专家系统
- 格式:doc
- 大小:121.50 KB
- 文档页数:7
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。
这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即专家系统 = 知识库 + 推理机它把知识从系统中与其他部分分离开来。
专家系统强调的是知识而不是方法。
很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。
一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题水平。
专家系统与传统的计算机程序的主要区别如表7.1所示。
表7.1 专家系统与传统的计算机程序的主要区别列项传统的计算机程序专家系统适用范围无限制封闭世界假设建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。
知识工程包括下面几个方面:(1)从专家那里获取系统所用的知识(即知识获取)(2)选择合适的知识表示形式(即知识表示)(3)进行软件设计(4)以合适的计算机编程语言实现。
专家系统的发展史1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。
20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。
20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。
1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。
专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。
这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。
专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。
知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。
专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。
专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。
随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。
生活中常见的专家系统的例子生活中常见的专家系统的例子有很多,下面列举了10个例子:1. 医疗诊断专家系统医疗诊断专家系统是一种利用人工智能技术实现的系统,能够根据患者的症状和病史等信息,进行疾病的诊断和治疗建议。
该系统基于大量的医学知识和专家经验,通过推理和推断来帮助医生进行准确的诊断和治疗。
2. 金融风险评估专家系统金融风险评估专家系统是一种用于评估金融机构风险的系统,能够根据各种因素(如市场波动、财务状况等)进行风险评估和预测。
该系统通过分析数据和规则,提供风险评估报告和决策建议,帮助金融机构做出合理的风险管理决策。
3. 智能家居控制专家系统智能家居控制专家系统是一种用于控制家居设备的系统,能够根据用户的需求和环境条件,智能地控制灯光、温度、安防等设备。
该系统通过学习用户的习惯和喜好,自动调节设备,提供舒适和便捷的居住体验。
4. 智能交通管理专家系统智能交通管理专家系统是一种用于优化交通流量和减少交通拥堵的系统,能够根据实时交通数据和交通规则,进行交通信号控制和路线规划。
该系统通过智能算法和优化模型,提供最优的交通管理方案,改善交通状况,提高路网通行效率。
5. 客户关系管理专家系统客户关系管理专家系统是一种用于管理和分析客户信息的系统,能够根据客户的需求和行为,进行个性化的营销和服务。
该系统通过分析客户数据和行为模式,提供定制化的产品推荐和沟通策略,增强客户满意度和忠诚度。
6. 环境监测与预警专家系统环境监测与预警专家系统是一种用于监测和预测环境变化的系统,能够根据各种环境指标和模型,进行环境污染和自然灾害的监测与预警。
该系统通过大数据分析和模型模拟,提供准确的环境预警和应急响应,保护环境和人民的生命财产安全。
7. 农业决策支持专家系统农业决策支持专家系统是一种用于农业生产和管理的系统,能够根据农业数据和农业知识,进行种植、养殖和农业管理的决策支持。
