振动理论课后答案及解析
- 格式:doc
- 大小:6.31 MB
- 文档页数:42
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x ,受力分别为:1122P c x P c x =⎧⎨=⎩ 由力的平衡有:1212()P P P c c x =+=+故等效刚度为:12eq P c c c x ==+ 2)对系统施加力P ,则两个减振器的速度为:1122P x c Px c ⎧=⎪⎪⎨⎪=⎪⎩,系统的总速度为:121211()x x x P c c =+=+ 故等效刚度为:1211eq P c x c c ==+1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
1.8 图示为一周期性方波。
(1)将它展成傅里叶级数;(2)比较(1)的级数与例1.1中的级数,你观察到方波相位前移1/4周期时有什么效应? 解:一个周期内函数P(t)可以表示为()P P t P ⎧=⎨-⎩ 由于区间[0,T]内()P t 关于2T堆成,一周内面积为0,故0a =0。
()2cos t Tn t ta x n tdt T ω+=⎰320223022cos cos cos p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022sin sin sin p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+⎢⎥⎣⎦040Pn π⎧⎪=⎨⎪⎩ ()2sin t Tn t tb x n tdt T ω+=⎰320223022sin sin sin p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022cos cos cos p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+-⎢⎥⎣⎦= 0 ∴图示方波的傅里叶级数展开式为:()11,3,41sin()cos 2nt n n n P P a n t n t nπωωπ===+=∑∑ 0411(cos cos 3cos 5)35P t t t ωωωπ=+++ 比较例1.1,可以得到:相位前移1/4周期后,傅里叶级数的每一项函数由奇函数变为偶函数,但各分量的幅值不变。
320,22322t t t πππωωωππωω<<<<<<n n 为奇数为偶数2.8 求图所示的系统的固有频率,其中钢丝绳的刚度为k 1.滑轮质量忽略不计。
解:对于系统,钢绳等效为弹性系数为k 1的弹簧。
则每个弹簧的变形分别为:11mg k λ=224mg k λ= 334mgk λ=总变形12312344mg mg mgk k k λλλλ=++=++系统等效刚度为: 12323131244e k k k mgk k k k k k k λ==++系统的固有频率为:n ω==2.27 一个有阻尼的弹簧质量系统,质量是10Kg ,弹簧静伸长时1cm ,自由振动20个循环后,振幅从0.64cm 减至0.16cm ,求阻尼系数c 。
物理振动试题及答案解析1. 简谐运动的振动周期与哪些因素有关?答案:简谐运动的振动周期与振子的质量以及弹簧的劲度系数有关,与振幅无关。
2. 什么是阻尼振动?其振动周期与自由振动相比有何不同?答案:阻尼振动是指在振动过程中受到阻力作用的振动。
与自由振动相比,阻尼振动的振动周期会变长。
3. 简述单摆的周期公式。
答案:单摆的周期公式为 \( T = 2\pi \sqrt{\frac{L}{g}} \),其中 \( T \) 是周期,\( L \) 是摆长,\( g \) 是重力加速度。
4. 什么是共振现象?请举例说明。
答案:共振现象是指当驱动力的频率接近或等于系统的固有频率时,系统振幅急剧增大的现象。
例如,当行人在桥上行走时,如果步频与桥的固有频率接近,可能会引起桥梁的共振,导致桥梁剧烈振动甚至断裂。
5. 请解释为什么在声波传播中,频率越高的声波传播距离越短?答案:频率越高的声波波长越短,波长越短的声波在传播过程中更容易受到空气分子的散射作用,因此传播距离较短。
6. 什么是多普勒效应?请用物理公式表达。
答案:多普勒效应是指当波源和观察者相对运动时,观察者接收到的波频率与波源发出的频率不同的现象。
多普勒效应的公式为 \( f'= \frac{f(u + v)}{u + v \cos \theta} \),其中 \( f' \) 是观察者接收到的频率,\( f \) 是波源发出的频率,\( u \) 是波源的速度,\( v \) 是观察者的速度,\( \theta \) 是波源和观察者之间的夹角。
7. 请解释为什么在弹簧振子的振动过程中,振幅会逐渐减小?答案:在弹簧振子的振动过程中,振幅逐渐减小是因为存在阻力作用,如空气阻力或摩擦阻力,这些阻力会消耗振子的机械能,导致振幅减小。
8. 什么是机械波?请列举三种常见的机械波。
答案:机械波是指需要介质传播的波,其传播过程中介质的质点并不随波迁移,而是在平衡位置附近做振动。
振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。
它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。
振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。
下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。
1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。
