《平方根与立方根》同步练习及易错题
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
《算术平方根、平方根、立方根》易错题训练算术平方根、平方根、立方根易错题训练1. 算术平方根的定义和计算方法在数学中,算术平方根指的是一个数的平方等于给定数的平方根。
如果我们要计算16的算术平方根,我们需要找到一个数,使得这个数的平方等于16。
在这个例子中,16的算术平方根是4,因为4的平方等于16。
在实际计算中,我们可以使用开方符号√来表示算术平方根,即√16=4。
但在实际运用中,很多学生容易将算术平方根和平方根搞混,导致错题。
掌握算术平方根的定义和计算方法非常重要。
2. 平方根的概念和应用与算术平方根类似,平方根也是一个数的平方等于给定数的根。
但与算术平方根不同的是,平方根更常用于几何和物理问题中。
在计算一个矩形的对角线长度时,我们就需要使用平方根来计算。
平方根通常用来求解两边边长已知的等腰三角形的高、直角三角形斜边等问题。
然而,很多学生在高中数学学习中,由于对平方根的概念和应用理解不够深入,容易在相关题目中出错。
理解平方根的概念及其应用也是十分重要的。
3. 立方根的特点和求解方法立方根是一个数的立方等于给定数的根。
27的立方根是3,因为3的立方等于27。
立方根在几何和物理问题中同样有广泛的应用,如求解立方体的体积、长方体的对角线长度等。
虽然立方根的概念和求解方法比较直观,但在实际运用时,一些立方根的运算和问题求解可能会让学生感到困惑,容易出错。
熟练掌握立方根的特点和求解方法对于学生来说也是必不可少的。
4. 总结和回顾通过本篇文章的训练,我们可以得出结论:学生需要深入理解算术平方根、平方根、立方根的定义和计算方法,避免混淆和错题。
学生需要在实际问题中灵活应用平方根和立方根的知识,加深对概念和应用的理解。
学生可以通过练习题目加深对这些数学概念的掌握,并避免在考试中出现低级错误。
5. 个人观点和理解在我看来,数学中的算术平方根、平方根、立方根是非常基础但又非常重要的知识点。
它们不仅在数学中有着广泛的应用,而且还是建立数学思维和逻辑推理能力的重要基础。
人教版七年级下册思维特训(八) 平方根与立方根错例剖析(355)1.求343的立方根2.观察下列各式:√0.09=0.3,√9=3,√900=30,…,请把你猜想到的规律用一句话概括:__________________________________________.3.已知√0.8543≈0.9488,√8.543≈2.044,√85.43≈4.404,求下列各式中x 的值.(1)x =√−0.000008543;(2)x =−√−8540000034.0.000216的立方根是5.计算:√0.00012536.如果一个数的平方根与立方根相同,那么这个数是()A.±1B.0C.1D.0和17.√(−36)2的平方根是()A.−36B.36C.±6D.±368.如果x 2=9,那么x =9.填空:(1)42的平方根是 ;(2)(−6)2的平方根是10.填空:(1)8的立方根是 ;(2)√729的立方根是11.√81的平方根是 ,−64的立方根是 ,√−5123的立方根是12.求√625的算术平方根13.下列计算正确的是()A.√−33=−√−33B.√−33=√33C.√−33=√|−3|3D.√−33=−√3314.30的立方根是15.0.3是 的立方根16.9的平方根是 .17.1681的算术平方根是18.求0.0081的平方根19.√16的算术平方根是参考答案1.【答案】:解:∵73=343,3=7,∴√343即343的立方根是72.【答案】:一个数扩大为原来的100倍,则其算术平方根扩大为原来的10倍33≈2.044,(1)【答案】解:∵√8.543∴x=√−0.000008543=−√8.54×10−6≈−2.044×10−2=−0.020443≈4.404,(2)【答案】解:∵√85.43∴x=−√−854000003=√85.4×106≈4.404×102=440.4【解析】:一个数扩大为原来的1000倍或缩小为原来的1,则其立方根相应地1000扩大为原来的10倍或缩小为原来的1104.【答案】:0.06【解析】:∵0.063=0.000216,∴0.000216的立方根是0.0635.【答案】:解:√0.0001253=√0.053=0.056.【答案】:B【解析】:7.【答案】:C8.【答案】:±39(1)【答案】±4(2)【答案】±610(1)【答案】2(2)【答案】311.【答案】:±3;−2;−2【解析】:(1)先计算√81=9,再求得9的平方根是±3.(2)先计算−√64=−8,再求得−8的立方根为−2.(3)先计算√−5123=−8,再求得−8的立方根为−2,∴√−5123的立方根是−212.【答案】:解:∵√625=25,又∵52=25,∴25的算术平方根是5,即√625的算术平方根是513.【答案】:D【解析】:√−33=−√33,√|−3|3=√33.故选 D.14.【答案】:√30315.【答案】:0.027【解析】:小数的乘方运算以及开方运算一直是学生容易出现错误的知识泥潭,不少学生对小数立方根的特点认识不足,经常会出现小数点位置的错误16.【答案】:±3【解析】:一个正数的平方根有两个且互为相反数.17.【答案】:4918.【答案】:解:∵(±0.09)2=0.0081,∴0.0081的平方根是±0.0919.【答案】:2【解析】:本题的实质是先计算√16,再求它的算术平方根.但不少学生不能兼顾整个思维过程,造成思考过程脱节,错误地求出16的算术平方根。
八年级数学上册11.1平方根与立方根―立方根同步练习(华师大版带答案和解释)《11.1 平方根与立方根―立方根》一、选择题 1.若8x3+1=0,则x为() A.�B.± C. D.�2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对二、填空题 4.的立方根是,平方根是. 5.若(x�1)3=125,则x= . 6.立方根等于它本身的数为.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m <n C.m=n D.不能确定 8.�27的立方根与的平方根之和为()A.0 B.6 C.0或�6 D.0或6 四、填空题 9.若x4=16,则x= ;若3n=81,则n= . 10.若,则x= ;若,则x . 11.当x 时,有意义;当x 时,有意义. 12.若,则x+y= . 13.计算: + � + = .五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8. 16.计算题(1)× ×3 (2)× . 17.若与互为相反数,求的值. 18.已知 =1�a2,求a的值.《11.1 平方根与立方根―立方根》参考答案与试题解析一、选择题 1.若8x3+1=0,则x为()A.�B.± C. D.�【考点】立方根.【分析】先求得x3的值,然后依据立方根的性质求解即可.【解答】解:∵8x3+1=0,∴x3=�.∴x=�.故选:A.【点评】本题主要考查的是立方根的性质,求得x3的值是解题的关键. 2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 【考点】立方根;平方根.