于是 AB AF BF x1 x2 + 2.
直线 l 的斜率为1,且过焦点F (1,0), 所以直线AB 的方程为
y x 1
①
例4 斜率为1的直线l 经过抛物线y2=4x的焦点F,且与
抛物线相交于A,B两点,求线段AB的长.
y
l
AF d A x1 + 1, BF d B x2 + 1,
性质。
三、例题讲授:
例3 已知抛物线关于x轴对称, 它的顶点在原点, 并且
经过点M(2, -2 ),求它的标准方程 .
解:因为抛物线关于x轴对称,它的顶点在原点,并且
经过点M(2, -2 ),所以,可设它的标准方程为
y 2 px ( p 0),
2
因为点M在抛物线上,所以
(-2 2) = 2 p 2,
2
2
2
2p
p
- y0
2
抛物线的焦点弦性质
过抛物线y2=2px(p>0)的焦点的一条直线和
抛物线相交, 两交点为A(x1, y1)、B(x2, y2), 则
(1)|AB|=x1+x2+p
(2)通径长为2
p
(3)x1x2= ;
y1y2=-p2;
(4)若直线AB的倾斜角为θ,则|AB|=2p/sin2 θ
(5)以AB为直径的圆与准线相切.
(6)焦点F对A、B在准线上射影的张角为90o。
1
1
2
(7)
+
=
AF BF
p
F
抛物线上的点M(x, y),x≥0,y∈R.
当x>0时,抛物线在y轴的右侧,开口方向与x轴正向