊥EC 时,求证: AB=2CD .(3)在(2)的条件下,试判断∠AEC 与∠B 之间的数量关系,并说明理由.25.如图,在Rt ABC 中,∠A =90°,AB =AC ,BC =10,点D 是直线AC 上一动点,∠BDE =90°,DB =DE (DE 在BD 的左侧).(1)直接写出AB 长为 ;(2)若点D 在线段AC 上,AD =2,求EC 长;(3)当BE =229时,直接写出CD 长为 .26.如图,ACB △和DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE .(1)如图1,若55CAB CBA CDE CED ∠=∠=∠=∠=︒.填空:ACB ∠= ________︒,AEB ∠=________ ︒;(2)如图2,若60ACB DCE ∠=∠=︒,试猜想,,AE CD BE 之间的关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP =AB ,②AP =AB ,③AP =BP ,再求出答案即可.【详解】解:作BC 、AC 所在直线,然后分别以B 、A 点为圆心,以AB 为半径作圆分别交BC 、AC 所在直线于6点,再作AB 的垂直平分线与BC 所在直线交于2点,总共符合条件的点P 的个数最多有8个,故选:B .【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.D解析:D【分析】根据四边形内角和等于360°,即可得出③正确,再根据三角形内角和定理、等腰三角形的性质可得结论①②正确;根据线段的垂直平分线的性质得到MA MC =,NB NC =,即可判定④正确.【详解】解:∵PD ,PE 分别是AC ,BC 边的垂直平分线,∴90CDP ∠=︒,90CEP ∠=︒,又∵360P AC DP B C CE P ∠∠+∠=∠++︒,∴180P ACB ∠=︒∠+,故结论③正确;又∵180AC A B B ∠+︒∠+∠=, ∴P A B ∠=∠+∠,故结论①正确; 直线PD 是AC 的垂直平分线,AM CM ∴=,∴A ACM ∠=∠同理,NB NC =,B BCN ∠=∠,∵AC MC ACB M N N BC ∠∠+∠∠=+,∴M ACB N A C B ∠∠∠=+∠+,∴ACB MCN P ∠=∠+∠,故结论②正确; AMN △的周长为MC MN NC =++,∴AMN的周长=AM MN NB AB++=,故结论④正确;综上所述,①②③④正确,共4个.故选D.【点睛】本题主要考查了线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,∠,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.4.B解析:B【分析】根据三角形角平分线的性质:三角形三条角平分线交于一点,且到三边的距离相等可以作判断.【详解】解:根据作图痕迹可知AE和BF为△ABC的角平分线,O为交点,根据三角形三条角平分线交于一点,且到三边的距离相等可知点O到ABC三边的距离相等,故B选项正确,符合题意,其它选项皆不符合题意.故选:B.【点睛】本题考查了基本作图-角的平分线、角平分线的性质,明确三角形的角平分线交于同一点,且交点到三边的距离相等.5.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.6.B解析:B【分析】根据线段垂直平分线上的点到两端点的距离相等可得AE=BE ,再根据等边对等角可得∠BAE=∠B ,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12AE . 【详解】解:∵DE 垂直平分AB ,∴AE=BE=10(cm),∴∠BAE=∠B=15°,∴∠AEC=∠BAE+∠B=15°+15°=30°,∵∠C=90°,∴AC=12AE=12×10=5(cm). 故选:B .【点睛】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键. 7.D解析:D【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可.【详解】解:如图,∵△PMN 是等边三角形,等边三角形的对称轴一定经过三角形的顶点,又∵直线CD ,AB 是△PMN 的对称轴,直线CD 经过点P ,∴直线AB 一定经过点M 或N ,故选:D .【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.9.B解析:B【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD 即可判断①;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断②;作OG ⊥MC 于G ,OH ⊥MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断④;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由△AOC ≌△BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出△COM ≌△BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断③;【详解】∵ ∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB OC ODAOC BOD =⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB ,AC=BD ,故①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,故②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,故④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD∴∠COM=∠BOM,∵MO平分∠BMC∴∠CMO=∠BMO,在△COM和△BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∴△COM≌△BOM(ASA)∴OB=OC,∵OA=OB,∴OA=OC与OA>OC矛盾,故③错误;故选:B.【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.10.B解析:B【分析】根据等腰三角形的性质求得∠ACB 与∠CDE 度数,再利用两直线平行,内错角相等求∠1即可.【详解】解:∵AB=AC ,∠A=38︒,∴∠B=∠ACB=1802A ︒-∠=218038︒-︒=71︒, ∵CD=CE ,∴∠CED=∠CDE =2180ACB ︒-∠=218071︒-︒=54.5︒, ∵DE //FG ,∴∠1=∠CED=54.5︒,故选:B .【点睛】此题考查等腰三角形的性质、平行线的性质,关键是根据等腰三角形中角度的求解. 11.B解析:B【分析】由勾股定理解得13cm AB =,根据角平分线的性质,可得,,CAP PAB ABP CBP ACP BCP ∠=∠∠=∠∠=∠,过点P ,分别作Rt ABC △三边的垂线段,继而证明MAP △()HAP ASA ≅△,PMC △()PNC ASA ≅△,BHP ()BNP ASA ≅△,由全等三角形对应边相等的性质得到PM PH =,,PM PN PN PH ==,即可证明PM PH PN ==,最后利用三角形面积公式及等积法解题即可求得PH 的值.【详解】解:在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,13AB ∴=== P 是Rt ABC △中三个内角的平分线的交点,,,CAP PAB ABP CBP ACP BCP ∴∠=∠∠=∠∠=∠过点P ,分别作Rt ABC △三边的垂线段,如图,在MAP △与HAP △中,CAP BAP AP AP AMP AHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴MAP △()HAP ASA ≅△PM PH ∴=同理得,PMC △()PNC ASA ≅△,BHP ()BNP ASA ≅△,PM PN PN PH ∴==PM PH PN ∴== 111222ABC S AC PM AB PH BC PN ∴=⋅+⋅+⋅ 1()2AC AB BC PH =++⋅ 1(51213)2PH =⨯++⋅ 15PH =又115123022ABC S AC BC =⋅=⨯⨯= 1530PH ∴=2PH ∴=故选:B .【点睛】本题考查勾股定理、角平分线的性质、全等三角形的判定与性质、三角形的面积公式及等积法等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.D解析:D【分析】以点O 、A 、B 为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可.【详解】解:如图所示,=时,以点O为圆心,OA为半径作圆,与直线b在O点两侧各有一个交①当OA OB点,此时B点有2个;=时,以点A为圆心,OA为半径作圆,与直线b有另外一个交点,此时B点②当OA AB有1个;=时,作OA的垂直平分线,与直线b有一个交点,此时B点有1个,③当OB AB综上,B点总共有4个,故选:D.【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B是解题的关键.二、填空题13.7【分析】根据对称的性质得到∠A′EB′=60°结合点E是AB中点可证明△A′EB′是等边三角形从而有CD≤CA′+A′B′+B′D=CA+AE+BD即可求出CD的最大值【详解】解:∵∠CED=12解析:7【分析】根据对称的性质得到∠A′EB′=60°,结合点E是AB中点,可证明△A′EB′是等边三角形,从而有CD≤CA′+A′B′+B′D=CA+AE+BD,即可求出CD的最大值.【详解】解:∵∠CED=120°,∴∠AEC+∠DEB=60°,∴∠CEA′+∠DEB′=60°,∴∠A′EB′=60°,∵点E是AB中点,AE=A′E,BE=B′E,∴A′E=B′E,∴△A′EB′是等边三角形,∵CD≤CA′+A′B′+B′D=CA+AE+BD=1+2+4=7,∴CD的最大值为7,故答案为:7.【点睛】本题考查了翻折的性质,等边三角形的判定和性质,熟练掌握折叠的性质是解题的关键.14.【分析】由已知条件利用线段的垂直平分线的性质得到AD=CDAC=2AE结合周长进行线段的等量代换可得答案【详解】解:∵DE是AC的垂直平分线∴AD=CDAC=2AE=6cm又∵ABD的周长=AB+B解析:19cm【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【详解】AE ,解:∵DE是AC的垂直平分线,3cm∴AD=CD,AC=2AE=6cm,又∵ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.【点睛】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.15.88【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案【详解】解:若等腰三角形的腰为长为4设底边长为x则有x+4×2=20解得:x=12此时三角形的三边长为4412解析:8,8【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案.【详解】解:若等腰三角形的腰为长为4,设底边长为x,则有x+4×2=20,解得:x=12,此时,三角形的三边长为4,4,12,∵4+4<12,∴不可以组成三角形;若等腰三角形的底边为4,设腰长为x,则有2x+4=20,解得:x=8,∵4+8>8,∴可以组成三角形;∴三角形的另两边的长分别为8,8.故答案为:8,8.