【分析】先求的平方根,再求�8的立方根,然后求和.【解答】解:∵ =4,4的平方根为±2,�8的立方根为�2 故它们的和是�4或0.故选D.【点评】本题主要考查了平方根和立方根的定义. 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对【考点】立方根.【分析】利用立方根的定义分析得出答案.【解答】解:∵ =1, =�1, =0,∴ =a,那么a是±1,0.故选:C.【点评】此题主要考查了立方根,正确把握定义是解题关键.二、填空题 4.的立方根是 2 ,平方根是±2 .【考点】立方根;平方根;算术平方根.【分析】先根据算术平方根的定义得到 =8,然后根据平方根和立方根的定义分别求出8的平方根与立方根.【解答】解:∵ =8,∴8的平方根为±2 ,8的立方根为 =2.故答案为:2,±2 .【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作± ,也考查了立方根的定义. 5.若(x�1)3=125,则x= 6 .【考点】立方根.【分析】根据立方根定义得出x�1=5,求出即可.【解答】解:(x�1)3=125=53, x�1=5, x=6,故答案为:6.【点评】本题考查了立方根的定义的应用,能得出方程x�1=5是解此题的关键. 6.立方根等于它本身的数为1,�1,0 .【考点】立方根.【分析】根据立方根的意义得出即可.【解答】解:立方根等于它本身的本身的数为1,�1,0,故答案为:1,�1,0.【点评】本题考查了立方根的应用,主要考查学生的理解能力和计算能力.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m<n C.m=n D.不能确定【考点】实数大小比较.【分析】取特殊值,m=�,再比较即可.【解答】解:∵�1<m<0,∴取m=�,∴m=�=�,∵n= =�=�,∴n<m,故选A.【点评】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键. 8.�27的立方根与的平方根之和为() A.0 B.6 C.0或�6 D.0或6 【考点】实数的运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:± =�3±3,则�27的立方根与的平方根之和为为0或�6.故选C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、填空题 9.若x4=16,则x= ±2;若3n=81,则n= 4 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用乘方的意义计算即可确定出x的值;根据已知等式,利用乘方的意义确定出n的值即可.【解答】解:若x4=16,则x=±2;若3n=81,则n=4.故答案为:±2;4.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键. 10.若,则x= 1或0 ;若,则x ≤0.【考点】立方根;算术平方根.【分析】根据立方根和算术平方根的定义计算即可.【解答】解:∵ ,∴x=1或0,∵ ,∴x≤0,故答案为:1或0;≤0.【点评】本题主要考查立方根和算术平方根的知识点,比较简单. 11.当x ≥ 时,有意义;当x 取任意实数时,有意义.【考点】二次根式有意义的条件;立方根.【专题】常规题型.【分析】根据被开方数大于等于0列式求解即可;根据立方根的被开方数可以是任意实数解答.【解答】解:根据题意得,3x�1≥0,解得x≥ ; 5x+2可以取任意实数,∴x 取任意实数.故答案为:≥ ,取任意实数.【点评】本题考查了二次根式有意义的条件,以及任意实数都有立方根的性质,需熟练掌握. 12.若,则x+y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,x+1=0,y�2=0,解得x=�1,y=2,∴x+y=�1+2=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 13.计算: + �+ = �.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式= × + × �2 +2= �,故答案为:�【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3.【考点】立方根.【分析】根据立方根的计算方法可以解答本题.【解答】解:(1);(2);(3).【点评】本题考查立方根,解题的关键是明确立方根的计算方法. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8.【考点】立方根.【分析】根据立方根的计算方法和解方程的方法可以解答各个方程.【解答】解:(1)x3�216=0 x3=216 x= x=6;(2)(x+5)3=64 x+5= x+5=4 x=�1;(3)( x+1)3=8 x+1= x+1=2 x=2.【点评】本题考查立方根,解题的关键是明确立方根的计算方法和解方程的方法. 16.计算题(1)× ×3 (2)× .【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=10×(�2)×3×0.7=�42;(2)原式=60× =240.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 17.若与互为相反数,求的值.【考点】立方根;相反数.【分析】根据相反数得出 + =0,得到x与y 的关系,再代入求出即可.【解答】解:∵ 与互为相反数,∴ + =0,∴1�2x+3y�2=0, 1+2x=3y,∴ = =3.【点评】本题考查了立方根,代数式的值,相反数的应用,能求出x与y的关系是解此题的关键. 18.已知 =1�a2,求a的值.【考点】立方根.【分析】分三种情况:1�a2=�1,1�a2=�0,1�a2=1,进行讨论求解即可.【解答】解:依题意有 1�a2=�1,解得a=± ; 1�a2=0,解得a=±1; 1�a2=1,解得a=0.故a的值是=± ,a=±1,a=0.【点评】此题考查了立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.注意分类思想的应用.。
