第五章高分子试剂及固相合成
- 格式:doc
- 大小:74.02 KB
- 文档页数:13
药⽤⾼分⼦材料各章知识点总结《药⽤⾼分⼦材料》各章知识点总结第⼀章⼀、⾼分⼦材料的基本概念1、什么是⾼分⼦:⾼分⼦是指由多种原⼦以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分⼦量为104~106的化合物。
2、单体:能够进⾏聚合反应,并构成⾼分⼦基本结构组成单元的⼩分⼦。
即合成聚合物的起始原料。
3、结构单元:在⼤分⼦链中出现的以单体结构为基础的原⼦团。
即构成⼤分⼦链的基本结构单元。
4、单体单元:聚合物中具有与单体相同化学组成⽽不同电⼦结构的单元。
5、重复单元(Repeating unit ),⼜称链节:聚合物中化学组成和结构均可重复出现的最⼩基本单元;重复单元连接成的线型⼤分⼦,类似⼀条长链,因此重复单元⼜称为链节。
⾼分⼦的三种组成情况1.由⼀种结构单元组成的⾼分⼦此时:结构单元=单体单元=重复单元说明:n 表⽰重复单元数,也称为链节数, 在此等于聚合度。
由聚合度可计算出⾼分⼦的分⼦量:M=n. M0 式中:M 是⾼分⼦的分⼦量 M0 是重复单元的分⼦量2.另⼀种情况:结构单元=重复单元单体单元结构单元⽐其单体少了些原⼦(氢原⼦和氧原⼦),因为聚合时有⼩分⼦⽣成,所以此时的结构单元不等于单体单元。
注意:对于聚烯烃类采⽤加成聚合的⾼分⼦结构单元与单体的结构是⼀致的,仅电⼦排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的⾼分⼦结构单元与单体的结构不⼀致3.由两种结构单元组成的⾼分⼦合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元。
注意:(1)对于均聚物,即使⽤⼀种单体聚合所得的⾼分⼦,其结构单元与重复单元是相同的。
(2)对于共聚物,即使⽤两种或者两种以上的单体共同聚合所得的⾼分⼦,其结构单元与聚CH 2 CH CH 2-CH n CH 2 CH n 单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +55重复单元是不同的。
第一章水溶性高分子水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。
可编辑修改精选全文完整版《功能高分子材料》课程教学大纲课程代码:050342004课程英文名称:Functional Polymer Materials课程总学时:24 讲课:24 实验:0 上机:0适用专业:高分子材料与工程大纲编写(修订)时间:2017. 06一、大纲使用说明(一)课程的地位及教学目标功能高分子材料是高分子材料与工程专业选修的一门获得功能性高分子材料的应用及特性知识的专业课。
它主要介绍不同种功能高分子材料的基本知识、分子结构特点及其应用,以使学生提高高分子材料应用水平和解决实际问题的能力。
通过本课程的学习,学生将达到以下要求:1.熟悉功能高分子的结构特点、作用机理;2.熟悉功能高分子材料的分子结构设计方法;3.熟悉功能高分子材料的发展状况为从事功能高分子的研究和应用打下基本的知识基础。
(二)知识、能力及技能方面的基本要求1.基本知识:熟悉功能高分子的结构特点、作用机理和应用。
2.基本能力:具有根据需要选择功能高分子的基本能力和设计功能高分子结构的初步能力。
3.基本技能:功能高分子性能及功能的评价。
(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本知识的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力。
