化工热力学
- 格式:ppt
- 大小:293.50 KB
- 文档页数:27
化工热力学化工热力学的第一个问题就是热能的转换。
它包括各种形式的热量之间的转换,如物质之间、设备之间、管线之间、以及反应容器内的气体之间的热量转换,因此这一章讨论各种传热问题。
化工热力学的第二个问题是研究反应中能量的传递问题,包括原料与产品的化学反应,产品与副产品的物理加工过程。
化工热力学的第三个问题是研究物质在溶液、悬浮液和气体中的分散与凝聚,其中包括固体物质的溶解、离析、沉降、升华、凝结、胶体化以及气体中的扩散等问题。
化工热力学的第四个问题是研究燃烧问题,包括燃烧方法的选择、燃烧室的设计和热量的测量等问题。
高温时空气中水蒸气液化变成饱和液态水。
温度降低到100 ℃以下时,液态水全部结冰。
水的结晶温度随压力升高而降低,纯净的水在一定的压力下有固定的熔点,温度在一定范围内变动,由于结构不同,在不同的条件下会发生物理性质上的变化,可制成很多晶体。
如常见的冰、干冰、雪、盐等,熔点不同。
水蒸气在一定条件下可以直接变成水。
水蒸气凝结时要吸收热量。
用途很广,人类生活和生产中大量需要各种各样的水。
水有许多不同的状态,有冰、水汽、水滴、雾、露、湿空气、液态水、盐水、海洋水、地下水、泉水、河流、湖泊、溪水、海水等。
水与水之间有密切的联系,如果我们能够科学地使用水资源,就会避免许多水灾害。
水有自己的运动规律,按照这些规律来观察和认识水,将会给人们带来很大的好处。
在过去的十几年里,世界上许多国家面临着水资源不足的危机。
为了减少用水,保护水资源,世界各国都非常重视节约用水。
全世界每年缺水约500亿立方米。
在干旱的北非、中亚和南美一些地区,每天至少损失100万人口的饮用水。
我国也面临着严峻的缺水问题。
我国人均水资源占有量仅为世界人均量的四分之一。
3。
化学分析是对实验中所得到的数据进行分析和处理,从而得出结论或者通过一定的推理,证明某种结果是否符合事实。
4。
溶液在一定条件下能够导电,且当两种液体互相接触时会发生放热现象,把这两种液体分开的方法叫做分液。
化工热力学知识要点1、化工热力学的研究方法:宏观研究方法 微观研究方法。
2、热力学体系:孤立体系(无物质无能量) 封闭体系(无物质 有能量) 敞开体系(有物质 有能量)。
3、体系 环境:在热力学分析中,将研究中涉及的一部分物质(或空间)从其余物质(或空间)中划分出来。
其划分出来部分称为体系,其余部分称为环境。
4、状态函数:描述体系所处状态的宏观物理量成为热力学变量(状态函数)。
常用的状态函数有压力、温度、比容、内能、焓、熵、自由焓等。
5、循环:体系经过一系列的状态变化过程后,最后由回到最初状态,则整个的变化称为循环。
分为正向循环和逆向循环。
6、临界点:气化线的另一个端点是临界点C,它表示气液两相能共存的最高压力和温度,即临界压力cp 和临界温度cT 。
7、临界点的数学表达式:临界等温线在临界点上的斜率和曲率都等于零。
数学上表示为0=⎪⎭⎫⎝⎛∂∂=cTT V p 022=⎪⎪⎭⎫ ⎝⎛∂∂=cTT V p8、直线直径定律:当以饱和液体和饱和蒸气密度的算术平均值对温度作图时,得一近似的直线。
9、纯物质的p-V-T 图:P 510、理想气体状态方程:RT pV =式中,p 为气体压力;V 为气体摩尔体积;T 为绝对温度;R 为通用气体常数 8.314J/(mol ·K)11、范德华方程(van der Waals 方程):2V ab V RT p --= 其中cc pT R a 642722=;cp RTb 8=。
12、R-K 方程: )(5.0b V V T ab V RT p +--= 其中ccp T R a /42748.05.22=;cc p RT b /08664.0=。
13、维里方程(Virial 方程):++++==321V DV C V B RT pV Z (2-26) 或者 ++++==32'''1p D p C p B RTpVZ式中, 、、、)'()'()'(D D C C B B 分别称为第二、第三、第四、 Virial 系数。
化工热力学公式 The document was finally revised on 2021热力学是以热力学第一、第二定律及其他一些基本概念理论为基础,研究能量、能量转换以及与转换有关的物质性质相互之间关系的科学。
有工程热力学、化学热力学、化工热力学等重要分支。
化工热力学是将热力学原理应用于化学工程技术领域。
化工热力学主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。
热力学的研究方法,原则上可采用宏观研究方法和微观研究方法。
以宏观方法研究平衡态体系的热力学称为经典热力学。