八年级上册《11.1 平方根与立方根》同步练习一、选择题(本大题共10小题,共30.0分)1.−18的平方的立方根是()A. 4B. 18C. −14D. 142.下列语句,写成式子正确的是()A. 7是49的算术平方根,即√49=±7B. ±7是49的平方根,即±√49=7C. 7是(−7)2的算术平方根,即√(−7)2=7D. √7是7的算术平方根,即√7=73.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是()A. √a2+3B. −√a2+3C. ±√a2+3D. ±√a+34.若一个数的平方根与它的立方根完全相同,则这个数是()A. 1B. −1C. 0D. ±1,05.面积为10的正方形的边长x满足下面不等式中的()A. 1<x<3B. 3<x<4C. 5<x<10D. 10<x<1006.若a2=25,|b|=3,则a+b=()A. 8B. ±8C. ±2D. ±8或±27.下列各式中,正确的是()A. √(−2)2=−2B. (−√3)2=9C. √−93=−3 D. ±√9=±38.若2m−4与3m−1是同一个数的平方根,则m的值是()A. −3B. −1C. 1D. −3或19.使等式(−√−x)2=x成立的x的值()A. 是正数B. 是负数C. 是0D. 不能确定10.已知√5=a,√14=b,则√0.063=()A. ab10B. 3ab10C. ab100D. 3ab100二、填空题(本大题共4小题,共12.0分)11.一个数的平方等于它本身,这个数是______ ;一个数的平方根等于它本身,这个数是______ ,一个数的算术平方根等于它本身,这个数是______ .12.若x3=x,则x=______;若√x3=x,x=______.14.一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为______.三、计算题(本大题共1小题,共6.0分)15.求符合下列各条件中的x的值①2x2−1=02x3+1=0②18③(x−4)2=4(x+3)3−9=0.④13四、解答题(本大题共3小题,共24.0分)16.已知x的两个平方根分别是2a+3和1−3a,y的立方根是a,求x+y的值.17.利用计算器计算:…,√0.0625,√0.625,√6.25,√62.5,√625,√6250,√62500,….计算后,分析结果,你发现了什么规律?18.已知x是1的平方根,求(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x的立方根.答案和解析1.【答案】D【解析】解:∵−18的平方等于164,而14的立方为164,∴−18的平方的立方根是14.故选:D .由于−18的平方等于164,然后根据立方根的定义即可求解.此题主要考查了立方根的定义和平方运算,解题时首先求出−18的平方然后求其立方根. 2.【答案】C【解析】解:A.7是49的算术平方根,即√49=7,此选项错误;B .±7是49的平方根,即±√49=±7,此选项错误;C .7是(−7)2的算术平方根,即√(−7)2=7,此选项正确;D .√7是7的算术平方根,但√7≠7,此选项错误;故选:C .根据平方根和算术平方根的定义逐一判断即可得.本题主要考查算术平方根,解题的关键是掌握算术平方根和平方根的定义.3.【答案】C【解析】【分析】由于一个正数的算术平方根是a ,由此得到这个正数为a 2,比这个正数大3的数是a 2+3,然后根据平方根的定义即可求得其平方根.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【解答】解:∵一个正数的算术平方根是a ,∴这个正数为a 2,4.【答案】C【解析】【分析】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.根据“任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”进行解答即可.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选C.5.【答案】B【解析】解:根据题意,得正方形的边长是√10.∵9<10<16,∴3<√10<4.故选:B.根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.此题考查了正方形的面积公式和无理数的估算方法,熟悉1−20的整数的平方.6.【答案】D【解析】解:∵a2=25,|b|=3,∴a=5或−5,b=3或−3,∴有四种情况,即a=5,b=3;a=−5,b=3;a=5,b=−3;a=−5,b=−3,则a+b=±8或±2.故选:D.利用平方根的定义及绝对值的代数意义求出a与b的值,即可求出a+b的值.【解析】解:A 、应√(−2)2=2,故此项错误;B 、应(−√3)2=3,故此项错误;C 、应√−93=−√93,故此项错误;D 、±√9=±3,故正确;故选:D .由平方根和立方根的定义即可得到.本题考查了平方根和立方根的定义,熟记定义是解题的关键.8.【答案】D【解析】解:当2m −4=3m −1时,m =−3,当2m −4+3m −1=0时,m =1.故选:D .依据平方根的性质列方程求解即可.本题主要考查的是平方根的性质,明确2m −4与3m −1相等或互为相反数是解题的关键.9.【答案】C【解析】解:由题意得−x ≥0,且x ≥0,解得x =0,故选:C .根据二次根式的性质可化简求解.本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.【答案】D【解析】解:√0.063=√63010000=√9×√70100=3√5×√14100 ∵√5=a ,√14=b ,∴原式=3ab 100.把0.063写成分数的形式,化简后再利用积的算术平方根的性质,写成含ab的形式.本题考查了二次根式的化简及积的算术平方根的性质.积的算术平方根的性质:√ab=√a⋅√b(a≥0,b≥0)11.【答案】0或1;0;0或1【解析】解:一个数的平方等于它本身,这个数是0,1;一个数的平方根等于它本身,这个数是0;一个数的算术平方根等于它本身,这个数是0,1.故填0,1;0;0,1.分别根据平方、平方根、算术平方根的概念解答即可.此题主要考查了平方运算、平方根的定义、算术平方根的定义.做此题时可根据各个概念,从0,1中找.12.【答案】0,±10,±1【解析】解:若x3=x,即一个数的立方等于它本身,则这个数显然是0,±1;3=x,即一个数的立方根等于它本身,根据立方根与立方互为逆运算,若√x则这个数是0,±1.故填0,±1;0,±1.如果一个数x的立方等于a,那么x是a的立方根,所以根据立方根的定义即可求解.此题主要考查了立方根的定义和性质,要求学生能够根据立方和立方根的意义正确找到立方等于它本身和立方根等于它本身的数.找的时候,主要结合0,1,−1进行分析.13.【答案】1或3【解析】解:∵(±4)2=16,∴x=4或x=−4,∴5−x=5−4=1或5−x=5−(−4)=9,∵12=1,32=9,∴(5−x)的算术平方根是1或3.故答案为:1或3.先根据平方根的定义求出x的值,从而得到(5−x)的值,然后根据算术平方根的定义进本题考查了平方根的定义以及算术平方根的定义,先求出(5−x)的值是解题的关键,也是本题容易出错的地方.14.【答案】4,5,6,7,8【解析】解:∵4的算术平方根是2,9的算术平方根是9,∴负数条件的实数是大于4且小于9,∴它的整数位上可能取到的数值为4,5,6,7,8,故答案为:4,5,6,7,8.先根据已知求出这个实数的范围,再求出即可.本题考查了平方根,实数的大小比较的应用,关键是确定实数的范围.15.【答案】解:①方程整理得:x2=1,4;开方得:x=±12②方程整理得:x3=−8,开立方得:x=−2;③开方得:x−4=2或x−4=−2,解得:x=6或x=2;④方程整理得:(x+3)3=27,开立方得:x+3=3,解得:x=0.【解析】各项方程利用平方根及立方根定义计算即可求出x的值.