【点睛】本题考查等腰三角形的定义和性质,利用分类讨论思想解题是关键.16.y=x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°根据直角三角形的性质得到AF=DFBF=EF根据等腰三角形的性质得到∠DAF=∠ADF∠EFB=∠BEF于是得到结论【详解】解:∵AE⊥解析:y=12-x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.【详解】解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EBF=∠BEF,∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,∴y=12-x+90,故答案为:y=12-x+90.【点睛】本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,一次函数,正确的识别图形是解题的关键.17.100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A∠OBC=∠C根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO∠COP=∠C+∠CBO=2∠CBO再利用角的和差即可解析:100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A,∠OBC=∠C,根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO,∠COP=∠C+∠CBO=2∠CBO,再利用角的和差即可得出∠AOC.【详解】解:如图,连接BO并延长至P,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴OA=OB,OB=OC,∴∠OBA=∠A,∠OBC=∠C,∵∠AOP=∠A+∠ABO=2∠ABO,∠COP=∠C+∠CBO=2∠CBO,∴∠AOC=∠AOP+∠COP =2(∠ABO+∠CBO)=2∠ABC=100°,故答案为:100°.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.18.1或7【分析】证明△ACD≌△BCE(SAS)推出∠DBE=90°根据勾股定理即可解决问题【详解】解:在△ABC中∠ACB=90°AC=BC=4∴AB8①如图1中当点D在线段AB上时绕点C逆时针旋转解析:1或7【分析】证明△ACD≌△BCE(SAS),推出∠DBE=90°,根据勾股定理即可解决问题.【详解】解:在△ABC中,∠ACB=90°,AC=BC=42,∴AB22=+=8,AC BC①如图1中,当点D在线段AB上时,绕点C逆时针旋转90°到CE,连接BE,DE,则∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵CA=CB,∠ACB=90°,∴∠A =∠CBA =45°,∴∠CBE =∠A =45°,∴∠ABE =90°,∵CD =5,∴DE =52,∵BE 2+BD 2=DE 2, ∴AD 2+(8﹣AD )2=(52)2,解得:AD =1或7;②如图2,当点D 在线段AB 的延长线上时,∵5CD =,42AC BC ==∴CD <BC图2这种情况不符合条件③如图3,当点D 在线段AB 的延长线上时,∵5CD =,42AC BC ==∴CD <BC图3这种情况不符合条件综上所述,AD 的长为1或7;故答案为:1或7.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.或【分析】根据尺规作图可知∠APQ=∠B=45°因为为等腰三角形因此有三种情况(1)当AP=AQ 时(2)当AP=PQ 时(3)当AQ=PQ 时进而利用等量关系得出答案;【详解】解:∵∴∠C=∠B=45°解析:21 【分析】根据尺规作图可知∠APQ=∠B=45°,因为APQ 为等腰三角形,因此有三种情况,(1)当AP=AQ 时,(2)当AP=PQ 时,(3)当AQ=PQ 时,进而利用等量关系得出答案;【详解】解: ∵90,1BAC AB AC ∠=︒==∴∠C=∠B=45°= 由作图步骤可得:∠APQ=∠B=45°, ∵APQ 为等腰三角形∴有三种情况(1)当AP=AQ 时∵AP=AQ ,∠APQ=∠B=45°∴∠APQ=∠AQP=45°∴∠PAQ=90°∵∠BAC=90°∴P 和B 点重合不符合题意;(2)当AP=PQ 时,∠APQ=∠B=45°∴∠PAQ=∠AQP=(180°-45°)÷2=67.5°∵∠C=45°再△APC 中,∠APC=180°-∠C-∠PAQ=67.5°∴∠PAQ=∠APC=67.5°∴AC=PC=1∴1(3) )当AQ=PQ 时,∠APQ=∠B=45°∴∠APQ=∠PAQ=45°∴∠BAP=∠PAQ=45°∴AP 为BC 的垂直平分线∴BP=12BC=21 【点睛】 本题考查作图-基本作图,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.60°或30°【分析】由于此高不能确定是在三角形的内部还是在三角形的外部所以要分锐角三角形和钝角三角形两种情况求解【详解】解:分两种情况:①在左图中AB=ACBD ⊥AC ∠ABD=30°∴∠A=60°解析:60°或30°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①在左图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=180602A ︒-∠=︒; ②在右图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故答案为:30°或60°.【点睛】 本题考查了等腰三角形的定义、直角三角形两锐角互余.由于题中没有图,要根据已知画出图形并注意要分类讨论.三、解答题21.(1)见详解;(2)见详解;(35【分析】(1)依据锐角等腰三角形ABC ,点C 在小正方形的顶点上,且△ABC 的面积为10,即可得到点C 的位置;(2)依据直角三角形DEF ,点F 在小正方形的顶点上,且△DEF 的面积为5,即可得到点F 的位置;(3)依据勾股定理进行计算即可得出线段CF 的长.【详解】解:(1)如图所示,△ABC 即为所求;(2)如图所示,△DEF 即为所求;(3)由勾股定理可得CF =22125+=【点睛】此题主要考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题关键.22.(1)见解析;(2)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)利用对称的性质得AB 垂直平分CD ,则BC =BD ,AC =AD ,利用等腰三角形的性质得∠ADE =∠ACB ,再利用AB =AC 得到∠ACB =∠ABF ,AD =AB ,所以∠ABF =∠ADE ,然后证明△ABF ≌△ADE ,从而得到结论.【详解】(1)解:如图,(2)证明:连接AD ,如图,∵点C ,D 关于直线AB 对称,∴AB 垂直平分CD ,∴BC BD =,AC AD =,∴ADE ACB ∠=∠,∵AB AC =,∴ACB ABF ∠=∠,AD AB =,∴ABF ADE =∠∠,在ABF 和ADE 中,AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF ADE SAS ≅△△,∴AF AE =.【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,熟练掌握各知识点是解答本题的关键.23.(1)见解析;(2)等边三角形,理由见解析【分析】(1)根据题意可证ABC AED ≌△△,继而得出结论; (2)根据BC CD ⊥,可知90BCD B ∠=∠=︒,即可判断//AB CD ,进而可证AD CD AC ==,从而得出结论;【详解】(1)证明:∵90B ∠=︒,DE AC ⊥,∴90B AED ∠=∠=︒,∵AC 平分BAD ∠,∴BAC EAD ∠=∠,在ABC 和AED 中,∵ABC AED AB AE BAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC AED ASA ≌△△,∴AC AD =;(2)解:ACD △是等边三角形,理由如下:∵BC CD ⊥,∴90BCD B ∠=∠=︒,∴//AB CD ,∴BAC ACD DAC ∠=∠=∠,∴AD CD AC ==,∴ACD △是等边三角形;【点睛】本题考查了全等三角形的性质与判定、平行线的性质与判定、等边三角形的判定,熟练掌握知识点是解题的关键;24.(11;(2)见解析;(3)32AEC B =∠∠,理由见解析. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半解得AD=DC=1,再结合勾股定理解题即可;(2)由三线合一性质证明DC=DE ,由直角三角形斜边中线等于斜边的一半得到12DE AB =,据此利用等量代换解题即可; (3)由直角三角形斜边中线性质可证BE=ED ,再结合等边对等角解得∠DEC=∠DCE ,最后根据角的和差解题即可.【详解】解:(1)∵AD 是BC 边上的高线∴∠ADC=∠ADB=90°∵∠ACD=45°,∠B=30°∴∠ACD=∠CAD=45°,∠BAD=60°∴AD=DC ,12AD AB =又∵AB=2∴AD=DC=1在Rt △ABD 中,22BD AB AD =-=3∴BC=BD+CD=31+;(2)证明:∵G 是线段CE 的中点,DG ⊥EC∴DC=DE∵CE 是AB 边上的中线,AD ⊥BC ∴12DE AB =∴12DC AB =即AB=2CD ;(3)32AEC B =∠∠,理由如下, ∵12DE AB =,AE=BE ∴BE=ED ∴∠B=∠EDB∵DE=DC∴∠DEC=∠DCE∴∠B=∠EDB=2∠DCE又∵∠AEC=∠B+∠DCE∴∠AEC=3∠DCE∴32AEC B =∠∠. 【点睛】本题考查含30°的直角三角形的性质、直角三角形斜边的中线、三线合一性质、勾股定理、等边对等角等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)52 ;(2)2;(3)32 ;【分析】(1)直接根据等腰直角三角形的性质进行求解即可;(2)过E 作EF ⊥AC ,交AC 的延长线于F ,利用AAS 证明△DEF ≌△BDA ,再根据全等三角形的性质及线段的和差关系即可求解;(3)由题可知 BE=229 ,则DE=BD=229582= ,根据勾股定理可以求出 AD 的长,即可求解.【详解】解:(1)∵△ABC 为直角三角形,且AB=AC ,∴△ABC 为等腰直角三角形,∴ AB :AC :BC=1:1:2 ,∵ BC=10,∴ AB=52 ;(2)如图:过E 作EF ⊥AC ,交AC 的延长线于F ,∴∠F=∠A=90°,∠DEF+∠EDF=90°,∵∠BDE=90°,∴∠EDF+∠BDA=90°,∴∠DEF=∠BDA ,∵BD=DE ,∴△DEF ≌△BDA (AAS ),∴2 ,DF=AB=52,∵AB=AC=52CD=2 ,∴2=EF ,∴222EC CF EF +=(3)由题可知BE=,则=, ∴=,∴CD=AC-AD===.【点睛】本题考查了全等三角形的判定及性质、勾股定理、以及等腰直角三角形的性质,熟练掌握知识点是解题的关键.26.(1)70°,70°;(2)AE= BE+CD .【分析】(1)利用三角形内角和定理即可求得∠ACB ,证明△ACD ≌△BCE ,根据∠AEB=∠CEB-∠CED=∠ADC-∠CEA 即可得出结果;(2)可证明△CDE 为等边三角形CD=BE ,再证明△ACD ≌△BCE 可得BE=AD ,最后根据线段的和差即可证明结论.【详解】解:(1)∵∠CAB=∠CBA=55°,∴CA=CB,∠ACB=70°,∵∠CDE=∠CED=55°,∴CD=CE ,∠DCE=70°,∴∠ACB=∠DCE ,∴∠ACD=∠BCE ,在△ACD 于△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴∠CEB=∠ADC=180°-∠CDE=125°,∴∠AEB=∠CEB-∠CED=70°,故答案为:70°,70°;(2)AE=CD+BE ,理由如下:∵∠ACB=∠DCE=60°,∴等腰△ABC 和等腰△COE 都是等边三角形,∴CA=CB ,CD=DE ,同(1)可证△ACD ≌△BCE ,∴BE=AD ,AE=AD+DE=BE+CD .【点睛】本题考查全等三角形的性质和判定,等边三角形的性质和判定.掌握全等三角形的几种判定定理,并能结合题意灵活选取合适的定理证明全等是解题关键.。