解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。
位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。
根据题目中的数据,振幅A = 2cm,周期T = 4s。
代入上述公式可得ω = 2π /4 = π / 2。
因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。
速度v = dx / dt,加速度a = dv / dt。
对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。
2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。
解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。
根据题目中的数据,周期T = 2s。
代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。
3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。
机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。
在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。
1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。
试求振动的周期。
解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。
根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。
2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。
试求振动的解析解。
解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
将特解xp(t)代入非齐次方程,求解得到A和φ的值。
最后,振动的解析解为x(t) = xh(t) + xp(t)。
3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。
试求振动的稳定解。
解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k 则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有"m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ 2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θαα h l ga p ha mg ml n 22222304121==⋅+θθθF sin α2θαFhmgθFg h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kk k k ++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
第二章习题2—1一重块100W N =,支承在平台上,如题2-1图所示。
重块下联结两个弹簧,其刚度均为20/k N cm =。
在图示位置时,每个弹簧已有初压力010F N =。
设将平台突然撤去,则重块下落多少距离?题2—1图 解答:由题可知:弹簧在初始时的形变00100.520F L cm cm k === 设重块将下落h m ,则:2212.[()]W h k h L L =+- 于是: 4h cm =2-3.求题2-3图所示的轴系扭转振动的固有频率。
轴的直径为d ,剪切弹性摸量为 G ,两端固定。
圆盘的转动惯量为J,固定于轴上,至轴两端的距离分别为12l l 和。
解: 以圆轴的轴线为固定轴,建立系统的振动微分方程 惯性力矩: J θ恢复力矩: 12p p GI GI l l +由动静法得120p p GI GI J l l θθ⎛⎫++= ⎪⎝⎭因此2-4 一均质等直杆AB ,重为W ,用两相同尺寸的铅垂直线悬挂如题2-4图所示。
()122124322p p GI l l Jl l d I f ωπωπ+===且由以上各式得线长为l ,两线相距为2a 。
试推导AB 杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出 其固有频率。
解:AB 杆绕重心摆动,则:()2222c o s 200: 212330=: 2J a Wa F T T l lJ Fa Wa J l m m J b b Wa mlb a b f θθθϕθθθθθωωπ===+=+===+=∴==惯性力矩: 恢复力矩: 2Fa 其中 : 则 : 即 : 又有则 : 固有频率2-5 有一简支梁,抗弯刚度EI=2E10 N ·c ㎡,跨度为L=4m ,用题图(a),(b)的两种方式在梁跨中连接一螺旋弹簧和重块。
弹簧刚度K=5kN/cm ,重块质量W=4kN,求两种弹簧的固有频率。
AB(a)(b)解:根据材料力学理论可知简支梁中点的刚度33()2348l mg mgl EI EI==3148l mgEIk ==(a ) 图可以看作弹簧和杆的并联11348e EI k k k k l=+=+弹簧质量系统的固有频率112f π=已知EI=2E10 N ·c ㎡, K=5kN/cm, W=4kN代入数据得111.14f Hz =(b ) 图可以看作弹簧和杆的串联121*e k k k k k =+所以212f π=代入数据得2 4.82f Hz =2—9一有黏性阻尼的单自由度系统,在振动时,它的振幅在5个周期之后减少了50%。