讲课要联系实际并注重培养学生的创新能力。
2.教学手段:本课程在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。
3.可以结合当前研究热点及自己的研究安排授课的具体内容,但授课内容必须是功能高分子材料知识。
(四)对先修课的要求本课程应在《高分子物理学》、《高分子化学》和《高分子合成工艺学》结束后开设。
(五)对习题课、实验环节的要求1.本课程对习题课和实践环节无要求。
2.作业题内容以基本知识和生产工艺为主,作业要能起到巩固知识,提高分析问题、解决问题能力。
第五章高分子试剂及固相合成在化学工业中,化学试剂的功能强弱及质量高低,直接影响着产品的产量和质量。
随着化学工业的发展以及合成工业的发展,相关的研究进一步深入,对化学试剂的要求越来越高,对试剂往往不仅要求收率高,反应活性好,而且要求具有较高的选择性甚至专一性。
使用高效的化学试剂不仅可以提高材料的使用效率,还可以简化反应过程。
高分子试剂即带有反应性官能团的高聚物,将低分子试剂连接到高分子载体上,就成为高分子试剂。
具有特殊功能和性质的高分子试剂的使用推动了化学工业和有机合成工业的发展,氧化、还原、卤化、氢化、酰化、缩合等反应已经广泛采用高分子试剂。
高分子试剂具有许多小分子试剂无法比拟的优点,解决了许多小分子试剂无法解决的问题。
高分子试剂的最初发展是为了使某些均相反应转化为多相反应,从而简化分离过程,提高试剂的稳定性。
随着多相反应以及高分子化学的进一步深入,高分子试剂中高分子骨架的参与和邻近基团效应使得高分子试剂显示出许多小分子试剂所不具备的功能,如无限稀释效应、立体选择效应、邻近协同效应等等。
高分子试剂在功能上远远超过了小分子试剂,其多孔性、不溶性、高选择性和化学稳定性都是该材料获得了飞速的发展,为有机合成研究和化学工业工艺流程作出了贡献。
第一节高分子试剂概述高分子化学试剂与低分子化学试剂相比有以下优点:1 操作过程简单具有一定交联度的高分子试剂在反应体系中只能溶胀不能溶解,可以简单的用过滤的方法使小分子原料和产物相互分离,简化了操作过程,提高了产品纯度。
同时为提高反应速率和产品收率,可采用过量的高分子试剂,反应的高分子试剂大多可以用简单的方法回收利用,活性无明显降低。
这是高分子试剂最为显著的优点,为工业化生产带来了许多方便。
另外,利用高分子试剂的可回收可再生性,可将某些贵重的试剂高分子化后使用,通过回收利用达到降低成本的目的。
高分子试剂反应后再生使用的实例见下式,多肽合成时使用高分子酰化试剂,产物分离步骤简单,十分有效。
图5-1 高分子试剂反应后再生使用的实例2稳定性和安全性好高分子骨架的引入使得试剂的稳定性和安全性大大增加。
例如小分子的过氧酸经高分子化后稳定性大大增加,分子量增大后其挥发性减小,这使得易燃易爆试剂的安全性大大增加,挥发性减小还有助于消除试剂的气味,改善工作环境。
由于高分子试剂中,活性功能基团稀疏地连接在高分子骨架上,功能基团有一定的间隔,一些刚性链段中键的旋转受到阻碍,增大了功能基团间直接的接触,下一步反应进行时,避免了功能基团自身的反应,使得高分子试剂的稳定性和安全性大大提高。
而在低分子溶液的反应中会同时伴随发生这些自身反应。
3 对微环境进行控制高分子试剂的制备过程中,低分子化合物通过交联与聚合物特定空间结构的孔道与聚合物作用,而聚合物的空间结构可以进行分子设计来控制,高分子试剂的为环境效应提高了反应的选择性。
利用高分子载体保护多官能团试剂的一端,使得反应只在另一端进行,可以实现定向连续合成,反应产物易于分离和纯化。
利用高分子的空间立体效应,可以实现模板反应,即利用具有独特空间结构的高分子试剂进行立体选择合成,在高分子骨架上引入特定光学结构,从而完成某些光学异构体的合成和拆分。