一、选择题1.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒ 2.在ABC 中,已知::5:12:13AC BC AB =,AD 是ABC 的角平分线,DE AB ⊥于点E .若ABC 的面积为S ,则ACD △的面积为( )A .14SB .518SC .625SD .725S 3.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( ) A .6 B .33+C .63D .9 4.如图,△ABC 和△ADE 是等腰直角三角形,且∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .则下列结论不正确的是( )A .BD =CEB .BD ⊥CEC .AF 平分∠CAD D .∠AFE =45° 5.如图,在ABC 中,AB AC =,36A ∠=︒,分别以A 、B 两点为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,AB 交于点D ,E .连接BD .则下列结论不正确的是( )A .BCD △的周长等于AB BC +B .AD BD BC == C .::ABD CBD S S AB BC =△△ D .12ED AB = 6.下列四组线段中,不能组成直角三角形的是( )A .5a =,12b =,13c =B .6a =,8b =,10c =C .7a =,24b =,25c =D .8a =,12b =,15c =7.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .2478.如图,ABC 中,BAC 60∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=.其中正确的有( )A .①②B .①②③④C .①②④D .②④9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 10.如图,AB AC =,CD CE =.过点C 的直线FG 与DE 平行,若38A ∠=︒,则1∠为( )A .42°B .54.5°C .58°D .62.5° 11.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25° 12.如图,在ABC 中,ED //BC ,ABC ∠和ACB ∠的平分线分别交ED 于点F 、G ,若2FG =,6ED =,则DB EC +的值为( )A .3B .4C .5D .9二、填空题13.如图,在ABC 中,10,12,CA CB AB AB ===边上的中线8,CD AE =平分BAC ∠,P 是线段AE 上的一点,,PF AB PG BC ⊥⊥,若:1:2PF PG =,则PG =_________.14.如图,DE ∥BC ,AE =DE =1,BC =3,则线段CE 的长为_____.15.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.16.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.17.如图,在ABC 中,,AB AC AD =是BC 边上的中线,50B ∠=︒,则DAC ∠=___________18.在等边ABC 中,点D 是边BC 上一点,点E 在BA 延长线上,ED EC =,2BD =,3CD =,则BE =____.19.如图,30,AOB OC ︒∠=为AOB ∠内部一条射线,点P 为射线OC 上一点,6OP =,点,M N 分别为,OA OB 边上动点,则MNP △周长的最小值为______.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段DE ,点A 、B 、D 、E 均在小正方形的顶点上.(1)在方格纸中画出以AB 为一边的锐角等腰三角形ABC ,点C 在小正方形的顶点上,且ABC 的面积为10;(2)在方格纸中画出以DE 为一边的直角三角形DEF ,点F 在小正方形的顶点上,且DEF 的面积为5;(3)连接CF ,则线段CF 长为________________.22.在平面直角坐标系中,坐标轴上的三个点(),0A a ,()0,B b ,(),0C c ()0,0a b <>满足()210c a b -++=,F 为射线BC 上的一个动点.(1)c 的值为______,ABO ∠的度数为______.(2)如图()a ,若AF BC ⊥,且交OB 于点E ,求证:OE OC =.(3)如图()b ,若点F 运动到BC 的延长线上,且2FBO FAO ∠=∠,O 在AF 的垂直平分线上,求ABF 的面积.23.已知:在ABC 中,AB AC =,D 是BC 的中点,动点E 在边AB 上(点E 不与点A ,B 重合),动点F 在边AC 上,连结DE ,DF .(1)如图1,当90DEB DFC ∠=∠=︒时,直接写出DE 与DF 的数量关系.(2)如图2,当180DEB DFC ∠+∠=︒(DEB DFC ∠≠∠)时,猜想DE 与DF 的数量关系,并证明.24.如图,在ABC 中,BD 平分,ABC FC ∠与BD 相交于点H ,34180∠+∠=︒,(1)试说明12∠=∠的理由;(2)若FG AC 与点G ,70A ∠=︒,求ACB ∠的度数.25.已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题:(1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,求出∠EDF ,根据角平分线性质求出DE=DF ,根据线段垂直平分线性质求出BD=CD ,证Rt △DEB ≌Rt △DFC ,求出∠EDB=∠CDF ,推出∠BDC=∠EDF ,即可得出答案.【详解】解:如图:过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE ⊥OM ,DF ⊥ON ,OD 平分∠MON ,∴DE=DF ,∵P 为BC 中点,DP ⊥BC ,∴BD=CD ,在Rt △DEB 和Rt △DFC 中,DB DC DE DF =⎧⎨=⎩, ∴Rt △DEB ≌Rt △DFC (HL ),∴∠EDB=∠CDF ,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C .【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.2.B解析:B【分析】根据勾股定理的逆定理可得ABC 为直角三角形,再根据AAS 得出ACD AED ≅,从而得出ACD △的面积=AED 的面积和BE 的长,继而得出AED 的面积和BED 的面积比,即可得出答案【详解】解:∵::5:12:13AC BC AB =,设AC=5k ,BC=12k ,AB=13k ,∴AC 2+BC 2=AB 2∴ABC 为直角三角形,∠C=90°,∵AD 是ABC 的角平分线,DE AB ⊥,∴∠CAD=∠BAD ,∠C=∠AED =90°,∵AD=AD ,∴ACD AED ≅, ∴△△S S =ACD AED ,AE=AC=5k ,∴BE=13k-5k=8k ,∵AED 和BED 同高, ∴8:5△BE △S :S =D AED ,∵ABC 的面积为S , ∴518△S =ACD S . 故选:B【点睛】本题考查了勾股定理的逆定理、全等三角形的性质与判定,根据同高得出8:5△BE △S :S =D AED 是解题的关键.3.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =,故31DP ,同法可得2PF =,则312233PD PE PF ++=-++=+.故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键. 4.C解析:C【分析】作AM ⊥BD 于M ,AN ⊥EC 于N ,设AD 交EF 于O .证明△BAD ≌△CAE ,利用全等三角形的性质一一判断即可.【详解】解:如图,作AM ⊥BD 于M ,AN ⊥EC 于N ,设AD 交EF 于O .∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△BAD 与△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴EC =BD ,∠BDA =∠AEC ,故A 正确,∵∠DOF =∠AOE ,∴∠DFO =∠EAO =90°,∴BD ⊥EC ,故B 正确,∵△BAD ≌△CAE ,AM ⊥BD ,AN ⊥EC ,∴AM =AN ,∴FA 平分∠EFB ,∴∠AFE =45°,故D 正确,若C 成立,则∠EAF =∠BAF ,∵∠AFE =∠AFB ,∴∠AEF =∠ABD =∠ADB ,推出AB =AD ,由题意知,AB 不一定等于AD ,所以AF 不一定平分∠CAD ,故C 错误,故选:C .【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.D解析:D【分析】根据MN 是AB 的垂直平分线,等腰三角形的性质、角平分线的性质逐条判断即可.【详解】解:由作图可知,MN 是AB 的垂直平分线,∴BD=AD ,BCD △的周长等于BC+DC+BD=BC+DC+AD=BC+AC ,∵AB AC =∴BCD △的周长=AB BC +,A 正确;∵AB AC =,36A ∠=︒,∴∠ABC=∠C=72°,∵BD=AD ,∴36A ABD ∠=∠=︒,∠BDC=72°=∠C ,BC=BD=AD ,B 正确;∵36ABD CBD ∠=∠=︒,∴点D 到AB 、BC 的距离相等,∴::ABD CBD S S AB BC =△△C 正确; 如果12ED AB =,则DE=AE , ∠A=45°,与题意不符,D 错误;故答案为:D .【点睛】 本题考查了垂直平分线的作法和等腰三角形的性质与判定以及角平分线的性质,解题关键是熟知垂直平分线的性质和等腰三角形的性质,并能够灵活运用这些知识进行推理. 6.D解析:D【分析】根据勾股定理的逆定理,只要判断两个较小的数的平方和是否等于最长边的平方即可.【详解】A.∵52+122=132,∴此三角形是直角三角形,不符合题意;B.∵62+82=100=102,∴此三角形是直角三角形,不符合题意;C.∵72+242=625=252,∴此三角形是直角三角形,不符合题意;D.∵82+122=208≠152,∴此三角形不是直角三角形,符合题意;故选:D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.8.C解析:C【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=60°,从而得到∠ABC为等边三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt △BED 和Rt △CFD 中DE DF BD DC⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.9.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.B解析:B【分析】根据等腰三角形的性质求得∠ACB 与∠CDE 度数,再利用两直线平行,内错角相等求∠1即可.