流体力学 传递过程原理第三章
- 格式:ppt
- 大小:1.95 MB
- 文档页数:72
流体力学第三章课后习题答案------------------------------------------作者xxxx------------------------------------------日期xxxx一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速.解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h ,求平均流速.如风道出口处断面收缩为150mm ×400mm ,求该断面的平均流速解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm ,d2=5cm,d 3=2。
5cm 的管道流入大气中。
当出口流速10m / 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4。
设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间.试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5。
圆形风道,流量是10000m 3/h,,流速不超过20 m/s.试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6。
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。