某些反应活性中心结构有一定间隔地连接在高分子骨架上,使得基团之间难于接触,可以提供在均相反应条件下难以达到的反应环境,提供接近常规有机反应中所谓“无限稀释”的反应条件,避免了自反应等等副反应发生。
4提供邻位效应将反应活性中心置于高分子骨架上特定的官能团附近,可以利用其产生的邻位协同效应加快反应速度,提高产物收率和反应的选择性。
但高分子试剂由于制备工艺复杂,试剂中高分子骨架的引入和高分子化过程都会使成本增加;由于高分子骨架的立体位阻,高分子试剂与相应的小分子试剂相比,高分子试剂的反应速度较慢。
常见的高分子试剂有高分子氧化还原试剂、高分子磷试剂、高分子卤代试剂、高分子烷基化试剂、高分子酰基化试剂等等。
除此之外,用于多肽和多糖合成的固相合成试剂也是高分子试剂。
高分子试剂是功能高分子材料的重要组成部分。
化学试剂本身在反应中促进反应朝着预定的方向进行,反应试剂本身也发生化学变化成为副产物或产品的组成部分。
经高分子化的试剂必须具有原有试剂的反应性,同时具有一些新的性能。
高分子试剂参与的化学反应可以由下图表示:)第二节高分子氧化试剂氧化剂包括有机氧化剂和无机氧化剂两类,大多都不稳定,易燃易爆易失效,使用中会遇到很多困难。
是在保持试剂活性的前提下,通过试剂的高分子化降低氧化试剂的挥发性,增加试剂的稳定性。
高分子氧化试剂根据高分子骨架上键接氧化剂的不同机理可分为两类。
一种是氧化剂通过静电与聚合物载体结合而成,一般都带有螯合单元或带有电荷,如离子交换树脂;另一类是氧化剂以共价键连接到高分子载体上。
按照组成分离,高分子氧化剂可以分为过氧酸类试剂、高分子硒试剂、氯化硫代苯甲醚氧化试剂等等。
高分子过氧酸最早是使烯烃氧化为-CH2-CH(COOOH)-。
后来由甲基丙烯酸制得树脂-(CH3)CH(COOOH)-结构的高分子氧化试剂,该试剂可以使得环己烯氧化成环氧化合物,收率在85%左右,但该试剂稳定性不好,撞击时发生爆炸,重复再生使用时氧化活性降低。
高分子过氧苯甲酸的结构式为:[-CH-CH2]nC6H4COOOH它是以聚合好的聚苯乙烯与乙酰氯进行芳香亲电取代反应生成的聚乙酰苯乙烯聚合物,在酸性条件下经与高锰酸钾或铬酸反应,乙酰基上的羰基被氧化,得到苯环上带有羧基的聚苯乙烯氧化中间体,再在甲基磺酸的参与下与双氧水反应,生成过氧键,得到聚苯乙烯型高分子氧化试剂。
它稳定性好,不会爆炸,易于存放,室温下保存70天,活性下降一半,用该高分子试剂使环烯烃氧化为环氧化合物,可以得到较高的收率。
高分子过氧苯甲酸还用于硫化物的氧化反应,其结果与使用均相试剂时结果一致。
这类试剂还用于青霉素以及头胞菌素的氧化反应。
高分子硒试剂是近年来新发展起来的高分子氧化试剂,具有良好的选择氧化性,它消除了低分子有机硒的毒性和气味。
结构式为:P-C6H4-Se-O它可以选择性地将烯烃氧化成为邻二羟基化合物,或者将环外甲基氧化成醛。
在有机合成中,要合成氧化性和还原性都很强的醛类产品,而不是使反应停止在醇的阶段或过度氧化成为酸,一直是难以解决的问题,使用高分子硒类试剂成功的解决了这个问题。
除此之外,高分子过氧有机亚硒酸对链烯和酮类能起氧化作用。
氯化硫代苯甲醚可以把伯醇氧化成醛,把仲醇氧化为酮,或者选择性地氧化二元醇中的一个羟基成为羟基醛,例如把正辛醇氧化成正辛醛,收率为95%。
N-卤代聚酰胺是一类选择性很好的高分子氧化试剂,常用的有:N-氯代尼龙-66,N-氯代尼龙-3等。
该类树枝在温和的反应条件下,可以使伯醇氧化成醛、仲醇氧化成酮,收率很高。
另外以阴离子交换树脂为载体的次溴酸盐,在水存在的条件下,可把烯烃有效地转化为环氧化物,近年来又有人发现了聚乙烯基吡啶氢溴酸盐和硫酸氢盐混合物对芳族化合物烷基侧链的氧化反应有催化作用。