【详解】解:∵AB=AC ,∠A=38︒,∴∠B=∠ACB=1802A ︒-∠=218038︒-︒=71︒, ∵CD=CE ,∴∠CED=∠CDE =2180ACB ︒-∠=218071︒-︒=54.5︒, ∵DE //FG ,∴∠1=∠CED=54.5︒,故选:B .【点睛】此题考查等腰三角形的性质、平行线的性质,关键是根据等腰三角形中角度的求解. 11.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 12.B解析:B【分析】根据平行线的性质和等腰三角形的判定证得EG =EB ,DF =DC 即可求得结果.【详解】解:∵ED ∥BC ,∴∠DFB =∠FBC ,∠EGC =∠GCB ,∵∠DBF =∠FBC ,∠ECG =∠GCB ,∴∠DFB =∠DBF ,∠ECG =∠EGC ,∴BD =DF ,CE =GE ,∵FG =2,ED =6,∴DB +EC =DF +GE =ED−FG =6−2=4,故选:B .【点睛】本题考查等腰三角形的判定和性质、角平分线的定义,平行线的性质等知识,解题的关键是等腰三角形的证明.二、填空题13.【分析】连接PBPC 过P 作PH ⊥AC 垂足为H 设PF=x 求出CD 的长从而算出△ABC 的面积再根据S △ABC=S △ABP+S △ACP+S △BCP=求出x 值可得结果【详解】解:连接PBPC 过P 作PH ⊥AC 解析:167【分析】连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,设PF=x ,求出CD 的长,从而算出△ABC 的面积,再根据S △ABC =S △ABP +S △ACP +S △BCP =21x ,求出x 值,可得结果.【详解】解:连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,∵AP 平分∠BAC ,∴PF=PH ,设PF=x ,则PH=x ,PG=2x ,∵CA=CB=10,CD 是AB 中线,AB=12,∴AD=BD=6,则=8,∴S △ABC =12AB CD ⨯⨯=48, 又S △ABC =S △ABP +S △ACP +S △BCP =()12AB PF AC PH BC PG ⨯⋅+⋅+⋅ =()11210202x x x ⨯++ =21x=48解得:x=167, 即PG=167, 故答案为:167.【点睛】本题考查了等腰三角形三线合一的性质,角平分线的性质,勾股定理,三角形的面积,解题的关键是利用△ABC的面积列出方程.14.【分析】由平行线的性质可得∠ADE=∠B由AE=DE=1可得∠ADE=∠DAE易得∠DAE=∠B可得AC=BC易得结果【详解】解:∵DE∥BC∴∠ADE=∠B∵AE =DE=1∴∠ADE=∠DAE∴∠解析:【分析】由平行线的性质可得∠ADE=∠B,由AE=DE=1,可得∠ADE=∠DAE,易得∠DAE=∠B,可得AC=BC,易得结果.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵AE=DE=1,∴∠ADE=∠DAE,∴∠DAE=∠B,BC=3,∴AC=BC=3,∴CE=AC﹣AE=3﹣1=2,故答案为:2.【点睛】本题主要考查了平行线的性质和等腰三角形的性质等,关键是运用性质定理得出AC=BC=3.15.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO再用外角的性质求解即可【详解】解:由作图可知PO=PA∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA,∴∠MON=∠PAO=33°,∠APN=∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.16.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.17.40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC然后根据直角三角形的两锐角互余得到答案即可【详解】解:∵AB=ACAD是BC边上的中线∴AD⊥BC∠BAD=∠CAD∴∠B+∠BAD=90解析:40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC,然后根据直角三角形的两锐角互余得到答案即可.【详解】解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=50°,∴∠BAD=40°,∴∠CAD=40°,故答案为:40.【点睛】考查了等腰三角形的性质,理解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键,难度不大.18.【分析】作EG∥AC可得等边三角形EBG利用全等三角形的性质证明BD=CG即可解决问题【详解】作EG∥AC交BC的延长线于G∵△ABC是等边三角形∴∠ACB=60°∴∠G=∠ACB=60°又∠B=6解析:322【分析】作EG∥AC,可得等边三角形EBG,利用全等三角形的性质证明BD=CG即可解决问题.【详解】作EG∥AC交BC的延长线于G,∵△ABC是等边三角形,∴∠ACB=60°∴∠G=∠ACB=60°,又∠B=60°∴△EBG是等边三角形,∴EB=EG=BG∴CG=AE,∵ED=EC∴∠EDC= ∠ECD,又∠B=∠G∴∠BED= ∠GEC∴△BED≌△GEC (AAS)∴BD=CG=2∴BE=BG=BD+CD+CG=2+3+2=3+22,故答案为:3+22【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.19.6【分析】作点P关于OA的对称点P1点P关于OB的对称点P2连结P1P2与OA的交点即为点M与OB的交点即为点N则此时MN符合题意求出线段P1P2的长即可【详解】解:作点P关于OA的对称点P1点P关解析:6【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可.【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,△PMN的最小周长为PM+MN+PN=P1M+MN+P2N=P1P2,即为线段P1P2的长,连结OP1、OP2,则OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=6,即△PMN的周长的最小值是6.故答案是:6.【点睛】本题考查了等边三角形的性质和判定,轴对称−最短路线问题的应用,关键是确定M、N的位置.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见详解;(2)见详解;(3)5【分析】(1)依据锐角等腰三角形ABC,点C在小正方形的顶点上,且△ABC的面积为10,即可得到点C的位置;(2)依据直角三角形DEF,点F在小正方形的顶点上,且△DEF的面积为5,即可得到点F的位置;(3)依据勾股定理进行计算即可得出线段CF的长.【详解】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;(3)由勾股定理可得CF22125+=【点睛】此题主要考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题关键.22.(1)1; 45°;(2)见解析;(3)933 44【分析】(1)根据非负数的性质可求得c的值,得到OA=OB,即可求得∠ABO的度数;(2)证明△AOE≅△BOC即可证明OE OC=;(3)连结OF,过点F作FG x⊥轴,垂足为点G,根据线段垂直平分线的性质得到OA=OF,证明∠OBC=30°,根据直角三角形的性质、三角形的面积公式计算,得到答案.【详解】(1)∵()210c a b -++=,∴10c -=,0a b +=,∴1c =,∵A(a ,0), B(0,b),∴OA=OB ,∵∠AOB=90°,∴△AOB 是等腰直角三角形,∴∠ABO=45°,故答案为:1;45°;(2)∵AF BC ⊥,∴90AOE BFE ∠=∠=︒,∵AEO BEF ∠=∠,∴OBC OAE ∠=∠,由(1)得:OA=OB ,在AOE △和BOC 中, AO BO AOE BOC OBC OAE =⎧⎪∠=∠⎨⎪∠=∠⎩,∴AOE BOC ≅△△(AAS),∴OE OC =;(3)连结OF ,过点F 作FG x ⊥轴,垂足为点G ,∵O 在AF 的垂直平分线上∴AO OF =,∴OAF OFA x ∠=∠=,∴2GOF OAF OFA x ∠=∠+∠=∵22FBO FAO x ∠=∠=,OB OA OF ==,∴2OFC OBF x ∠=∠=,∴4BCO COF OFB x ∠=∠+∠=,∵90OBC OCB ∠+∠=︒,∴690x =,解得15x =,∴230OBC GOF x ∠=∠==︒,∵1c =,∴C(1,0),1OC =,∵90BOC ∠=°,30OBC ∠=︒,∴22BC OC ==,OB ==∴OA OF OB ===同理可得:FG =,∴1AC AO OC =+=∴)111912224ABF ACB ACF S S S AC FG AC OB =+=⋅+⋅==+△△△ 【点睛】本题考查了全等三角形的判定和性质、线段垂直平分线的性质、等腰直角三角形的性质、含30度角的直角三角形的性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.23.(1)DE=DF ;(2)DE=DF ,证明见解析【分析】(1)由“AAS”可证△BDE ≌△CDF ,可得DE=DF ;(2)连接AD ,作DG ⊥AB 于点G ,DH ⊥AC 于点H ,由补角的性质可得∠GED=∠DFC ,由等腰三角形的性质可得∠BAD=∠CAD ,由角平分线的性质可得DG=DH ,可证△EGD ≌△FHD ,可得DE=DF .【详解】解:(1)DE=DF ,理由如下:∵AB=AC ,D 是BC 的中点,∴∠B=∠C ,BD=CD ,且∠DEB=∠DFC=90°,在△BDE 和△CDF 中, 90DEB DFC B C BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△BDE ≌△CDF (AAS ),∴DE=DF ;(2)猜想:DE=DF ,理由如下:连接AD ,作DG ⊥AB 于点G ,DH ⊥AC 于点H ,∴∠EGD=∠FHD=90°,∵∠DEB+∠GED=180°,∠DEB+∠DFC=180°,∴∠GED=∠DFC ,∵AB=AC ,D 是BC 的中点,∴∠BAD=∠CAD ,∴DG=DH ,在△EGD 和△FHD 中,GED DFC EGD FHD DG DH ∠∠⎧⎪∠∠⎨⎪⎩===,∴△EGD ≌△FHD (AAS ),∴DE=DF .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.24.(1)见解析;(2)70°【分析】(1)求出∠3+∠FHD=180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD ,根据角平分线的定义得出∠ABD=∠2即可.(2)根据FG ⊥AC ,求出∠1,可得∠2,从而得到∠ABC ,利用三角形内角和得到∠ACB .【详解】解:(1)∵∠3+∠4=180°,∠FHD=∠4,∴∠3+∠FHD=180°,∴FG ∥BD ,∴∠1=∠ABD ,∵BD 平分∠ABC ,∴∠ABD=∠2,∴∠1=∠2;(2)∵FG ⊥AC ,∠A=70°,∴∠1=90°-70°=20°,∴∠2=∠ABD=∠1=20°,∴∠ABC=∠2+∠ABD=40°,∵∠A+∠ABC+∠ACB=180°,∴∠ACB=180°-∠A-∠ABC=180°-70°-40°=70°.【点睛】本题考查了平行线的性质和判定和角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.25.(1)见解析;(2)4【分析】(1)连接AD 由AE AF =可得AEF 是等腰三角形,由三条角平分线交于一点可证AD 平分BAC ∠即可;(2)在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,易证AEF 为等边三角形,可得2AE AF EF x ===,60AEF ∠=︒,可证BED ≌BMD (SAS )可得DM DE =,82BM BE x ==-,BED BMD ∠=∠60DMN AEF ∠=∠=︒,再证NCD ≌FCD (SAS )可得,52DN DF CN CF x ===-,可证DMN 为等边三角形,由BC BM MN NC =++构造方程解之即可.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-,又DE DF =, ∴DM DN DE x ===, 又60DMN ∠=︒, ∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=,即2x =,∴24EF x ==.【点睛】本题考查等腰三角形性质,角平分线性质,等边三角形判定与性质,三角形全等判定与性质,利用BC BM MN NC =++构造方程是解题关键.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC,∴∠CAE=∠CEA,∴AC=EC,∵AC≠EC,∴DA≠DE;若DA=AE,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。