此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.【答案】解:∵x的两个平方根分别是2a+3和1−3a,∴2a+3+1−3a=0,a=4,∴x=(2×4+3)2=121,∵y的立方根是a,∴y=43=64,∴x+y=121+64=185.【解析】根据一个正数有两个平方根,它们互为相反数得出方程,求出a,即可求出x、y,代入求出即可.本题考查了平方根,立方根的应用,注意:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.17.【答案】解:用计算器计算所得结果如下:…,0.25,0.7906,2.5,7.906,25,79.06,250,….分析计算结果可以发现:被开方数的小数点每向右(左)移动两位,算术平方根的小数点相应地向右(左)移动一位.【解析】利用计算器进行计算即可得解,然后根据小数点的移动写出变化规律.本题考查了算术平方根,主要考查了利用计算器进行数的开方,仔细观察小数点的移动位数的变化是解题的关键.18.【答案】解:因为x是1的平方根,所以x=±1.设M=(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x,当x=1时,M=(1−1)(1−15)(1+1)(1+15)+1000,=0+1000,=1000,=103,故M的立方根是10;当x=−1时,M=(1−1)(1−15)(−1+1)(−1+15)−1000,=0−1000,=−1000,=−103,故M的立方根是:−10;所以(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x的立方根是10或−10.【解析】直接利用平方根的定义结合立方根的定义分别分析得出答案.此题主要考查了立方根、平方根,正确掌握相关定义是解题关键.。
1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。
平方根和立方根复习知识点一:平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作。
(2)一个正数a 的正的平方根,叫做a 的算术平方根。
0的算术平方根是0。
a(a≥0)的算术平方根记作。
巩固练习一:基础题知识点1 算术平方根1.(呼伦贝尔中考)25的算术平方根是( )A .5B .-5C .±5D . 52.(杭州中考)化简:9=( )A .2B .3C .4D .5 3.14的算术平方根是( ) A .12 B .-12 C .116 D .±124.(南充中考)0.49的算术平方根的相反数是( )A .0.7B .-0.7C .±0.7D .05.(-2)2的算术平方根是( ) A .2 B .±2 C .-2 D . 26.(宜昌中考)下列式子没有意义的是( )A .-3B .0C . 2D .(-1)27.下列说法正确的是( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对8.求下列各数的算术平方根:(1)144; (2)1; (3)1625; (4)0.a a9.求下列各式的值:(1)64;(2)121225; (3)108;(4)(-3)2.知识点2 估计算术平方根10.一个正方形的面积为50平方厘米,则正方形的边长约为() A.5厘米B.6厘米C.7厘米D.8厘米11.(安徽中考)设n为正整数,且n<65<n+1,则n的值为() A.5 B.6 C.7 D.812.(泉州中考)比较大小:用“>”或“<”号填空).中档题16.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 17.(台州中考)下列整数中,与30最接近的是(B)A.4 B.5 C.6 D.7 18.(东营中考)16的算术平方根是()A.±4 B.4 C.±2 D.219.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或120.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为±100=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有()A.1个B.2个C.3个D.4个21.(天津中考)已知一个表面积为12 dm2的正方体,则这个正方体的棱长为() A.1 dm B. 2 dm C. 6 dm D.3 dm22.若一个数的算术平方根是11,则这个数是.23.若x-3的算术平方根是3,则x=.24.(青海中考)若数m,n满足(m-1)2+n+2=0,则(m+n)5=.25.计算下列各式:(1)179; (2)0.81-0.04; (3)412-402.26.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与1.5.27.求下列各式中的正数x的值:(1)x2=(-3)2;(2)x2+122=132.28.兴华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?综合题30.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.巩固练习二:基础题知识点1 平方根1.(黄冈中考)9的平方根是()A.±3 B.±13C.3 D.-32.(绵阳中考)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(怀化中考)(-2)2的平方根是()A.2 B.-2 C.±2 D. 2 6.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).知识点2 平方根与算术平方根的关系7.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根8.(武汉校级月考)下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-3 9.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.10.求下列各式的值:(1)225; (2)-3649; (3)±144121.11.下列说法正确的是()A.-8是64的平方根,即64=-8B.8是(-8)2的算术平方根,即(-8)2=8C.±5是25的平方根,即±25=5D.±5是25的平方根,即25=±512.(东营中考)81的平方根是()A.±3 B.3C.±9 D.913.(郾城区期中)若x2=16,则5-x的算术平方根是()A.±1 B.±4C.1或9 D.1或314.如果某数的一个平方根是-6,那么这个数的另一个平方根是6,这个数是.15.若x+2=3,求2x+5的平方根.16.已知25x2-144=0,且x是正数,求25x+13的值.17.求下列各式中的x:(1)9x2-25=0;(2)4(2x-1)2=36.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22.(1)一个非负数的平方根是2a -1和a -5,这个非负数是多少?(2)已知a -1和5-2a 都是m 的平方根,求a 与m 的值.知识点二:立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.a 的立方根记作3a 。