体系与环境:隔离体系,封闭体系,敞开体系流体的P-V-T关系在临界点C :临界点是汽液两相共存的最高温度和最高压力,即临界温度Tc,临界压力Pc。
纯流体的状态方程(EOS) 是描述流体P-V-T性质的关系式。
由相律可知,对纯流体有:f( P, T, V ) = 0混合物的状态方程中还包括混合物的组成(通常是摩尔分数)。
状态方程的应用(1)用一个状态方程即可精确地代表相当广泛范围内的 P、V、T实验数据,借此可精确地计算所需的P、V、T数据。
(2)用状态方程可计算不能直接从实验测定的其它热力学性质。
(3)用状态方程可进行相平衡和化学反应平衡计算。
压缩因子(Z)即:在一定P,T下真实气体的比容与相同P,T下理想气体的比容的比值. 理想气体方程的应用(1 )在较低压力和较高温度下可用理想气体方程进行计算。
(2 )为真实气体状态方程计算提供初始值。
(3 )判断真实气体状态方程的极限情况的正确程度,当或者时,任何的状态方程都还原为理想气体方程。
维里方程式Virial系数的获取( 1 ) 由统计力学进行理论计算目前应用很少( 2 ) 由实验测定或者由文献查得精度较高( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的数据两项维里方程维里方程式Z=PV/RT=1+ B/P(1)用于气相PVT性质计算,对液相不能使用;(2)T<Tc, P<, , 用两项维里方程计算,满足工程需要;温度更高时,压力的范围可以更大些。
化工热力学公式范文化工热力学是研究化学反应与热力学的相互关系的一门学科。
热力学是一个描述物质能量转化和传递的科学,它包括理论基础、实验方法和应用。
在化工过程中,热力学公式被广泛应用于计算与预测反应的热力学性质,以及热力学参数对反应均衡和传递的影响。
下面是一些常用的化工热力学公式。
1.焓变公式(ΔH):ΔH = ΣH(products) - ΣH(reactants)ΔH表示反应的焓变,H代表反应体系的焓(能量),反应前后体系的焓变化量即为反应热,可以判断反应是吸热反应还是放热反应。
2. 阿伦尼乌斯公式(Arrhenius equation):k = A × exp(-Ea/RT)k表示反应速率常数,A为频率因子,Ea为活化能,R为理想气体常数,T为反应温度。
该公式描述了化学反应速率与温度的关系,温度越高,反应速率越快。
3. 盖因斯-亨德森公式(Gibbs-Helmholtz equation):ΔG=ΔH-TΔSΔG为自由能变化,ΔH为焓变,T为绝对温度,ΔS为熵变。
该公式描述了自由能与焓、熵之间的关系,通过计算ΔG值可以判断反应是否可逆、自发发生。
4. 凯库勒公式(Clausius-Clapeyron equation):ln(P2/P1) = ΔHvap/R × (1/T1 - 1/T2)P1、P2为两个不同温度下的饱和蒸汽压,ΔHvap为蒸发热,R为理想气体常数,T1、T2为对应温度。
该公式描述了物质的蒸汽压与温度之间的关系,可以用于计算物质的汽化热。
5.放热反应的焓变公式:q=m×C×ΔTq为反应所释放的热量(焓变),m为物质的质量,C为物质的比热容,ΔT为温度变化。
该公式用于计算放热反应的热量释放。
6.反应平衡常数的计算:Kc=[C]^c×[D]^d/[A]^a×[B]^bKc表示反应平衡常数,[C]^c、[D]^d分别代表反应产物C、D的浓度或压力的指数,[A]^a、[B]^b分别代表反应物A、B的浓度或压力的指数。
化工热力学讲稿0.绪论0.1 热力学发展简史1593年伽利略制造出第一支温度计1784年有了比热容的概念18世纪中期,热质说18世纪末到19世纪中叶,热动说蒸汽机发明,1824年,卡诺提出理想热机,热力学的萌芽1738年,伯努利方程诞生,为其验证能量守恒,即热力学第一定律1824年出项第一个热功当量,焦耳进行试验测定1850年克劳修斯证明了热机效率,1854年正式命名了热力学第二定律1913年能斯特提出热力学第三定律1931年Fowler提出热力学第零定律0.2化工热力学的主要内容热力学第一定律和热力学第二定律。
与物化不同之处在于要讨论系统与环境既有物质交换又有能量的情况,偏重的是在实际工程上的应用。
0.3 化工热力学的研究方法及其发展微观与宏观相结合微观:分子热力学宏观:经典热力学量子力学的发展液位化工热力学的研究提供了新的途径,0.4 化工热力学在化工中的重要性定性定量0.5 热能转换的基本概念一、热力系、状态及状态参数(一)热力系与工质1、工质:在物化学习当中我门知道热机就是将热能转变为机械能的设备,如气轮机、内燃机等都是热机。
在热机中要使热能不断的转变为机械能,需要借助于媒介物质。
实现能量转换的媒介物质就是工质。
例如在卡诺热机当中的工质就是理想气体。
不同性质的工质对能量转换的效果有直接影响,工质性质的研究是本学科的重要内容之一。