18-9AB E FC D23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=FB.FC.24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若AB a FB EC ==,,求AC 的长.25.(本题8分)如图:已知△ABC 中,AB=5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 在BC 上.(1) 当△PQC 的面积等于四边形PABQ 面积的31,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.(3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长.23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA ,命题获证。
24、法一:连接AD FC ,;法二:过F E 或者 做平行线,命题获证,在命题获证的基础上第二问求出。
25、(1)用相似CPQ Δ∽CAB Δ(2)设出x PC 表示出CQ ,利用周长列出方程,求出PC(3)当∠PQM=90°时(画图)过P 作PN ⊥AB 于N设PQ=QM=PN=MN=a∠QMB=∠ANP=90°∠B=90°-∠A=∠APN∴△MQB ∽△NAP ∽△CAB∴AN:PN=AC:BC ,BM:QM=BC:BC∴MB=3/4a ,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+a=5∴PQ=a=60/37当∠QPM=90°时同理有PQ=60/37当∠PMQ=90°时过P 作PN ⊥AB 于N,过Q 作QR ⊥AB 于R,过M 作MS ⊥PQ 于S设PN=QR=a则PQ=MN=2a类似前两种情况可得△RQB ∽△NAP ∽△CAB∴RB=3/4a,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+2a=5∴a=60/49 ∴PQ=2a=120/4926、(1)1 ::0.8=X :4.08 求出甲树高X=5.1米(2)先求墙壁上的影长展开在地上的距离 1 :0.8=1.2:X 求出X=0.96米得出落在地面上的影长一共为0.96+2.4=3.36米则 1:0.8=X:3.36 求出乙树高X=4.2米(3)台阶高0.3米投影到地面则影长为1:0.8=0.3:X 求出X=0.24 则在水平面上的总影长为0.24+0.2+4.4=4.84米则1:0.8=X:4.84求出丙树高X=6.05米(4)1.6:2=X:3.2求出X=2.56米则1:0.8=2.56:X 求出斜面上的影子落在水平面上的影长X=2.048米则丁树在水平面上的总影长为2.048+2.4=4.448 则1:0.8=X:4.448 求出丁树高X=5.56米。
初二数学证明题假设我们要证明以下命题:命题:一元二次方程 ax²+bx+c=0 的两个根的和等于 -b/a,两个根的乘积等于 c/a。
证明:首先,假设一元二次方程 ax²+bx+c=0 的两个根为 x₁和 x₂。
我们可以用求根公式来表示 x₁和 x₂:x₁ = (-b + √(b² - 4ac)) / (2a) (1)x₂ = (-b - √(b² - 4ac)) / (2a) (2)我们将 x₁和 x₂代入到等式中,得到:x₁ + x₂ = (-b + √(b² - 4ac)) / (2a) + (-b - √(b² - 4ac)) / (2a) ...........(3)我们可以将分数相加,得到:x₁ + x₂ = (-2b / (2a)) (4)我们可以将 (-2b) 化简为 -b,我们得到:x₁ + x₂ = -b/a (5)这证明了一元二次方程的两个根的和等于 -b/a。
接下来,我们将 x₁和 x₂代入到等式中,得到:x₁ * x₂ = [(-b + √(b² - 4ac)) / (2a)] * [(-b - √(b² - 4ac)) /(2a)] (6)我们可以将分数相乘,得到:x₁ * x₂ = (b² - (b² - 4ac)) / (4a²) (7)我们可以将 (b² - (b² - 4ac)) 化简为 4ac,我们得到:x₁ * x₂ = c/a (8)这证明了一元二次方程的两个根的乘积等于 c/a。
综上所述,我们证明了一元二次方程 ax²+bx+c=0 的两个根的和等于 -b/a,两个根的乘积等于 c/a。
[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在△ABC中,若AB=AC,点D是BC的中点,则下列结论正确的是()A. AD垂直于BCB. BD=DCC. ∠BAC=90°D. ∠ABC=∠ACB2. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线平行,则它们的任意一对对应角相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列关于全等三角形的判定,错误的是()A. SASC. AASD. SSD5. 在△ABC中,若∠A=60°,∠B=70°,则边BC与边AC的长度关系是()A. BC > ACB. BC = ACC. BC < ACD. 无法确定6. 下列关于相似三角形的性质,正确的是()A. 对应角相等B. 对应边成比例C. 对应角互补D. 对应边相等7. 若等腰三角形的底角为45°,则其顶角的度数是()A. 45°B. 90°C. 135°D. 180°8. 在平行四边形ABCD中,若AB=6cm,AD=8cm,则对角线AC的长度可能是()A. 4cmB. 10cmC. 12cm9. 下列关于圆的性质,错误的是()A. 圆的半径都相等B. 圆的直径是半径的两倍C. 圆的周长与半径成正比D. 圆的面积与半径成正比10. 在直角坐标系中,点P(a,b)关于y轴对称的点是()A. (a,b)B. (a,b)C. (a,b)D. (b,a)二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
()2. 平行线的同旁内角互补。
()3. 两个等腰三角形的底角相等,则这两个三角形全等。
()4. 在直角三角形中,斜边上的中线等于斜边的一半。
一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+ 4.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 5.下列各组线段a 、b 、c 中不能组成直角三角形的是( ) A .a =7,b =24,c =25B .a =4,b =5,c =6C .a =3,b =4,c =5D .a =9,b =12,c =15 6.数学课上,探究角的平分线的作法时,小宇用直尺和圆规作∠AOB 的平分线,方法如下:如图,(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ; (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C ;(3)画射线OC .射线OC 即为所求. 其中的道理是,作出△OMC ≌△ONC ,根据全等三角形的性质,得到∠AOC =∠BOC ,进而得到OC 是∠AOB 的平分线. 其中,△OMC ≌△ONC 的依据是( )A .SSSB .SASC .ASAD .AAS7.如图,在Rt ABC △中,CA CB =,D 为斜边AB 的中点,Rt EDF ∠在ABC 内绕点D 转动,分别交边AC ,BC 于点E ,F (点E 不与点A ,C 重合),下列说法正确的是( )①45DEF ︒∠=;②222BF AE EF ;③2CD EF CD <≤A .①②B .①③C .②③D .①②③ 8.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个9.如图,在ABC 中,AB AC =,36A ∠=︒,分别以A 、B 两点为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,AB 交于点D ,E .连接BD .则下列结论不正确的是( )A .BCD △的周长等于AB BC + B .AD BD BC == C .::ABD CBD S S AB BC =△△ D .12ED AB = 10.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .611.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .12 12.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( )A .65°B .105°C .55°或105°D .65°或115° 二、填空题13.如图,在ABC 中,AE BC ⊥于点,E BD AC ⊥于点D .点F 是AB 的中点,连接,DF EF ,设,DFE x ACB y ∠=∠=︒︒,求y 关于x 的函数关系式_________.14.在△ABC 中,∠ABC =48°,点D 在BC 边上,且满足∠BAD =18°,DC =AB ,则∠CAD =_____度.15.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列结论:①1902BOC A ∠=+∠︒:②点O 到ABC 各边的距离相等;③EF BE CF =+:④1()2ADAB AC BC=+-;⑤设OD m=,AE AF n+=,则AEFS mn=△;其中正确的结论是______.16.已知抛物线223y x x=--与x轴交于点A,点(1,2)B与点A位于y轴两侧,点P在点B的下方,且在对称轴上,当PAB△为等腰三角形时,BP的长为______________.17.如图,在△ABC中,∠BAC的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E、F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③BFDCEDS BFS CE∆∆=;④EF//BC;一定成立的结论是______(请将正确结论的序号填在横线上)18.如图,AD是ABC的角平分线,DE、DF分别是ABD△和ACD△的高.若83AB AC+=,24ABCS=,120EDF∠=︒,则AD的长为______.19.