5-1有一弹簧振子,振幅 A 2.0 10 2m ,周期T 1.0s ,初相 3 / 4.试写出它的振 动位移、速度和加速度方程。
分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
一 2解:振动方程为: x Acos[ t ] Acos[ t ] 一 3代入有关数据得: x 0.02 cos[2 t ]( SI ) 4振子的速度和加速度分别是:3 v dx/dt 0.04 sin[2 t ](SI ) 4a d 2x/dt 20.08 2 cos[2 t —](SI )45-2若简谐振动方程为 x 0.1cos[20 t /4]m ,求: (1) 振幅、频率、角频率、周期和初相; (2) t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据x Acos[ t ]0.1cos[20 t /4](1)t=0时,作用于质点的力的大小;(2 )作用于质点的力的最大值和此时质点的位置分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
得:振幅A 0.1m ,角频率20 rad / s ,频率/2 10s 1,周期T 1/0.1s ,/4rad(2) t 2s 时,振动相位为20 t/4(40/ 4) rad 由 x A cos ,A sin ,a A 2 cos2x 得x 0.0707m, 4.44m/s,a279m/s 25-3质量为2 kg 的质点,按方程x0.2sin[5t ( /6)](SI)沿着 x 轴振动.求:解:(1)跟据f ma m 2x,x 0.2sin[5t ( /6)]将t 0代入上式中,得:f 5.0N(2)由f m 2x可知,当x A 0.2m时,质点受力最大,为f 10.0N5-4为了测得一物体的质量 m 将其挂到一弹簧上并让其自由振动,测得振动频率1.0Hz ;而当将另一已知质量为 m'的物体单独挂到该弹簧上时,测得频率为22.0Hz .设振动均在弹簧的弹性限度内进行,求被测物体的质量分析根据简谐振动频率公式比较即可。
第十一章 机械振动一、基本要求1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。
2. 掌握描述简谐运动的运动方程,理解振动位移,振)cos(0ϕω+=t A x 幅,初位相,位相,圆频率,频率,周期的物理意义。
能根据给出的初始条件求振幅和初位相。
3. 掌握旋转矢量法。
4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。
二、基本内容1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。
如果物体振动的位置满足,则该物体的运动称为周期性运动。
否则称为非周)()(T t x t x +=期运动。
但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。
振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。
一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。
2. 简谐振动 简谐振动是一种周期性的振动过程。
它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。
简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。
(1)简谐振动表达式反映了作简谐振动的物体位移随时间)cos(0ϕω+=t A x 的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。
但是简谐振动表达式更多地用来揭示描述一个简谐运动必须涉及到的物理量、、(或称描述简谐运动的三个参量),显然三个参量A ω0ϕ确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由对应地t 得到。
2cos()sin(00πϕωωϕωω++=+-=t A t A v )cos()cos(0202πϕωωϕωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即,它是判定一个系统的运动过程kx F -=是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。
第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v g W W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+= 故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a m g a m g Fa M m l I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha m g m l n 22222304121==⋅+θθg h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'm glllF2121+=k2k1ml1l2()()()()()()()()()m gk k l l k l k l m g k k l l k l l k l l l k l m gk k l l kl k l l l l k l l m g l m gk l l l k l l l l l l k l l m g l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+= 故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