《平方根与立方根》同步试卷
姓名:
一、基础训练
1.9的算术平方根是( )
A .-3
B .3
C .±3
D .81
2.下列计算不正确的是( )
A =±2
B =
C = D
3.下列说法中不正确的是( )
A .9的算术平方根是3
B 2
C .27的立方根是±3
D .立方根等于-1的实数是-1
4 )
A .±8
B .±4
C .±2 D
5.-18
的平方的立方根是( ) A .4 B .18 C .-14 D .14
6_____ __;9的立方根是__ _____. 7.-4是 的平方根
8.化简:______)3(2=- , _______)5(2=
9.计算:
(1) (2 (3 (4
二、能力训练
10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )
A .x+1
B .x 2+1 C
11.若一个数的平方根是2m-4与3m-1,则m 的值是( )
A .-3
B .1
C .3
D .-1
12.已知x ,y (y-3)2=0,则xy 的值是( )
A .4
B .-4
C .94
D .-94
132-的相反数是 ;绝对值是 。
14.在数轴上表示的点离原点的距离是 。
15.比较大小,并说理由。
(1与6; (2)1与1-。
16.利用平方根、立方根求x 的值.
(1)x 2 = 17; (2)812=-x
(3)5322=-x
(4)12(x+3)2=8.。
课题:6.1平方根授课类型:新授 执笔人: 修改人: 审核人学习目标:1.掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系; 3.培养学生的探究能力和归纳问题的能力. 学习重点:平方根的概念和求数的平方根. 学习难点:平方根和算术平方根的联系与区别 . 教学过程: 一 、复习引入: 1. 什么叫算术平方根? 2. 求下列各数的算术平方根: (1)400; (2)1; (3)6449; (4)0.0001 (5)0 二、新授:问题: 如果一个数的平方等于9,这个数是多少? 又如:2542=x ,则x 等于多少呢? 填表:1.平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的____________.即:如果a x =2,那么x 叫做a 的平方根.记作:±a ,读作“正、负根号a ”. 2. 开平方的概念:求一个数a 的平方根的运算,叫做_____________.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.例2:求下列各数的平方根:(1) 100 (2) 169(3) 0.25 (4)0思考:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?归纳:正数有____ 个平方根,它们____________________; 0的平方根是_________;负数_______________________________.引入符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示,正数a 的平方根可以用a ±表示. 例3:求下列各式的值:(1)144,(2)-81.0,(3)196121±(4)256,(5)()256 , (6三、课堂练习:课本第75页练习 1、2、3 1. 下面说法正确的是( )A 、 0的平方根是0 ;( )B 、 1的平方根是1;( )C 、 ﹣1的平方根是﹣1;( )D 、 (﹣1)2平方根是﹣1. ( ) 2. 求下列各数的平方根: (1)0.49 (2)4936(3)81 (4)0 (5)-100四、课堂检测:1.算术平方根等于它本身的数是__________________. 2. 下列各数没有平方根的是( )A 、64B 、0C 、(﹣2)3D 、(﹣3)43.(-3)2的平方根是( )A 、3B 、-3C 、±3D 、±94.下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由. ⑴ 256 ⑵ 0 ⑶ (-4)2 ⑷ 1001⑸ -645.求下列各式的值-★6. x+2和3x -14是同一个数的平方根,则x 等于( ) A.-2 B.3或4 C.8 D.36.2《立方根》同步练习知识点:立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根 立方根性质:正数的立方根是正数 0的立方根是0 负数的立方根是负数3a - = —3a同步练习:【模拟试题】(共60分钟,满分100分) 一、认认真真选(每小题4分,共40分) 1.下列说法不正确的是( ) A.-1的立方根是-1 B.-1的平方是1 C.-1的平方根是-1 D.1的平方根是±1 2.下列说法中正确的是( ) A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是( ) A.1B.2C.3D.4﹡4.若m<0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -﹡5.如果36x -是x -6的三次算术根,那么x 的值为( ) A.0 B. 3 C.5 D.66.已知x 是5的算术平方根,则x2-13的立方根是( ) A.5-13 B.-5-13 C.2 D.-27.在无理数5,6,7,8中,其中在218+与2126+之间的有( )A.1个B.2个C.3个D.4个﹡8.一个正方体的体积为28360立方厘米,正方体的棱长估计为( ) A.22厘米 B.27厘米 C.30.5厘米D.40厘米﹡9.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A .485.8 B .15360 C .0.01536 D .0.04858﹡﹡10.若81-x3x 的值是( )A.0B. 21C. 81D. 161二、仔仔细细填(每小题4分,共32分)11.-81的立方根是 ,125的立方根是 。