在等边ABC中,点D是边BC上一点,点E在BA延长线上,ED EC=,2BD=,3CD=,则BE=____.20.如图,△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC,分别交AB、AC于点E、F.那么下列结论:①BD=DC;②△BED和△CFD都是等腰三角形;③点D是EF的中点;④△AEF的周长等于AB与AC的和.其中正确的有______.(只填序号)三、解答题21.在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=__度;(2)如图2,如果60BAC ∠=︒,求BCE ∠的度数是多少?(3)设BAC α∠=,BCE β∠=.①如图3,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,请直接写出α,β之样的数量关系,不用证明.22.如图,在Rt ABC △中,90C ∠=︒,8AC =,10AB =,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.23.如图,在ABC 中,5AB AC ==,3BC =,点D 在AC 边上且点D 到点A 的距离与到点B 的距离相等.(1)尺规作图:作出点D ,不写作法,保留作图痕迹;(2)求BDC 的周长.24.如图,在△ABC 中,AC=BC ,∠ACB=90°,延长CA 至点D ,延长CB 至点E ,使AD=BE ,连接AE ,BD ,交点为O .(1)求证:OB=OA ;(2)连接OC ,若AC=OC ,则∠D 的度数是 度.25.如图,已知AB =AC ,E 为AB 上一点,ED ∥AC ,BD =CD ,求证:ED =AE .26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC 所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C由角平分线的定义和平行线性质易证△BME 和△CNE 是等腰三角形,即BM =ME ,CN =NE ,由此可得△AMN 的周长=AB +AC .【详解】解:∵∠ABC 和∠ACB 的平分线交于点E ,∴∠ABE =∠CBE ,∠ACE =∠BCE ,∵MN //BC ,∴∠CBE =∠BEM ,∠BCE =∠CEN ,∴∠ABE =∠BEM ,∠ACE =∠CEN ,∴BM =ME ,CN =NE ,∴△AMN 的周长=AM +ME +AN +NE =AB +AC ,∵AB =AC =4,∴△AMN 的周长=4+4=8.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键. 5.B解析:B【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的和的平方是否等于最长边的平方,分别对每一项进行分析,即可得出答案;【详解】A 、222724=25+ ,能构成直角三角形;B 、22245=416+≠ ,不能构成直角三角形;C 、22234=5+ ,能构成直角三角形;D 、222912=225=15+,能构成直角三角形;故选:B .【点睛】本题考查了勾股定理的逆定理,用到的知识点是已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形;6.A解析:A【分析】根据角平分线的作图方法解答即可;【详解】根据角平分线的作法可知,OM=ON ,CM=CN ,又∵OC 是公共边,∴△OMC ≌△ONC 的根据是“SSS”,【点睛】本题考查了作图-基本做图,全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.7.A解析:A【分析】①证明∠A=∠DCB ,AD=CD ,∠ADE=∠CDF ,根据ASA 证明△ADE CDF ≅∆得ED=FD ,从而可判断①;②运用SAS 证明△EDC FDB ≅∆,得到CE BF =,再由222CE CF EF +=即可判断②;③当DE AC ⊥时,DE最短,从而可得2CD DE CD ≤<,整理后代换即可判断③.【详解】解:①∵,90CA CB ACB =∠=︒,∴△ABC 是等腰直角三角形∴∠45A B =∠=︒∵点D 是AB 的中点,∴,DA DB DC CD AB ==⊥,∠45DCB DCA =∠=︒∵∠EDF ADC =∠∴∠EDF EDC ADC EDC -∠=∠-∠∴∠ADE CDF =∠在△ADE 和△CDF 中A DCBAD CDADE CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE CDF ≅∆∴,DE DF AE CF ==∴△DEF 是等腰直角三角形∴∠45DEF =︒,故①正确;②∵∠90EDF CDB ︒=∠=∴∠EDF CDF CDB CDF -∠=∠-∠∴∠EDC FDB =∠在△EDC 与△FDB 中DE DFEDC FDBDC DB=⎧⎪∠=∠⎨⎪=⎩∴△EDC FDB ≅∆∴CE BF =∵222CE CF EF +=∴222BF AE EF ,故②正确; ③∵△DEF 是等腰直角三角形,∴EF =∵当DE AC ⊥时,2DE ==最短,∴DE CD ≤<∴CD ≤<即CD EF ≤<,故③错误; ∴综上,正确的是①②,故选:A .【点睛】 此题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.8.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.9.D解析:D【分析】根据MN 是AB 的垂直平分线,等腰三角形的性质、角平分线的性质逐条判断即可.【详解】解:由作图可知,MN 是AB 的垂直平分线,∴BD=AD ,BCD △的周长等于BC+DC+BD=BC+DC+AD=BC+AC ,∵AB AC =∴BCD △的周长=AB BC +,A 正确;∵AB AC =,36A ∠=︒,∴∠ABC=∠C=72°,∵BD=AD ,∴36A ABD ∠=∠=︒,∠BDC=72°=∠C ,BC=BD=AD ,B 正确;∵36ABD CBD ∠=∠=︒,∴点D 到AB 、BC 的距离相等,∴::ABD CBD S S AB BC =△△C 正确; 如果12ED AB =,则DE=AE , ∠A=45°,与题意不符,D 错误;故答案为:D .【点睛】 本题考查了垂直平分线的作法和等腰三角形的性质与判定以及角平分线的性质,解题关键是熟知垂直平分线的性质和等腰三角形的性质,并能够灵活运用这些知识进行推理. 10.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.11.B解析:B【分析】由作法知EF 是AC 的垂直平分线,可得AP=CP ,线段PC PD +的最小就是PA+PD ,当A 、P 、D 三点共线时最短,由点D 是底边BC 的中点,可BD=CD =6,由AB=AC ,可得AD BC ⊥,在Rt △ABD 中,由勾股定理得:8即可.【详解】解:连结PA ,由作法知EF 是AC 的垂直平分线,∴AP=CP ,∴PC+PD=PA+PD ,线段PC PD +的最小就是PA+PD ,当A 、P 、D 三点共线时最短,∵点D 是底边BC 的中点,∴BD=CD=11BC=12=622⨯, ∵AB=AC ,∴AD BC ⊥,在Rt △ABD 中,由勾股定理得:8=,(PC+PD )最小=(PA+PD )最小=AD=8.故选择:B .【点睛】本题考查垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,掌握垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,关键是利用垂直平分线将PC转化为PA,找到P、A、D三点共线时最短.12.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D.【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.二、填空题13.y=x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°根据直角三角形的性质得到AF=DFBF=EF根据等腰三角形的性质得到∠DAF=∠ADF∠EFB=∠BEF于是得到结论【详解】解:∵AE⊥解析:y=12-x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.【详解】解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EBF=∠BEF,∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,∴y=12-x+90,故答案为:y=12-x+90.【点睛】本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,一次函数,正确的识别图形是解题的关键.14.66【分析】作辅助线构建等腰三角形ABE证明AB=BE再证明△ABD≌△ACE得∠CAE=∠BAD=18°根据角的和可得结论【详解】解:如图在线段CD上取一点E使CE=BD连接AE∴CE+DE=BD解析:66【分析】作辅助线,构建等腰三角形ABE,证明AB=BE,再证明△ABD≌△ACE,得∠CAE=∠BAD=18°,根据角的和可得结论.【详解】解:如图,在线段CD上取一点E,使CE=BD,连接AE,∴CE+DE=BD+DE,即CD=BE,∵CD=AB,∴AB =BE ,∴∠BAE =∠BEA ,∵∠B =48°,∴∠BAE =∠BEA =66°,∵∠B =48°,∠BAD =18°,∴∠ADE =66°=∠AED ,∴AD =AE ,∠ADB =∠AEC ,在△ABD 和△ACE 中,BD CE ADB AEC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠EAC =∠BAD =18°,∴∠CAD =∠CAE +∠DAE =∠BAD +∠DAE =66°.故答案为:66.【点睛】本题考查了三角形的内角和定理,三角形全等的性质和判定,等腰三角形的性质和判定,正确作辅助线,构建等腰三角形是本题的关键.15.①②③④【分析】由∠ABC 和∠ACB 的平分线相交于点O 可得结合三角形的内角和定理可得再次利用内角和定理可判断①如图1过点O 作OM ⊥AB 于M 作ON ⊥BC 于N 结合利用角平分线的性质可判断②利用平行线的性 解析:①②③④【分析】由∠ABC 和∠ACB 的平分线相交于点O ,可得11,,22OBC ABC OCB ACB ∠=∠∠=∠结合三角形的内角和定理可得190,2OBC OCB A ∠+∠=︒-∠再次利用内角和定理可判断①,如图1,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,结合,OD AC ⊥ 利用角平分线的性质可判断②,利用平行线的性质与角平分线的定义证明,BE OE CF OF ==可判断③,如图2,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,证明,BNO BMO ≌ 可得,BN BM = 同理可得:,,AM AD CD CN == 从而可判断④,如图2,由1122AEF AOE AOF S S S AE OM AF OD =+=+,结合,,OM OD m AE AF n ==+= 从而可判断⑤.