弹性波动力学重点复习题剖析
- 格式:doc
- 大小:1.52 MB
- 文档页数:40
弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学复习题答案弹性力学是固体力学的一个重要分支,主要研究在外力作用下固体材料的变形和应力分布。
以下是一些弹性力学的复习题及其答案,供学习者参考。
问题一:什么是弹性力学?答案:弹性力学是固体力学的一个分支,它研究在外部作用下,材料在弹性范围内的变形和内力的分布规律。
材料在弹性范围内,当外力去除后,能恢复到原始形状和状态。
问题二:简述胡克定律的内容。
答案:胡克定律是描述材料在弹性范围内应力与应变关系的定律。
它指出,在弹性范围内,材料的应力与应变成正比,比例常数称为杨氏模量(E)。
数学表达式为:σ = Eε,其中σ是应力,ε是应变。
问题三:什么是平面应力和平面应变问题?答案:平面应力问题指的是物体的应力只在一个平面内分布,而平面应变问题指的是物体的应变只在一个平面内分布。
在实际工程问题中,薄板和薄膜等结构常常可以简化为平面应力问题。
问题四:什么是圣维南原理?答案:圣维南原理是弹性力学中的一个基本原理,它指出在远离力作用区域的地方,物体的应力分布只与力的性质有关,而与物体的形状无关。
这意味着在远离力作用区域,应力分布是均匀的。
问题五:什么是弹性模量和剪切模量?答案:弹性模量,也称为杨氏模量,是描述材料抵抗拉伸或压缩的物理量,其数值等于应力与应变的比值。
剪切模量,也称为刚度模量,是描述材料抵抗剪切变形的物理量,其数值等于剪切应力与剪切应变的比值。
问题六:简述泊松比的概念。
答案:泊松比是材料在单轴拉伸或压缩时,横向应变与纵向应变的比值。
它是材料的一个固有属性,反映了材料在受力时的体积变化特性。
问题七:什么是主应力和主应变?答案:主应力是物体上某一点应力状态中最大的三个正应力,它们作用在相互垂直的平面上。
主应变是物体上某一点应变状态中最大的三个应变,它们也作用在相互垂直的平面上。
问题八:什么是应力集中?答案:应力集中是指在物体的某些局部区域,由于几何形状、材料不连续性或其他因素,应力值远大于周围区域的应力平均值的现象。
知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 对于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。
4. 所谓“彻底弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列对于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。
得分概念题(本大题25分)1. 试分别说明应变张量中e 11、e 12及ii e θ=的几何意义。
542. 已知一般平面位移波的表达式为()(),t f ct =⋅-u x x n d ,试讨论n 和d 的物理意义;纵波和横波中n 与d 之间有什么关系?3. 如图所示的具有自由界面的弹性半空间体,已知势函数分别为φ、ψ,试以势函数φ和ψ表达二维平面运动问题的应力边界条件。
提示:()2,3,3,2e e αβαβαβαγγββγγατλφδμφμψψ=∇+++4. 已知非均匀平面简谐波的位移表达式为()(),e e i t t A ω'⋅-''-⋅=k x k x u x d ,试指出其等振幅面和等位相面。
5. Rayleigh 面波有哪些特点? 199二、证明题(本大题20分)1. 若应力张量场为ij ij p τδ=-,其中()123,,p p x x x =。
试证此时运动微分方程x 1得分为:p ρρ-∇+= f u4-182. 设一弹性体处于平面应力情形,其内的应力张量场为:()()()()()1112121212122212,,0,,0000ij x x x x x x x x τττττ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)试推导出此种情形的平衡方程(2)如果21122x φτ∂=∂,22221x φτ∂=∂,21212x x φτ∂=-∂∂;其中()12,x x φ是个标量函数。
试证明此应力分量恒满足体力为零的平衡方程4-19 三、计算题(本大题55分)1.(10分)设弹性体只在坐标面ox 1x 2平面内发生变形,即e 33=e 13=e 23=0。
在该平面内,现在测量得过点P 与ox 1成30°、90°、150°方向的正应变分别为a 、b 和c 。
试求该点处的e 11、e 22和e 12。
3-12.(10分)如图所示一完全淹没于水中的梯形截面坝体,设水的密度为ρ。
弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
1.什么是弹性体?当一个物体受到外力作用,在它的内部质点间发生位置的相对变化,从而使其形状改变,当外力作用取消后,物体的应力、应变状态立刻消失,并恢复原有的形状。
这类物体称为弹性体。
2.物体在什么条件下表现为弹性性质,在什么条件下表现为塑性性质?在外力作用较小,作用时间较短情况下,大多数物体包括岩石在内,表现为弹性体性质。
外力作用大,作用时间长的情况下,物体会表现为塑性体性质。
3.弹性动力学的基本假设有哪些?(1)介质是连续的(2)物体是线性弹性的(3)介质是均匀的(4)物体是各向同性的(5)物体的位移和应变都是微小的(6)物体无初应力4.什么是弹性动力学中的理想介质?理想介质:连续的、均匀的、各向同性的线性完全弹性介质。