第三节高分子还原试剂高分子还原反应试剂是一类主要以小分子还原剂经高分子化之后得到的仍保持有还原特性的高分子试剂,它具有同类型低分子试剂所不具备的一些优点。
高分子锡类还原试剂的合成是以聚苯乙烯为原料,经与锂试剂反应,生成聚苯乙烯的金属锂化合物,经革氏化反应,将丁基二氯化锡基团接于苯环,最后与氢化铝锂还原剂反应得到高分子化的锡还原试剂。
该高分子还原试剂中含有Sn-H结构,高分子锡类还原试剂比相应的低分子锡化合物更稳定、无气味,低毒性,易分离,常用于还原苯甲醛、苯甲酮、叔丁基甲酮,生成相应的醇。
该高分子试剂对二元醛的还原有良好的选择性,在对苯二甲醛还原产物中,单官能团还原占86%,它还能还原脂肪族和芳香族的卤代烃,使卤原子转变为氢原子,收率很高,几乎定量的被还原。
含有Si-H结构的高分子还原剂主要有下式所示的树脂。
该试剂常常和DBATO配合,在乙醇中性溶剂中还原苯甲醛、丙酮、4-叔丁基环己酮还原成醇。
CH3 CH3-Si-(O- Si-)n-O-H H该还原试剂在乙醇中,在活性炭的存在下,在40~60 C时可与烯烃、-NO2进行加氢反应,收率为89%。
还原剂、乙醇 NH22活性炭、温度高分子磺酸肼还原试剂多用于对碳-碳双键的加氢反应,是一种选择性还原剂,在加氢反应过程中对同为不饱和双键的羰基没有影响。
聚苯乙烯磺酰肼是以聚苯乙烯为原料,经磺酰化反应得到聚对磺酰氯苯乙烯中间产物,然后与肼反应,制得具有良好活性的磺酰肼高分子还原试剂。
络合、吸附、离子交换型高分子还原试剂是小分子试剂通过配位键与高分子链段结合或离子交换以及吸附过程制备的高分子还原试剂。
例如聚乙烯吡啶树脂可以与BH3络合形成高分子还原剂,用于将硝基苯甲醛、对氯苯甲醛和二苯酮还原为相应的醇。
弱碱性阴离子交换树脂与H3PO2-、SO22-、S2O42-等阴离子作用,可以制备不同还原活性的高分子还原试剂。
采用各种阳离子交换树脂与各种阳离子反应,可以制备不同氧化还原活性的高分子试剂。
该方法过程简单,回收和再生容易。
将小分子氧化还原试剂吸附在有机或无机吸附剂上,亦可制备高分子氧化还原试剂。
如Al2O3吸附硼氢化钠可以将各类醛酮还原为醇。
Al2O3还用于吸附异丙醇等还原剂对醛酮进行还原。
利用强碱型离子交换树脂与硼氢化钠反应,可以制备具有硼氢化季胺盐结构的高分子还原试剂,该试剂用于使共轭烯酮还原成共轭烯醇,吡啶还原为四氢吡啶,卤代烃还原为烃。
第四节高分子氧化还原树脂化学反应中产物失去电子的反应的反应为氧化反应,产物得到电子的反应为还原反应。
有些试剂根据反应对象的不同,即可以作还原试剂,又可以作氧化试剂,兼具氧化和还原功能的试剂称为氧化还原试剂。
高分子氧化还原树脂是一类自身具有可逆氧化还原特性的一类高分子化学反应试剂,可以回收、再生。
将低分子的氧化还原试剂键接或吸附到高分子链段上,就形成了高分子氧化还原试剂。
高分子氧化还原试剂又称为电子交换树脂,最常见的有五种结构:含醌式结构的高分子氧化还原试剂、含硫醇结构的高分子氧化还原试剂、含吡啶结构的高分子氧化还原试剂、含二茂铁结构的以及含杂原子的多环芳烃结构的高分子氧化还原试剂。
该类试剂在反应中起氧化作用还是还原作用,取决与反应的初始氧化状态。
高分子氧化还原试剂见表2-1表2-1常见的高分子氧化还原试剂高分子氧化还原试剂都是比较温和的氧化还原试剂,常常用于选择性的氧化还原反应,在结构上都有多个可逆氧化还原中心与高分子骨架相连,这些氧化还原中心与起始物发生反应,是主要的反应活性部分,高分子骨架只起到负载作用。
高分子氧化还原试剂主要有以下方法:一是利用聚合反应,将具有氧化还原基团的单体聚合为高分子试剂,但单体制备较复杂,并且在聚合是要注意某些基团的保护。