《数的开方》易错题集(03):12.1+平方根与立方根------------------------------------------作者xxxx------------------------------------------日期xxxx第12章《数的开方》易错题集(03):12.1平方根与立方根第12章《数的开方》易错题集(03):12.1 平方根与立方根选择题61.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且X≠162.若x2=(﹣3)2,y3﹣27=0,则x+y的值是()A.0B.6C.0或6 D.0或﹣663.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>064.使为最大的负整数,则a的值为()A.±5 B.5C.﹣5 D.不存在65.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D.4个66.要使,则a的取值范围是()A.a≥4 B.a≤4 C.a=4 D.任意数67.﹣a的值必为()A.正数B.负数C.非正数D.非负数68.下列各式中错误的是()A.B.C.D.69.在实数中,算术平方根与立方根相同的数是()A.0B.0,1 C.1D.±170.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D.3个71.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零72.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=373.在下列式子中,正确的是()A.B.C.D.=±274.下列命题中正确的是()不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④75.下列语句不正确的是()A.没有意义B.没有意义C.﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数76.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±2077.下列计算正确的是()A.B.C.D.填空题78.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=_________,这个正数是_________.79.若=5,则x=_________,若x2=(﹣2)2,则x=_________,若(x﹣1)2=9,则x=_________,_________.80.设a是9的平方根,b=()2,则a与b的关系是_________.81.如果的平方根等于±2,那么a=_________.82.若2a﹣4与3a﹣1是同一个数的平方根,则a的值为_________.83.若a的一个平方根是b,那么它的另一个平方根是_________,若a的一个平方根是b,则a的平方根是_________.84.已知(﹣x)2=25,则x=_________;=7,则x=_________.85.如果a2=(﹣3)2,那么a等于_________.86.已知m+1和m﹣3都是某数的平方根,则这个数为_________.87.若5a+1和a﹣19是数m的平方根,则m=_________.88.=_________,=_________,的平方根是_________.89.的平方根是_________,算术平方根是_________:﹣3是_________的立方根.90.如果一个正数的平方根为2a﹣1和4﹣a,则a=_________;这个正数为_________.第12章《数的开方》易错题集(03):12.1 平方根与立方根参考答案与试题解析选择题61.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且X≠1考点:立方根.分析:根据分式的定义来解.即分母不为0,由此即可得到x的取值范围.解答:解:∵分母不能等于0,∴≠0,即x≠0故选C.点评:此题考查了立方根的性质,要知道任何数都有立方根,并且正数的立方根是正数,负数的立方根为负数,0的立方根为0.62.若x2=(﹣3)2,y3﹣27=0,则x+y的值是()A.0B.6C.0或6 D.0或﹣6考点:立方根;平方根.分析:先根据平方根和立方根的概念求出x、y的值,然后代入所求代数式求解即可.解答:解:由题意,知:x2=(﹣3)2,y3=27,即x=±3,y=3,∴x+y=0或6.故选C.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.63.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0考点:立方根.专题:计算题.分析:A、根据算术平方根、平方根的定义即可判定;B、根据立方根的定义即可判定C、根据算术平方根的定义即可判定;D、根据平方根的性质即可判定.解答:解:A、=9,9的平方根是±3,故选项正确;B、1的立方根是它本身1,故选项错误;C、=1,故选项错误;D、当x=0时,=0,故选项错误.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意:一个数的立方根与原数的性质符号相同.二次根号是非负数,≥0.64.使为最大的负整数,则a的值为()A.±5 B.5C.﹣5 D.不存在考点:立方根.分析:由于使为最大的负整数,那么其中的被开方数必须是一个整数的立方,利用立方根的定义和绝对值意义来解即可.解答:解:∵最大负整数为﹣1,∴=﹣1,∴a=±5故选A.点评:此题主要考查了立方根的定义和绝对值的性质,解题关键利用最大负整数为﹣1建立含有绝对值的方程,求出a的值.65.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D.4个考点:立方根;平方根.分析:(1)根据平方根的定义即可判定;(2)根据平方根的定义即可判定;(3)根据平方根的定义即可判定;(4)根据平方根的定义即可判定;(5)利用立方根的定义分析即可判定.解答:解:(1)1的平方根是±1,故说法错误;(2)﹣1的平方根是﹣1,负数没有平方根,故说法错误;(3)0的平方根是0,故说法正确;(4)1是1的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选B.点评:此题主要考查了平方根的定义,注意:一个非负数的平方根有两个,一正一负.正值为算术平方根.66.要使,则a的取值范围是()A.a≥4 B.a≤4 C.a=4 D.任意数考点:立方根.分析:由立方根的定义可知,此时根式的值应为4﹣a,再由题意可得a﹣4=4﹣a,由此即可求出a的值.解答:解:∵=4﹣a,即a﹣4=4﹣a,解得a=4.故选C.点评:此题主要考查开立方.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.67.﹣a的值必为()A.正数B.负数C.非正数D.非负数考点:立方根.分析:﹣a3的立方根等于﹣a,(﹣a)×(﹣a)=a2,由此即可判断结果.解答:解:﹣a=(﹣a)×(﹣a)=a2.故选D.点评:本题考查了一个数的立方根的求法,是基础题,比较简单.68.下列各式中错误的是()A.B.C.D.考点:立方根;平方根;算术平方根.分析:A、根据立方根的性质化简即可判定;B、根据立方根的性质化简即可判定;C、根据算术平方根的定义化简即可判定;D、根据算术平方根的定义计算即可判定.解答:解:A、,故说法正确;B、原式=﹣,故说法错误;C、,故说法正确;D、,故说法正确.故选B.点评:此题主要考查了算术平方根、立方根的定义.注意:开立方的符号不变.69.在实数中,算术平方根与立方根相同的数是()A.0B.0,1 C.1D.±1考点:立方根;算术平方根.专题:计算题.分析:分别把0,1,﹣1的算术平方根和立方根计算后,找到相同的数即可求解.解答:解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.