【详解】解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,11,,22OBC ABC OCB ACB ∴∠=∠∠=∠180,ABC ACB A ∠+∠=︒-∠ ∴()()11118090,222OBC OCB ABC ACB A A ∠+∠=∠+∠=︒-∠=︒-∠ ∴()111801809090,22BOC OBC OCB A A ⎛⎫∠=︒-∠+∠=︒-︒-∠=︒+∠ ⎪⎝⎭故①符合题意;如图1,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,∵OB 平分∠ABC ,OC 平分∠ACB ,,,OM ON ON OD ∴==,OM ON OD ∴== 故②符合题意;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=∠OBE ,∠OCB=∠OCF ,∵//EF BC ,∴∠OBC=∠EOB ,∠OCB=∠FOC ,∴∠EOB=∠OBE ,∠FOC=∠OCF ,∴BE=OE ,CF=OF ,∴EF=OE+OF=BE+CF , 故③符合题意;如图2,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,90,BNO BMO ∴∠=∠=︒OB 平分,ABC ∠,MBO NBO ∴∠=∠,BO BO =(),BNO BMO AAS ∴≌,BN BM ∴=同理可得:,,AM AD CD CN ==()()1122AB AC BC AM BM AD CD BN CN ∴+-=+++-- ()112,22AM AD AD AD =+=⨯= 故④符合题意, 如图2,由②得:ON=OD=OM=m , ∴1122AEF AOE AOF S S S AE OM AF OD =+=+ ()1,2m AE AF =+ AE AF n +=,1,2AEF S mn ∴= 故⑤不符合题意. 故答案为:①②③④.【点睛】本题考查的是角平分线的定义与性质,平行线的性质,三角形的内角和定理的应用,全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.16.2或4或【分析】首先根据题意求得抛物线与x 轴交点的坐标继而由勾股定理解得的长再运用分类讨论的方法按为底或为腰两种情况逐一解题即可【详解】解:令得与点位于y 轴两侧抛物线的对称轴为当为等腰三角形时如图若解析:2或4或【分析】首先根据题意,求得抛物线与x 轴交点A 的坐标,继而由勾股定理解得AB 的长,再运用分类讨论的方法,按AB 为底或AB 为腰两种情况逐一解题即可.【详解】解:令0y =,得2230x x --=(3)(1)0x x ∴-+=123,1x x ∴==- (1,2)B 与点A 位于y 轴两侧,(1,0)A ∴-AB ∴==抛物线223y x x =--的对称轴为12b x a=-= 当PAB △为等腰三角形时,如图,若AB 为腰,以点B 为圆心,BA 为半径作弧,在点B 的下方,交抛物线对称轴1x =于点1P ,则1==22BP AB ;若AB 为腰,以点A 为圆心,AB 为半径作弧,在点B 的下方,交抛物线对称轴1x =于点2P ,则2==22AP AB 根据等腰三角形三线合一性质得,2=2=22=4B BP y ⨯;若AB 为底,作AB 的垂直平分线,在点B 的下方,交抛物线对称轴1x =于点3P ,则33AP BP =设3(1,)P y(1,2)B ,(1,0)A -2222(11)(0)(11)(2)y y ∴++-=-+-即224+44y y y =-+ 0y ∴=3(1,0)P ∴32BP ∴=综上所述,BP 的长为2或4或22故答案为:2或4或22【点睛】本题考查二次函数与一元二次方程、抛物线与x 轴的交点、勾股定理、等腰三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.①②③【分析】由三角形ABC 中∠BAC 的平分线交BC 于点D 过点D 作DE ⊥ACDF ⊥AB 根据角平分线的性质可得DE=DF ∠ADE=∠ADF 然后根据全等三角形的性质可得AF=AE 继而证得①∠AFE=∠A解析:①②③【分析】由三角形ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,根据角平分线的性质,可得DE=DF ,∠ADE=∠ADF ,然后根据全等三角形的性质,可得AF=AE ,继而证得①∠AFE=∠AEF ;又由线段垂直平分线的判定,可得②AD 垂直平分EF ;然后利用三角形的面积公式求解即可得③BFD CED S BF S CE∆∆=,EF 平行BC 不能判断,于是可得④ . 【详解】解:①∵三角形ABC 中,∠BAC 的平分线交BC 于点D ,DE ⊥AC ,DF ⊥AB ,∴∠ADE=∠ADF ,DF=DE ,∵AD=AD ,∴Rt △ADF ≌Rt △ADE (HL ),∴AF=AE ,∴∠AFE=∠AEF ,故正确;②∵DF=DE ,AF=AE ,∴点D 在EF 的垂直平分线上,点A 在EF 的垂直平分线上,∴AD 垂直平分EF ,故正确;③∵12BFD DF S BF ∆=•,S △CDE =12CE DE •,DF=DE , ∴BFD CED S BF S CE∆∆=;故正确; ④∵∠EFD 不一定等于∠BDF ,∴EF 不一定平行BC .故错误.故答案为:①②③.【点睛】此题考查了角平分线的性质、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.18.【分析】先证明△ADE ≌△ADF 可得:DE =DF ∠ADE =∠ADF ==×120°=60°再利用面积法求出DE 的值再根据直角三角形的性质即可解决问题【详解】解:∵DEDF 分别是△ABD 和△ACD 的高∴解析:【分析】先证明△ADE ≌△ADF ,可得:DE =DF ,∠ADE =∠ADF =12EDF ∠=12×120°=60°,再利用面积法求出DE 的值,再根据直角三角形的性质即可解决问题.【详解】解:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90°,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴DE=DF,∠ADE=∠ADF=12EDF∠=12×120°=60°,∴S△ABC=12•AB•DE+12•AC•DF=12•DE(AB+AC)=24,∵83AB AC+=,∴DE=23,∵∠ADE=∠ADF=60°,∴∠DAE=30°,∴AD=2DE=43.故答案是:43.【点睛】本题考查全等三角形的判定和性质,直角三角形的性质,角平分线等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考常考题型.19.【分析】作EG∥AC可得等边三角形EBG利用全等三角形的性质证明BD=CG即可解决问题【详解】作EG∥AC交BC的延长线于G∵△ABC是等边三角形∴∠ACB=60°∴∠G=∠ACB=60°又∠B=6解析:322+【分析】作EG∥AC,可得等边三角形EBG,利用全等三角形的性质证明BD=CG即可解决问题.【详解】作EG∥AC交BC的延长线于G,∵△ABC是等边三角形,∴∠ACB=60°∴∠G=∠ACB=60°,又∠B=60°∴△EBG是等边三角形,∴EB=EG=BG∴CG=AE,∵ED=EC∴∠EDC= ∠ECD,又∠B=∠G∴∠BED= ∠GEC∴△BED≌△GEC (AAS)∴∴=3+,故答案为【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.②④【分析】由平行线得到角相等由角平分线得角相等根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案【详解】解:∵EF∥BC∴∠EDB=∠DBC∠FDC=∠DCB∵∠ABC与∠ACB的平分线交于解析:②④【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案.【详解】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵∠ABC与∠ACB的平分线交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB =∠EBD,∠FCD=∠FDC,∴ED=EB,FD=FC,即△BED和△CFD都是等腰三角形;故②正确;∴△AEF的周长为:AE+EF+AF=AE+ED+DF+AF=AB+AC;故④正确;∵∠ABC不一定等于∠ACB,∴∠DBC不一定等于∠DCB,∴BD与CD不一定相等,故①错误.∵BE与CF无法判定相等,∴ED与DF无法判定相等,故③错误;综上,正确的有②④.故答案为:②④.【点睛】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.(1)90;(2)120°;(3)①180αβ+=︒;见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由条件可得△ABC 为等边三角形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE =60°,则可得出结论;(3)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABD =∠ACB =60°,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =60°,∴∠BCE =∠ACE +∠ACB =60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∴∠ABD =∠ACE =∠ACB +∠BCE ,∴∠ABD +∠ABC =∠ACE +∠ABC =∠ACB +∠BCE +∠ABC =180°,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAC =∠BCE .∴α=β;综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD ≌△ACE 是解本题的关键.22.254【分析】首先连接BE ,根据线段垂直平分线的性质,可得AE =BE ,然后设AE =x ,由勾股定理可得方程: ()222=6+8x x -,继而求得答案.【详解】解:连接BE ,在Rt △ABC 中,AC =8,AB =10∴BC =6∵AB 的垂直平分线分别交AB 、AC 于点D 、E ,∴AE =BE ,AD =BD =5设AE =x ,则BE =x ,EC =AC−AE =8−x ,∵Rt △BCE 中,∠C =90°,BE=x ,EC =8−x ,BC =6,∴()222=6+8x x -解得:25 =4 x,故答案为:254,【点睛】此题考查了线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.23.(1)见解析;(2)8【分析】(1)作AB的垂直平分线即可;(2)根据作图得到AD=BD,把周长转化为AC+BC即可.【详解】(1)用尺规作出线段AB的垂直平分线,交AC于点D.(2)由作图可知,AD=BD,△BDC的周长=BD+CD+BC=AD+CD+BC=5+3=8.【点睛】本题考查了垂直平分线的作法与性质,解题关键是熟练的进行尺规作图,根据垂直平分线的性质准确计算.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD≌△BAE,进而得出OB=OA;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.见解析【分析】利用SSS 证△A DB ≌△ADC 可得∠D AB =∠DAC ,根据平行线性质得∠EDA =∠DAC ,再根据等量代换得到∠EAD=∠EDA ,从而得到ED=AE .【详解】证明:在△ADB 和△ADC 中,,,,AB AC DB DC AD AD =⎧⎪=⎨⎪=⎩∴△ADB ≌△ADC (SSS ).∴∠D AB =∠DAC .∵ED ∥AC ,∴∠EDA =∠DAC ,∴∠EAD=∠EDA∴E D=AE .【点睛】考核知识点:全等三角形判定,等边对等角的性质.判定三角形全等是关键. 26.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.。
一:已知:如图,在直角梯形ABCD中, AD∥ BC,∠ ABC=90°, DE⊥ AC于点 F,
交 BC于点 G,交 AB的延长线于点 E,且 AE AC .
