水温自动控制系统设计
- 格式:docx
- 大小:222.78 KB
- 文档页数:36
水温控制系统摘要:本系统以MSP430F149超低功耗MCU为核心,以DS18B20为温度传感器进行温度检测,采用电热棒进行加热。
该控制系统可根据设定的温度,通过PID算法调节和控制PWM波的输出,控制电磁继电器的通断时间从而控制水温的自动调节。
该系统主要包括MSP430F149单片机控制器模块、DS18B20测温模块、键盘模块、继电器控制模块及LCD12864液晶显示模块等构成。
具有电路结构简单、程序简短、系统可靠性高、操作简便等特点。
关键词:MSP430 DS18B20 PID算法PWM LCD12864目录一、任务及要求 (1)1.1设计任务 (1)1.2要求 (1)1.2.1基本要求 (1)1.2.2发挥部分 (1)二、方案设计与论证 (2)2.1 温度检测电路方案选择 (2)2.2显示电路的方案选择 (2)2.3加热和控制方案选择 (2)2.4控制算法选择与论证 (3)三、系统硬件电路设计 (3)3.1系统结构框图 (3)3.2控制器模块 (3)3.3温度检测电路设计 (4)3.4加热控制电路设计 (5)3.5键盘及显示电路设计 (5)3.6电源电路设计 (6)四、软件设计 (6)4.1 PID算法设计 (6)4.2程序流程图 (8)4.2.1主程序框图 (8)4.2.2 LCD12864程序流程图 (9)4.2.3 PID程序流程图 (10)4.2.4 DS18B20水温检测程序流程图 (11)五、系统测试及分析 (12)5.1系统调试 (12)5.1.1控制模块的调试 (12)5.1.2 温度检测模块 (12)5.1.3 继电器的检测 (12)5.2测试结果及分析 (12)5.2.1测试仪器 (12)5.2.2测试方法 (13)5.2.3测试结果 (13)六、设计总结 (14)七、附录 (15)附录1 仪表器件清单 (15)附录2 水温控制系统原理图 (16)附录3 程序设计 (17)一、任务及要求1.1设计任务该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算输出控制加热装置以实现水温控制的全过程。
plc水温控制课程设计一、课程目标知识目标:1. 学生能够理解PLC(可编程逻辑控制器)的基本原理和工作流程;2. 学生能够掌握水温控制系统的组成及各部分功能;3. 学生能够运用PLC编程实现对水温的精确控制。
技能目标:1. 学生能够运用所学知识设计简单的水温控制程序;2. 学生能够使用相关工具和仪器进行水温控制系统的调试与优化;3. 学生能够分析并解决实际水温控制过程中出现的问题。
情感态度价值观目标:1. 学生培养对自动化技术的兴趣,提高学习积极性;2. 学生通过团队协作完成课程任务,培养合作精神和沟通能力;3. 学生认识到水温控制在实际生活中的重要性,增强环保意识。
课程性质:本课程属于应用实践性课程,结合理论知识与实际操作,培养学生的动手能力和实际应用能力。
学生特点:学生为具有一定电子、电气基础知识的初中生,对新鲜事物充满好奇,喜欢动手操作。
教学要求:教师需引导学生将所学理论知识应用于实际操作中,注重培养学生的实际操作能力和问题解决能力,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 理论知识:- PLC基本原理与结构;- 水温控制系统的组成,包括传感器、执行器、控制器等;- PLC编程基础,如逻辑运算、梯形图编程等;- 水温控制算法,如PID控制原理。
2. 实践操作:- 水温控制系统的搭建,包括电路连接、设备调试等;- PLC编程软件的使用,编写并下载水温控制程序;- 水温控制系统的测试与优化,如调整参数、改进控制效果等。
3. 教学大纲:- 第一课时:PLC基本原理与结构介绍,水温控制系统的概念;- 第二课时:水温控制系统的组成,各部分功能及相互关系;- 第三课时:PLC编程基础,编写简单的水温控制程序;- 第四课时:水温控制算法,PID控制原理及其应用;- 第五课时:实践操作,水温控制系统的搭建与调试;- 第六课时:总结与评价,分析课程实施过程中的优点与不足。
教材章节关联:本教学内容与教材中关于PLC应用、水温控制系统设计等相关章节紧密关联,结合教材内容,确保学生所学知识的科学性和系统性。
基于单片机的水温控制系统设计引言在能源日益紧张的今天,电热水器,饮水机,电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费浪费。
利用 AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。
单片机可将温度传感器检测到的水温模拟量转换成数字量,显示于LED 显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
本设计任务和主要内容设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。
水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。
本设计主要内容如下:(1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。