点评:此题主要考查了算术平方根和立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0,牢记这些数的特性可以快速解决这类问题.70.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D.3个考点:立方根;算术平方根.分析:①根据立方根的都化简即可判定;②根据立方根的性质化简即可判定;③根据平方根的定义即可判定;④根据算术平方根的定义即可判定.解答:解:①结果应为2,故说法错误;②结果应为﹣2,故说法错误;③±=±25,故说法正确;④结果应为5,故说法错误.故选B.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.71.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零考点:立方根.分析:A、根据立方根的性质即可判定;B、根据立方根的性质即可判定;C、根据立方根的定义即可判定;D、根据立方根的性质即可判定.解答:解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.故选D.点评:本题考查了平方根、立方根定义和性质等知识,注意负数没有平方根,任何实数都有立方根.72.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3考点:立方根;算术平方根.分析:A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.解答:解;A、=2,故选项A错误;B、=2,故选项B错误;C、∵(﹣1)3=﹣1,∴﹣1的立方根是﹣1,故选项正确;D、±=±3,故选项D错误.故选C.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.73.在下列式子中,正确的是()A.B.C.D.=±2考点:立方根.分析:A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的性质即可判定;D、根据算术平方根的性质即可判定.解答:解:A、,故选项A正确;B、没有意义,故选项B错误;C、,故选项C错误;D、=2,故选项D错误.故选A.点评:本题主要考查算术平方根和立方根的知识点,比较简单.74.下列命题中正确的是()不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④考点:立方根.分析:①根据立方根的定义即可判定;②根据立方根的性质即可判定;③根据立方根的性质即可判定;④利用平方根和立方根的定义即可判定.解答:解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.点评:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.(a不等于0)如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根.75.下列语句不正确的是()A.没有意义B.没有意义C.﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数考点:立方根;算术平方根.分析:A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.解答:解:A、∵﹣(a2+1)<0,故选项正确;B、有意义,故选项错误;C、﹣(a2+1)的立方根是,故选项正确;D、﹣(a2+1)的立方根是一个负数,故选项正确.故选B.点评:主要考查了立方根和平方根的性质以及成立的条件.平方根中的被开方数必须是非负数,否则无意义.立方根的性质:任何数都有立方根(1)正数的立方根是正数.(2)负数的立方根是负数.(3)0的立方根是0.76.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20考点:立方根.分析:结合题意,可知,即x的指数是20,x20的结果是2,即可解决问题.解答:解:根据题意,可知x20=2,能得出.故选B.点评:本题主要考查了立方根、平方根的定义和性质,解题关键是根据题意,找出开方的规律,再进行判断.77.下列计算正确的是()A.B.C.D.考点:立方根.分析:A、B、C、D都可以直接根据立方根的定义求解即可判定.解答:解:A、0.53=0.625,故选项错误;B、应取负号,故选项错误;C、∵等于,∴的立方根等于,故选项正确;D、应取正号,故选项错误.故选C点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.填空题78.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.考点:平方根.分析:由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.解答:解:依题意得,2a﹣1+(﹣a+2)=0,解得a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.79.若=5,则x=±5,若x2=(﹣2)2,则x=±2,若(x﹣1)2=9,则x=4,﹣2.考点:平方根.专题:计算题.分析:分别根据平方根和算术平方根的定义计算结果即可.注意直接开平方时结果有两种情况.解答:解:∵=5,∴|x|=5,∴x=±5;∵x2=(﹣2)2=4,∴x=±2,∵(x﹣1)2=9,即x﹣1=±3,∴x=4或﹣2.点评:本题主要考查了算术平方根和绝对值及平方的有关知识,有一定的综合性.80.设a是9的平方根,b=()2,则a与b的关系是a=b或a=﹣b..考点:平方根.分析:首先根据平方根的定义求出a,然后利用平方运算求出b的值,再进行比较即可.解答:解:∵a是9的平方根,∴a=±3,又∵b=()2,∴b=3,∴a=b或a=﹣b.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.81.如果的平方根等于±2,那么a=16.考点:平方根.分析:首先根据平方根的定义,可以求得的值,再利用算术平方根的定义即可求出a的值.解答:解:∵(±2)2=4,∴=4,∴a=()2=16.故答案为:16.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.要注意在平方和开方之间的转化.82.若2a﹣4与3a﹣1是同一个数的平方根,则a的值为1或﹣3.考点:平方根.分析:由于一个正数有两个平方根,它们互为相反数,由此即可列出关于a的方程,解方程即可解决问题.解答:解:依题意可知:2a﹣4+(3a﹣1)=0,或2a﹣4=3a﹣1,解得:a=1或a﹣3.故答案为:1或﹣3.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.83.若a的一个平方根是b,那么它的另一个平方根是﹣b,若a的一个平方根是b,则a的平方根是±b.考点:平方根.分析:由于一个正数有两个平方根,且它们互为相反数,由此可求解决问题.