第十七章 振 动1、 一物体作简谐振动,振动方程为 )cos(A x 4t πω+=。
求 4Tt =(T 为周期)时刻物体的加速度。
解:由振动加速度定义得)4 cos(222πωω+-==t A dtx d a代入4Tt =22422)442cos(ωππωA A a T t =+-==求得4Tt =时物体的加速度为222ωA 。
2、 一质点沿x轴作简谐振动,振动方程为)cos(x ππ312t 2104+⨯=-(SI )。
求:从t=0时刻起,到质点位置在x=-2cm 处,且向x轴正方向运动的最短时间间隔?解:用旋转矢量图求解,如图所示t=0时刻,质点的振动状态为:3sin 08.0)3 2sin(204.002.0)30cos(04.0)3 2cos(04.000<-=+⨯-===+=+=ππππππππt dt dx v mt x可见,t=0时质点在cm x 2=处,向x 轴负方向运动。
设t 时刻质点第一次达到cm x 2-=处,且向x 轴正方向运动0>v 。
则:πϕ=∆min5.02min===∆ππωπt (s )3、一物体作简谐振动,其速度最大值sm v m 2103-⨯=,其振幅 m A 2102-⨯=。
若t=0时,物体位于平衡位置且向x轴的负方向运动.求: (1)振动周期T ;(2)加速度的最大值m a ; (3)振动方程的数值式。
解:设物体的振动方程为) cos(ϕω+=t A x则)cos( )sin( 2ϕωωϕωω+-=+-=t A a t A v(1) 由, ωA v m =及sm v m 2103-⨯= 得物体的振动周期:πππωπ341031022 2222=⨯⨯⨯===--m v A T (s ) (2) 加速度最大值:)(105.4102)103(2222222s m A v A a m m ---⨯=⨯⨯===ω (3) 由t=o 时,0 , 0<=v x 得)0sin( 02.00)0cos(02.000<+⨯-==+=ϕωϕv x解之得:2πϕ=质点的振动方程为:)223cos(02.0π+=t x m4、两个物体作同方向、同频率、同振幅的简谐振动。
4.1 按定义求如图所示三自由度弹簧质量系统的刚度矩阵,并用能量法检验。
求系统的固有频率和振型。
(设132142356;2;;2;3;m m m m m k k k k k k k k k =========)解:1)以静平衡位置为原点,设123,,m m m 的位移123,,x x x 为广义坐标,画出123,,m m m 隔离体,根据牛顿第二定律得到运动微分方程:11112122222132352623333243()0()()0()0m x k x k x x m x k x x k x x k x k x m x k x x k x ++-=⎧⎪+-+-++=⎨⎪+-+=⎩所以:[][]1231222235633340010000020;01032021020023m M m m m k k k K k k k k k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+++-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220x x M K x x ⎧⎫⎧⎫+=⎨⎬⎨⎬⎩⎭⎩⎭…… (a)或者采用能量法:系统的动能和势能分别为=++ 222112233111222T E m xm xm x=+-+-+++22222112123234356211111()()()22222U k x k x x k x x k x k k x=+++++++--22212123562343212323111()()()222U k k x k k k k x k k x k x x k x x求偏导也可以得到[][],M K2)设系统固有振动的解为: 112233cos x u x u t x u ω⎧⎫⎧⎫⎪⎪⎪⎪=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,代入(a )得:[][]1223()0u K M u u ω⎧⎫⎪⎪-=⎨⎬⎪⎪⎩⎭…… (b)得到频率方程:2222320()21022023k mk k k mk kk mωωωω--=---=--即:222422()(3)(21622)0k m m km k ωωωω=--+=解得:2(4k mω=±和23k mω=所以:123ωωω=<=<=………… (c)将(c)代入(b)可得:1233(4202102(420023(4kk m km ukk k m k umukk k mm⎡⎤-±-⎢⎥⎧⎫⎢⎥⎪⎪⎢⎥--±-=⎨⎬⎢⎥⎪⎪⎢⎥⎩⎭⎢⎥--±⎢⎥⎣⎦和123332021023200233kk m km ukk k m k umukk k mm⎡⎤--⎢⎥⎧⎫⎢⎥⎪⎪⎢⎥---=⎨⎬⎢⎥⎪⎪⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:112131::1:2u u u≈;122232::1:0:1u u u≈-;132333::1:2u u u≈;令31u=,得到系统的振型为:0 1-1 0.618 111.6181 14.2 按定义求如图T—4.2所示三自由度扭转系统的刚度矩阵和质量矩阵。