3.什么是正应变、切应变、相对体变?写出它们的位移表达式。
答:正应变是弹性体沿坐标方向的相对伸缩量。
切应变表示弹性体扭转或体积元侧面角错动。
相对体变表示弹性体体积的相对变化。
⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂=∂∂+∂∂=∂∂+∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂+∂∂=∂∂+∂∂=∂∂=z we y w z v e z u x w e y w z v e y v e x v y u e z u x w e x v y u e x u e zz yz zx yz yy xy zx xy xxzwy v x u e e e zz yy xx ∂∂+∂∂+∂∂=++=θ 4.什么是旋转角位移?写出它与(线)位移的关系式。
旋转角位移为体积元侧面积对角线的转动角度。
⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂-∂∂=∂∂-∂∂=∂∂-∂∂=)(21)(21)(21y u x v x w z u zv y w z y x ωωω5.试解释应变张量和旋转张量中各分量的物理含义。
zz yy xx e e e ,,分别表示弹性体沿x 、y 、z 方向的相对伸长量;zx yz xy e e e ,,分别表示平行于坐标面xoy 、yoz 和xoz 的侧面积的角错动量。
z y x ωωω、、分别表示与坐标面yoz 、xoz 和xoy 平行的侧面积对角线围绕x 、y 和z 轴的旋转角。
11.设弹性体内的位移场为j y x i y x s)()(2211αδδα+++=,其中2121,,,δδαα都是与1相比很小的数,试求应变张量、转动角位移矢量及体积膨胀率(相对体变)。
解:j y x i y x s)()(2211αδδα+++=⎪⎩⎪⎨⎧=+=+=02211w y x v y x u αδδα ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=∂∂+∂∂==∂∂+∂∂=+=∂∂+∂∂==∂∂==∂∂==∂∂=00 2121z u x w e y w z v e x v y u e zw e y v e x u e zx yz xy zz yy xx δδαα 应变张量⎪⎪⎪⎭⎫ ⎝⎛++=0 0 0 0 021211δδδδαε 体积膨胀率21ααθ+=∂∂+∂∂+∂∂=++=zwy v x u e e e zz yy xx ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=∂∂-∂∂==∂∂-∂∂==∂∂-∂∂=)(21)(210)(210)(2112δδωωωy u x v x w z u z v y w z y x →→-=k )(2112δδω 12.已知弹性体内的位移场为j x x k i y y k s)()(00---=,其中00,,y x k 为已知常数,试求应变张量和旋转张量,并阐述此结果反映什么物理现象。
解:j x x k i y y k s)()(00---=⎪⎩⎪⎨⎧=-=-=0)()(00w x x k v y y k u ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=∂∂+∂∂==∂∂+∂∂==∂∂+∂∂==∂∂==∂∂==∂∂=00 000 z u x w e y w z v e x v y u e zw e y v e x u e zx yz xy zz yy xx 应变张量⎪⎪⎪⎭⎫ ⎝⎛=0 0 00 0 00 00ε 体积膨胀率0=∂∂+∂∂+∂∂=++=zwy v x u e e e zz yy xx θ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=∂∂-∂∂==∂∂-∂∂==∂∂-∂∂=k y u x v x w z u z v y w z y x )(210)(210)(21ωωω→→-=k k ω反映了该弹性体没有发生体积及形状的变化,只是绕z 轴旋转了一个角度。
6.什么是应力、正应力、切应力、应力张量?答:作用于单位截面积上的内力,称为应力。
应力作用方向与作用截面垂直,称为正应力;应力作用方向在作用截面上,称为切应力。
三个相互正交的坐标面上应力矢量共同构成了应力张量。
记为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz yz xz zy yy xy zx yx xx T στττστττσ 。
14. 已知弹性体内一点P 处的应力张量由矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=402050207T 给出。
试求过点P 外法线方向为u=2i-2j+k 的面元上的应力矢量n p 。
8. 杨氏模量、泊松比、剪切模量、体变模量各表示了什么物理含义? 答:(1)杨氏模量E ,是正应力与正应变的比例系数;(2)切变模量μ,是切应力与切应变的比例系数;(3)拉梅系数λ,μ,反映正应力与正应变的比例系数的另一种形式;(4)压缩模量或体变模量K ,表示单元体在胀缩应变状态下,相对体变与周围压力间的比例系数;(5)泊松比ν,表示物体横向应变与纵向应变的比例系数,故也称横向形变系数。