该系统通过分析土壤、气候、作物等信息,提供种植技术、病虫害防治等方面的建议,提高农业生产效益和农民收入。
知识表示是对知识的一种描述,或者说是一组约定,是一种计算机可以接受的用于描述知识的数据结构。
知识外部表示模式:是与软件开发与运行的软件工具与平台无关的知识表示的形式化描述。
知识内部表示模式:是与开发软件工具与平台有关的知识表示的存储结构。
命题是具有真假意义的语句。
命题代表人们进行思维时的一种判断,或者是肯定,或者是否定。
谓词公式的永真性、可满足性、不可满足性、等价性蕴含式与产生式的差别:①蕴含式只能表示精确知识;产生式可以表示精确知识,也可以表示不精确知识。
②蕴含式要求匹配是精确的;产生式匹配可以是精确的,也可以是不精确的。
产生式系统有三个基本组成部分:规则库、综合数据库和控制机构专家系统的基本特征:知识库和推理机的分离产生式系统的推理方式:正向推理(数据驱动、自底向上)反向推理(目标驱动、自顶向下)双向推理由问题的全部状态及一切可用算符所构成的集合称为问题的状态空间,一般用一个三元组表示:(S,F,G)其中S是问题的所有初始状态构成的集合;F是算符的集合;G是目标状态的集合。
状态空间的图示形式称为状态空间图。
其中,节点表示状态;有向边(弧)表示算符。
本原问题:直接可解的子问题称为本原问题。
端节点与终叶节点:没有子节点的节点称为端节点;本原问题所对应的端节点称为终叶节点。
宽度优先搜索:在搜索树的生成过程中,只有对搜索树中同一层的所有节点都考查完之后,才会对下一层的节点进行考查。
深度优先搜索:在搜索树的生成过程中,对open表中同一层的节点只选择表中一个节点进行考查和扩展,只有当这个节点是不可扩展的。
才选择同层的兄弟节点进行考查和扩展。
博弈树的特点:①博弈的初始格局是初始节点。
②在博弈树中,“或”节点和“与”节点是逐层交替出现的。
自己一方扩展的节点之间是“或”关系,对方扩展的节点之间是“与”关系。
双方轮流地扩展节点。
③所有能使自己一方获胜的终局都是本原问题,相应的节点是可解节点,所有使对方获胜的终局都是不可解节点。
三专家系统简介专家系统是一种以知识推理的定性方式辅助决策的智能技术,利用专家知识进行推理的过程。
专家系统是具有大量专门知识,并能运用这些知识解决特定领域中实际问题的计算机程序系统。
(大量的专家知识,运用知识推理的方法,解决特定问题。
)知识处理的特点:知识包括事实与规则(状态转变过程);适合于符号处理;推理过程是不固定形式的;能得出未知的事实。
1. 专家系统的定义及构成专家系统是人工智能的一个最活跃的分支,产生于60年代中期,DENDRAL专家系统的出现标志着专家系统的诞生,短短的30多年时间内发展迅速。
目前同自然语言理解、机器人学并列为人工智能的三大研究方向。
至于专家系统的定义,有以下几种说法:(1)专家系统是一个智能程序系统;(2)专家系统能利用仅人类专家可用的知识和解决问题的方法来解决问题;(3)专家系统是一种计算机程序,它可以以人类专家的水平完成专门的一般是困难的问题。
图1专家系统结构1) 专家系统的核心是知识库和推理机。
专家系统=知识库+推理机。
2) 知识获取是把专家的知识按照一定的知识表示形式深入到专家系统的知识库中3) 人机接口将用户的咨询和专家系统推出的建议、结论进行人机间的翻译和转换。
4) 产生式规则知识的推理机。
产生式规则的推理机=搜索+匹配推理过程中边搜索边匹配。
匹配就是找事实,事实一是来自规则库中别的规则,另一是来自向用户提问。
搜索过程中包含回溯。
5) 产生式规则推理的解释。
跟踪和显示推理过程中的搜索和匹配过程就是解释机制。
一般说来,专家系统由下述几个部分构成:(1) 知识库 存储专家的知识、经验及书本上的知识和常识,简称领域(Domain)知识库,包括:领域的专门知识和启发性知识(经验),要求知识库具有完备性和可用性,即知识要全面,同时不能有冗余,即不能存放多余的或无用的知识。
(2)动态数据库存贮专家系统当前要处理的对象的一些事实,包括该领域内的初始论据(初始状态),推理过程得到的各种中间信息,推理的最终结果也在其中。
正向演绎推理,不完整的故障码信息也能给出结论,增加了一个实例数据库,用于存储推理结果,避免了重复推理,提高了推理效率。
图2 功能模块
其中无线收发模块具有接收信息和发送信息的功能,它接收车载端发送的故障码信息,并传递给数据处理模块,并将数据处理模块传递过来的诊断结果反馈给车载端。
数据处理模块处理和转换无线收发模块传递来的故障码信息,并传递给故障诊断模块;同时处理和转换故障诊断模块传递来的诊断结果并传递给无线收发模块。
故障诊断模块接收从数据处理模块传来的车牌号和故障码,运用知识库中的知识进行推理,得出诊断结果并将车牌号和诊断结果返回给数据处理模块。