解答:解:若a的一个平方根是b,那么它的另一个平方根是﹣b;若a的一个平方根是b,则a的平方根是±b.故答案为:﹣b,±b.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.84.已知(﹣x)2=25,则x=±5;=7,则x=±7.考点:平方根.分析:根据平方根的定义,求得a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.分别根据平方根和算术平方根的定义计算结果即可.解答:解:∵(﹣x)2=25,则x=±5;∵=7,则x=±7.故答案为:±5,±7.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.85.如果a2=(﹣3)2,那么a等于±3.考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可求出a值.解答:解:∵a2=(﹣3)2=9∴a=±3.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0.0的算术平方根也是0;负数没有平方根.86.已知m+1和m﹣3都是某数的平方根,则这个数为4.考点:平方根.分析:一个正数的两个平方根互为相反数,据此即可求得m的值.进而就可求得这个数.解答:解:根据题意得:(m+1)+(m﹣3)=0解得m=1;或m+1=m﹣3,m不存在,则这个数是(1+1)2=4.故答案为:4.点评:本题主要考查了平方根的意义,理解正数的平方根互为相反数是解决本题的关键.87.若5a+1和a﹣19是数m的平方根,则m=256.考点:平方根.分析:一个非负数的平方根有2个,它们互为相反数.依此列式计算即可,但有两种情况.解答:解:当5a+1+a﹣19=0时,解得a=3,∴5a+1=16,a﹣19=﹣16,∴m=(±16)2=256;当时,无解,故答案为256.点评:本题主要考查了平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.88.=3,=﹣4,的平方根是.考点:平方根;立方根.分析:分别据算术平方根的定义、立方根的定义即平方根的定义计算即可.解答:解:==3;==﹣4;==6,即平方根为.故答案为:.点评:本题考查了平方根和立方根的计算,属于基本的题型,要求熟练掌握.89.的平方根是±,算术平方根是:﹣3是﹣27的立方根.考点:平方根;算术平方根;立方根.分析:先计算=3,再计算3的平方根和算术平方根;因﹣3的立方是﹣27,所以﹣27的立方根是﹣3.解答:解:∵=3,∴的平方根是±,算术平方根是;∵﹣3的立方是﹣27∴﹣3是﹣27的立方根.故答案为:±,,﹣27.点评:本题考查了平方根、算术平方根和立方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一个数的立方根只有一个.90.如果一个正数的平方根为2a﹣1和4﹣a,则a=﹣3;这个正数为49.考点:平方根.专题:计算题.分析:由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于a的方程,解方程即可解决问题.解答:解:∵正数的平方根为2a﹣1和4﹣a,∴2a﹣1+4﹣a=0,解这个方程得a=﹣3.当a=﹣3时,2a﹣1=﹣7,4﹣a=7,∴这个正数为49.故答案为:﹣3,49.点评:此题主要考查了平方根的定义,解决本题的关键是利用一个正数的2个平方根互为相反数.参与本试卷答题和审题的老师有:zhxl;wdxwwzy;算术;蓝月梦;117173;心若在;haoyujun;wdxwzk;zhehe;zhangmin;开心;733599;疯跑的蜗牛;110397;lbz;cook2360;bjy;答案;zhqd;WWF;MMCH(排名不分先后)菁优网2014年9月18日。
《算术平方根、平方根、立方根》易错题训练(满分120分)一、填空与单选(每空2分)1、若m 是n 的平方根,则 2= .因为3a 是a 的立方根,则 .2、若3a =-7,则a = 3= .3、一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( )A.4 cm ~5 cm 之间B.5 cm ~6 cm 之间C.6 cm ~7 cm 之间D.7 cm ~8 cm 之间4、下列说法正确的是( )A.9的平方根是3B.3是9的平方根C.±3是9的算术平方根D.-3是9的算术平方根5、下列各式中,正确的是( ) A.4=±2 B.±9=3 C.(-3)2=-3 D.(-3)2=36、若x +2=3,则2x +5的平方根是 .7、若一个数的算术平方根是11,则这个数是 。
8、已知一个表面积为30 dm 2的正方体,则这个正方体的棱长为 dm.9、16的算术平方根是 。
3729的平方根是 。
10、32的立方根是( ) A.33 B.39 C.2 D.311、下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根D.3a 与3-a 互为相反数12、若a 2=(-5)2,b 3=(-5)3,则a +b 的值为 .13、比较大小:-7,3 7-15,14、若a 的算术平方根等于它本身,则a= ; 若a 的平方根等于它本身,则a= ; 若a 的立方根等于它本身,则a= 。
15、如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是 。
16、观察:已知 5.217=2.284,521.7=22.84.填空:(1)0.052 17= ,52 170= ;(2)若x =0.022 84,则x = .17、已知33=1.442,则33 000= ,30.003= ,0.01442。
《平方根与立方根》同步试卷
姓名:
一、基础训练
1.9的算术平方根是( )
A .-3
B .3
C .±3
D .81
2.下列计算不正确的是( )
A ±2
B =
C =0.4
D 3.下列说法中不正确的是( )
A .9的算术平方根是3
B 2
C .27的立方根是±3
D .立方根等于-1的实数是-1
4 )
A .±8
B .±4
C .±2 D
5.-18
的平方的立方根是( ) A .4 B .18 C .-14 D .14
6_____ __;9的立方根是__ _____. 7.-4是 的平方根
8.化简:______)3(2=- , _______)5(2=
9.计算:
(1) (2 (3 (4
二、能力训练
10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )
A .x+1
B .x 2+1
C +1 D
11.若一个数的平方根是2m-4与3m-1,则m 的值是( )
A .-3
B .1
C .3
D .-1
12.已知x ,y (y-3)2=0,则xy 的值是( )
A .4
B .-4
C .94
D .-94
132-的相反数是 ;绝对值是 。
14.在数轴上表示的点离原点的距离是 。
15.比较大小,并说理由。
(1与6; (2)1+与1-。
16.利用平方根、立方根求x 的值.
(1)x 2 = 17; (2)812=-x
(3)5322=-x
(4)12
(x+3)2=8.。