19. 已知一各向同性线性弹性体的弹性模量为:杨氏模量E=210Gpa ,泊松比为0.28;其中一点处的应变分量为0,8,2,3,==-==-==xy zz zx yz yy xx e e a e a e a e a e ,其中a=410-,试求拉梅常数μλ,,并写出该点上的应力张量。
解:GPa E 176183755632.08.58)56.01)(28.01(28.0210)21)(1(==-+⨯=-+=υυυλGPa 322625)28.01(2210=+=μ体应变a e e e zz yy xx 2-=++=θ 则由应力应变关系GPa e xx xx =+=μλθσ2 GPa e yy yy =+=μλθσ2GPa e zz zz =+=μλθσ2 GPa e xy xy ==μτ GPa e yz yz ==μτGPa e zx zx ==μτ1.已知一弹性介质内MPa 510==μλ,位移场为→→→→++=k w j v i u S ,其中⎪⎩⎪⎨⎧-===xy z w xz v xy u 222试求点P(0,2,-4)处的应变张量、转动向量、体应变以及该点处的应力分量。
解:由题可知在P(0,2,-4)点222228xx ue y x∂===⨯=∂,()440244xy u v e xy z y x ∂∂=+=+=⨯⨯+-=-∂∂ ()02xz u we y z x∂∂=+=+-=-∂∂ ,0yy v e y ∂==∂ ()0yz v w e x x z y ∂∂=+=+-=∂∂ ,()2248zz we z z∂===⨯-=-∂ 则应变张量为8 4 -24 0 02 0 8ij e -⎛⎫⎪=- ⎪ ⎪--⎝⎭或⎪⎪⎪⎭⎫⎝⎛-----=4 0 10 0 21 2 8ij e 由转动向量()()()()()1112221110422211102402222x y z i j kw v u w v u i j z y z z x x y x x i y j z xy zi j z j zωωωω→→→→→→→→→→→→→→→=++⎛⎫⎛⎫∂∂∂∂∂∂⎛⎫=-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭=--+--+-=⨯+⨯+⨯--=-体应变()8080xx yy zz e e e θ=++=++-=由应力应变关系有()556211002108 1.610xx xxe MPa σλθμ=+=⨯⨯+⨯⨯=⨯()552110021000yy yye MPa σλθμ=+=⨯⨯+⨯⨯=()()556211002108 1.610zz zze MPa σλθμ=+=⨯⨯+⨯⨯-=-⨯()()551104410xy yx xy e MPa σσμ===⨯⨯-=-⨯()511000yz zy yz e MPa σσμ===⨯⨯=()()551102210zx xz zx e MPa σσμ===⨯⨯-=-⨯20. 将ij ij z y x p δτ),,(-=代入用下标记号表示的运动微分方程i i j ji u F ..,ρρτ=+中,化为矢量方程,并用梯度算子表示。
解:由ij ij z y x p δτ),,(-=可知⎪⎭⎪⎬⎫-=-=-= p p p zz yy xx σσσ ⎪⎭⎪⎬⎫===000xy yz zx τττ代入运动微分方程⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫∂∂=+∂∂+∂∂+∂∂∂∂=+∂∂+∂∂+∂∂∂∂=+∂∂+∂∂+∂∂222222t w F z y x t v F z y x t u F z y x z zz yz xz y zy yy xy x zx yx xx ρρσττρρτστρρττσ得:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂=+∂∂-∂∂=+∂∂-∂∂=+∂∂-222222t w F x p t v F x p t u F x p z y x ρρρρρρ 将各式分别乘以单位向量→→→k j i 、、,相加,得:22tSF p ∂∂=+∇-→→ρρ第三章复习思考题3.写出纵波和横波速度的表达式,分析它们之间的大小关系。
ρμλ2+=P v ρμ=S v υυμμλγ21)1(22--=+==S P v v由于210<<υ,因此1>γ,即S P v v >,可见纵波速度大于横波速度。
4.什么叫泊松体?泊松体的拉梅常数、纵横波速度、泊松比各有什么特点? 答:41=υ,或者μλ=,具有这种性质的物体称为泊松体。
对泊松体而言,73.1=γ。
14.已知某弹性介质中的P 波速度为3600m /s ,S 波速度1950m /s ,求该介质的泊松比。
解:13241950360021)1(22==--=+==υυμμλγS P v v 16957621)1(2=--υυ 29.0407119≈=υ15.已知弹性介质中杨氏模量为E ,泊松比为ν,求介质的P 波速度和S 波速度。
解:)21)(1()1(22υυρυρμλρμλ-+-=+=+=E v P )1(2υρρμ+==Ev S 6.简述地震波在弹性介质中传播的基本规律。
答:惠更斯(Huygens )原理:任意时刻波前面上的每一点都可以看作是一个新的波源(子波源),由它产生二次扰动,形成新的波前,而以后的波前位置可以认为是该时刻子波前的包络线。