3.1数据交互协议
为了使专家系统能实时准确的接受到车载端发送来的故障求助,同时将诊断结果实时准确的反馈给车载端,建立一个好的数据交互协议是很重要的专家系统数据包格式如表1 所示。
表1 汽车故障诊断专家系统数据包格式
其中:Device 为设备编号,长一个字节;Node 表示通信节点;Data/Cmd 表示包的类型,若为0x00 表示数据,若为0x01 表示命令;Buf 表示包的实际内容,其长度(字节数)由Length 域的数据决定。
本系统在运行过程中,传输的数据包有显示端发出的故障求助包、网关发给服务中心的故障求助包和来自服务中心的分析结果包。
当车辆发生故障时,或用户觉得必要时,由用户发起故障求助,按下“故障求助”向服务中心请求帮助。
具体过程如下:
1)显示端“故障求助”按钮通过网关向服务中心发起故障综合诊断请求,请求包格式见表2。
表2.显示端发出的故障求助包
2)网关先将该请求转发给采集端。
3)采集端对关键点扫描,将扫描的故障码发给网关。
4)网关根据来自采集端的数据包确定有无故障存在,若无,直接发送故障尾包给显示端;若有,将故障码转发给显示端,同时在故障码包的Buf开始处插入“车牌号码”信息
如表3 所示,将其发给服务中心,等待服务中心的诊断结果。
表3 网关发给服务中心的故障求助包
5)若服务中心未返回诊断结果(如发生无法连接服务中心的情况),则直接将尾包发给显示端;若服务中心返回分析结果,则将来自服务中心的结果包(表4)和故障尾包依次发送给显示端。
表4 来自服务中心的分析结果包
3.2 故障诊断及设计
故障诊断模块是专家系统的核心部分,它根据发送来的故障码,运用知识库中的知识进行推理,得出故障部位、维修建议和置信度。
本系统在正向演绎推理的过程中,使用深度优先搜索策略以达到对汽车故障的诊断。
3.2.1 推理原理
本系统是基于规则的专家系统,知识被表示为“如果……那么……”的产生式规则,即“IF P THEN Q”的形式,其中P 是产生式的前件,指出该产生式规则的条件;Q 是一组结论或操作,指出当前提条件满足时应得出的结论或进行的操作[10]。
由于此系统一次获取所有故障码,无法在推理过程中询问用户相关信息,用反向演绎推理或正反向演绎推理比较困难,所以用正向演绎推理;正向演绎推理的基本思想是:用户首先用已知的初始事实集初始化临时数据库,在知识库中寻找与临时数据库中的模式匹配的知识,构成可用的知识集。
然后运用深度优先搜索作为冲突消解策略选出一条规则进行推理,并将推理出的新事实加入到临时数据库中作为下一步推理的已知事实。
如此反复这一过程直到求出所要求的解或者知识库中再无其他可用的知识为止。
本系统是正向推理的基础上的不确定性推理。
知识库中的知识具有不确定性,在推理过程中,结论的不确定度为推理过程中规则不确定度的乘积,最后的推理结果按不确定度的大小进行排序,给出用户结论的优先顺序。
本系统设置了一个实例数据库,推理的最后结果存放在实例数据库中,当下次发送来的故障码存在于实例数据库时,可以用实例数据库中已有的结论反馈给用户。
3.3 专家系统算法设计
故障诊断专家系统整体流程图见图3。
故障诊断需要故障诊断模块各部分间的协调工作,基本步骤如下:1)程序对数据处理模块传来的数据进行处理,分离出车牌号和
故障码。
2)在实例数据库中查询有无与故障码匹配的诊断结果,若有,将车牌号和诊断结果传给数据处理模块,程序结束;若无,进行步骤3。
3)建立用于推理的对象,初始化临时数据库。
4)运用知识库中知识进行推理,如果推理失败,将车牌号和“推理失败”传给数据处理模块,程序结束;如果推理成功,进行步骤5。
5)将推理实例加入实例数据库,将车牌号和推理结果传给数据处理模块,程序结束。
图4 专家系统整体流程图
3.4故障推理及设计
故障推理是以推理机为中心的推理过程,流程图如图4 所示。
基本步骤如下:
1)建立临时数据库,用于存储规则前件及其对应规则的概率和最终结果及其对应概率。
2)初始化临时数据库,将各故障码与规则前件匹配,形成规则集,运用宽度优先搜索策略,依次选取规则进行推理,将推理结果中的结论加到存储最终结果的数组中,相应概率加到存储最终结果概率的数组中;将推理结果中的操作加到存储规则前件的数组中,相应概率加到存储规则前件概率的数组中,形成新的事实集进行下一步推理。
3)反复执行步骤2 直到存储规则前件的数组中不与任何规则匹配时为止。
4)若诊断失败,返回车牌号和“推理失败”;若诊断成功,将推理结果中相同项合并,对应概率相加,去除结果中概率小于0.1 的项,并将推理结果存入“实例数据库”,返回车牌号和推理结果。
4 结束语。