原则上,气、液、固三态物质都可以作为工质,但热力学中,热能与机械能的转换是通过物质体积变化来实现的,为使能量转换快速而有效,常选气态物质为工质。
在火电厂中,由于工质连续不断的通过热力设备膨胀做功,因此,要求工质应有良好的膨胀性和流动性,此外,还要求工质热力性质稳定,无毒,无腐蚀,价廉、易得等。
因此,目前火电厂中采用水蒸气作为工质。
水在锅炉中吸热生成蒸气,然后在气轮机中膨胀推动叶轮向外做功,做功后的乏汽在宁汽器中向冷却水放热又凝结为水。
在这一系列中,炉膛中的高温烟气是向工质提供热量的高温热源,气轮机是实现能量转换的热机,凝汽器中的冷却水是吸收工质所释放的废热的低温热源,通过工质的状态变化及它和高温热源、低温热源之间的相互作用实现了热能向机械能的连续转换。
化工热力学公式总结1.热平衡公式:对于封闭系统,内能变化等于热变化和功变化之和。
即:ΔU=Q-W其中,ΔU表示内能变化,Q表示系统吸收或放出的热量,W表示系统对外做功。
2.热容公式:热容是单位质量物质温度变化1°C所吸收或放出的热量。
Q=mCΔT其中,Q表示吸收或放出的热量,m表示物质的质量,C表示热容,ΔT表示温度变化。
3.平衡常数(K)公式:对于化学反应:aA+bB↔cC+dD反应的平衡常数(K)定义为反应物浓度的乘积与生成物浓度的乘积之比:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]表示反应物和生成物的摩尔浓度。
4.反应焓变(ΔH)公式:反应焓变是化学反应进行过程中吸热或放热的量。
根据焓守恒定律,反应焓变可以通过反应物和生成物焓变的差值表示:ΔH=ΣnΔHf(生成物)-ΣmΔHf(反应物)其中,n和m为反应物和生成物的系数,ΔHf表示物质的标准生成焓。
5.反应熵变(ΔS)公式:反应熵变是化学反应进行过程中熵的变化。
根据熵守恒定律,反应熵变可以通过反应物和生成物熵变的差值表示:ΔS=ΣnS(生成物)-ΣmS(反应物)其中,n和m为反应物和生成物的系数,S表示物质的熵。
6.反应自由能变(ΔG)公式:反应自由能变是化学反应进行过程中自由能的变化,可以通过反应物和生成物的自由能差值表示:ΔG=ΣnG(生成物)-ΣmG(反应物)其中,n和m为反应物和生成物的系数,G表示物质的自由能。
7.热力学平衡公式:对于可逆反应,根据吉布斯自由能变可以推导出热力学平衡公式:ΔG=ΔH-TΔS其中,ΔG为反应的吉布斯自由能变,ΔH为反应的焓变,ΔS为反应的熵变,T为温度。
以上是化工热力学中常用的公式总结,这些公式在研究和设计化工过程中起到了重要的作用。
通过应用这些公式,可以计算和预测系统的热力学性质和能量转化,从而优化化工过程的设计和操作。
同时,这些公式也为研究反应机理和确定过程条件提供了理论基础。
化工热力学的名词解释引言:化工热力学是化学工程中非常重要的一门学科,它研究的是化学反应过程中的能量转化、传递和平衡等热力学原理与方法。
以下将对化工热力学中的一些关键名词进行解释,帮助读者更好地理解和应用这些概念。
一、焓(Enthalpy):焓是化工热力学中一个非常重要的量,它表示系统的内能和对外界做的功之间的总和。
焓的变化是化学反应或物质相变等过程中的重要参量。
在常温常压下,焓通常使用标准焓表示,记为ΔH°。
通过计算物质的吸热或放热量,可以用来确定反应的热效应。
二、熵(Entropy):熵是表示系统无序程度或混乱程度的物理量。
化工热力学中的熵是指系统能量的一种度量,常用符号为S。
熵的变化是系统在吸热或放热过程中的重要参量。
熵增定律是指孤立系统熵总是增加的规律,可用来描述自然界中的很多过程。
三、自由能(Free Energy):自由能是一个系统在恒定温度下能做的最大可逆功的最大减值。
它是描述系统在恒定温度和压力下它达到一个平衡状态的程度的一个非常重要的物理量。
自由能的变化可用来预测反应是否会自发进行以及反应的方向。
四、热力学平衡(Thermodynamic Equilibrium):热力学平衡是指系统的各种宏观性质在连续不断的时间变化之后趋于稳定的状态。
对于化学反应的热力学平衡,反应物和生成物的浓度或物相的比例保持不变,且反应速率达到一种动态平衡,正反应速率相等。
热力学平衡状态是实现可持续化学反应的重要条件。
五、化学势(Chemical Potential):化学势是描述物质在一定温度、压力和组分条件下的自由能变化的关键物理量。
化学势的变化可以预测化学反应的趋势以及化学平衡的位置。
通过研究化学势的变化可以探索最佳反应条件和反应过程的优化。
六、热容(Heat Capacity):热容是指系统在吸收或释放一定量热量时温度变化的情况。
它是描述物质对热能的存储和释放能力的物理量。
热容可以分为等压热容和等容热容,分别对应恒定压力和恒定体积条件下的热容。