A
D
(1)求证: BG FG ;
(2)若 AD DC 2 ,求 AB的长.
F
B C
G
E
二:如图,已知矩形 ABCD,延长 CB到 E,使 CE=CA,连结 AE并取中点 F,连结AE并取中点 F,连结 BF、DF,求证 BF⊥DF。
三:已知 : 如图 , 在矩形 ABCD中 ,E 、F 分别是边 BC、AB上的点 , 且 EF=ED,EF⊥ ED.
求证 :AE 平分∠ BAD.
E
B C
F
A D
(第 23题)
四、(本题 7 分)如图,△ ABC中,M是 BC的中点, AD是∠ A 的平分线, BD⊥ AD于 D,AB=12,
AC=18,求 DM的长。
五、(本题 8 分)如图,四边形A BCD为等腰梯形, AD∥BC,AB=CD,对角线 AC、BD交于点 O,
且AC⊥ BD, DH⊥ BC。
⑴求证: DH=1
(AD+BC)2
⑵若 AC=6,求梯形ABCD的面积。
六、 (6 分)、如图,P是正方形ABCD对角线 BD 上一点, PE⊥ DC, PF⊥ BC, E、 F 分别为垂
足,若 CF=3,CE=4,求 AP 的长 .
七、 (8 分 ) 如图,等腰梯形ABCD中, AD∥ BC,M、N分别是 AD、BC的中点, E、F 分别是 BM、CM的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形请直接写出结论;
(2)判断并证明四边形MENF是何种特殊的四边形
(3)当等腰梯形ABCD的高 h 与底边 BC满足怎样的数量关系时四边形MENF是正方形(直接
M D
写出结论,不需要证明).A
E F
B
N C 选择题:
15、如,每一个形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰如
,依此律第10 个形的周。
⋯⋯
第一个图第二个图第三个图
16、如,矩形ABCD角 AC原点 O, B 点坐
y k的象点 D,其
(― 1,―3),若一反比例函数
x
解析式。
一:解:( 1)明:Q ABC 90°, DE ⊥ AC 于点 F ,
ABCAFE .
D
A
Q AC AE, EAF CAB ,F
△ ABC ≌△ AFE
AB AF .
B C 接 AG ,G
AG= AG,AB= AF,
Rt△ ABG ≌ Rt △ AFG .E
BG FG .
(2)解:∵ AD= DC,DF⊥ AC,
11
AF AC AE .
2 2
E 30°.
FAD E30°,
AF 3 .
AB AF 3 .
二:明:∵ CE=CA AF=EF
∴C F⊥AE ∠AFC=∠EFC=90
在直角三角形AEB中, BF 是斜上中
∴B F=AF
又: AD=BC CF=CF
∴△ BCF≌△ ADF
∠B FC=∠AFD
而∠ AFD+∠DFC=AFC=90
∴∠ BFC+∠DFC=∠BFD=90
∵B F⊥DF
三:明:∵四形ABCD是矩形
∴∠ B=∠ C=∠ BAD=90° AB=CD
∴∠ BEF+∠BFE=90°
∵E F⊥ ED∴∠ BEF+∠ CED=90°
∴∠ BEF=∠CED∴∠ BEF=∠ CDE
又∵ EF=ED∴△ EBF≌△ CDE
∴BE=CD
∴B E=AB∴∠ BAE=∠ BEA=45°
∴∠ EAD=45°
∴∠ BAE=∠EAD
∴AE 平分∠ BAD
四、解:延BD交 AC
E
于
∵BD⊥ AD⋯⋯⋯⋯⋯⋯⋯ 1 分
∴∠ ADB=ADE=90
∵AD是∠ A 的平分
∴∠ BAD=EAD⋯⋯⋯⋯⋯⋯⋯ 2 分在△ ABD与△ AED中
BAD EAD
AD AD
ADB ADE
∴△ ABD≌△ AED⋯⋯⋯⋯⋯⋯⋯ 3 分
∴BD=ED AE= AB=12⋯⋯⋯⋯⋯⋯⋯ 4 分
∴EC=AC- AE=18- 12=6⋯⋯⋯⋯⋯⋯⋯ 5 分
∵M是 BC的中点
∴DM=1
EC=3⋯⋯⋯⋯⋯⋯⋯ 7 分
2
五:⑴ 明: D 作 DE∥ AC交 BC延于 E⋯⋯ 1 分∵AD∥ BC
∴四形 ACED平行四形⋯⋯⋯⋯⋯ 2 分∴CE=AD DE=AC
∵ABCD等腰梯形
∴BD = AC=CE
∵AC⊥ BD
∴DE⊥ BD
∴△ DBE等腰直角三角形⋯⋯⋯⋯⋯⋯ 4 分∵DH⊥ BC
∴DH=1
BE=
1
(CE+BC) =
1
( AD+BC)⋯⋯⋯⋯⋯⋯⋯ 5 分222
⑵∵ AD=CE
∴S
ABCD 1
( AD BC ) DH
1
(CE BC ) DH S DBE⋯⋯⋯⋯7分22
∵△ DBE等腰直角三角形BD=DE=6
∴ S DBE 1
6 6 18 2
∴梯形 ABCD的面18⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分
注:此题解题方法并不唯一。
六: 20、 (5 分 )
解:连结 PC 。
∵四边形 ABCD 是正方形,
∴AD=DC ,∠ ADP=∠ CDP ,
∵PD=PD ,
∴△ APD ≌△ CPD ,
∴ A P=CP
∵四边形 ABCD 是正方形,∴∠ DCB=90°,
∵PE ⊥ DC ,PF ⊥ BC ,∴四边形
PFCE 是矩形
∴ P C=EF 。
∵∠ DCB=90°,
∴ 在 Rt CEF 中, EF 2
CE 2 CF 2 32 4 2
25 ,
∴ EF 5 ,
∴ A P=CP=EF=5。
(其它方法证明也一样得分)
七、 (8 分) 解:(1)△ AMB ≌△ DMC ;△ BEN ≌△ CFN 2分
( 2)判断四边形 MENF 为菱形;
3
分
证明:∵ ABCD 为等腰梯形,
AB CD ,∠ A ∠D , 又∵ M 为 AD 的中点, ∴ MA MD ∴ = = = ∴△ AMB ≌△ DMC ,∴ BM CM ;
4 分
=
又∵ E 、F 、 N 分别为 BM 、 CM 、BC 中点,
∴ MF NE1MC,ME NF 1
BM ,(或 MF∥ NE, ME∥ NF ;)
5
分
= == =
2
2
∴EM=NF=MF=NE;
∴四边形 MENF为菱
形.6分
)问判断四边形 MENF仅为平行四边形,并正确证明的只给
3(说明:第( 2
分.)
()当 h1BC(或 BC h 或 BC MN)时, MENF为正方形.
8分
3==2=2
2
选择题:
15 、 3216
3、 y
x。