(2)环境温度降低时温度控制的静态误差≤1℃。
(3)用十进制数码管显示水的实际温度。
(4)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。
(5)温度控制的静态误差≤0.2℃。
系统主要硬件电路设计单片机控制系统原理框图温度采样电路选用传感器AD590。
其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。
此器件具有体积小、质量轻、线形度好、性能稳定等优点。
系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D转换电路(ADC0804)三部分组成。
信号采集电路温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。
MOC3041光电耦合器的耐压值为400v,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。
100Ω电阻与0.01uF 电容组成双向可控硅保护电路。
部分控制电路系统主程序设计主程序流程图。
基于单片机的水温控制器设计引言水温控制在很多领域中都具有重要的应用价值,例如温室、鱼缸、热水器等。
基于单片机的水温控制器能够自动调控水温,提高水温的稳定性和准确性。
本文将介绍如何设计一个基于单片机的水温控制器,以实现对水温的精确控制。
一、硬件设计1.单片机选择选择一个合适的单片机对于设计一个稳定可靠的水温控制器至关重要。
常用的单片机有STC89C52、AT89C52等。
在选择时应考虑单片机的性能、功耗、接口等因素。
2.温度传感器温度传感器用于检测水温,常用的有NTC热敏电阻和DS18B20数字温度传感器。
NTC热敏电阻价格便宜,但精度较低,DS18B20精度高,但价格相对较贵。
3.加热装置加热装置用于根据温度控制器的输出信号进行加热或制冷。
可以选择加热丝、加热管或半导体制冷片等。
4.驱动电路驱动电路用于将单片机的输出信号转换为合适的电流或电压,驱动加热装置。
可以选择晶体管或继电器等。
5.显示模块可以选择液晶显示屏或LED数码管等显示水温的数值。
二、软件设计1.初始化设置首先,对单片机进行初始化设置,包括引脚配置、定时器设置等。
然后,设置温度传感器和加热装置的引脚。
最后,设置温度范围,以便根据实际需求进行调整。
2.温度检测使用温度传感器检测水温,并将读取到的温度值转换为数字形式,以便进行比较和控制。
可以使用ADC(模拟-数字转换)模块转换模拟信号为数字信号。
3.控制算法本设计中可以采用PID控制算法进行水温控制。
PID(Proportional-Integral-Derivative)控制算法根据设定值和反馈值之间的差异来计算控制信号。
可以根据需求进行参数调整,以获得更好的控制效果。
4.显示和报警使用显示模块显示当前水温的数值,并在温度超出设定值时触发报警功能。
报警可以采用声音、灯光等形式。
5.控制输出根据PID算法计算出的控制信号,控制驱动电路,驱动加热装置或制冷装置,以实现水温的调节。
总结基于单片机的水温控制器能够实现对水温的精确控制。
水温控制系统stm32实验报告设计并制作一个水温自动控制系统,控制对象为1升水,容器为搪瓷器皿(其他容器也可)。
水温可以在一定范围内设定,并能实现在10℃-70℃量程范围内对每一点温度的自动控制,以保持设定的温度基本保持不变。
要求(1)可键盘设定控制温度值,并能用液晶显示,显示最小区分度为0.1℃;(2)可以测量并显示水的实际温度。
温度测量误差在+0.5℃内;(3)水温控制系统应具有全量程(10℃-70℃)内的升温、降温功能(降温可用半导体制冷片、升温用800W以内的电加热器);(4)在全量程内任意设定一个温度值(例如起始温度+15℃内),控制系统可以实现该给定温度的恒值自动控制。
控制的最大动态误差<+4℃,静态误差<+1℃,系统达到稳态的时间<15min(最少两个波动周期)。
人机交互模块的设计温度控制系统经常是用来保证温度的变化稳点或按照某种规律进行变化。
但是通常温度具有惯性大,滞后性严重的特点,所以很难建立很好的数学模型。
所以在本次实验中我们采用了性能高又经济的搭载ARM Cortex-M内核的STM32F429的单片机作为它的微控制处理器。
人机交互模块主要是有普通的按键和一块彩色液晶屏幕所组成。
该实验中采用的是模糊的PID 算法,完成对系统的设计。
温度检测模块的设计传统的测温元件有热电偶,热敏电阻还有一些输出模拟信号的温度传感器。
但这些元件都需要较多的外部元件的支持。
电路复杂,制作成本高。
因此在本次实验中我们采用了美国DALLAS半岛公司推出的一款改进型的智能温度传感器 DS18B20。
此温度传感器读数方便,测温范围广,测温准确,输出温度采用数字显示更加智能化。
温度检测模块是以DS18B20温度传感器作为核心,将测量的温度信号传递给STM32单片机芯片进行温度的实时检测,并通过数码管显示。
基于单片机的水温恒温模糊控制系统设计水温恒温在很多工业领域中都是非常重要的,比如在制造过程中需要严格控制水温以确保产品质量,或者在实验室中需要保持水温恒定以保证实验结果的准确性。
为了实现水温恒温,可以采用单片机控制系统进行模糊控制,以更好地调节水温并确保其恒定性。
一、系统设计1.系统组成该水温恒温模糊控制系统包括以下几个部分:1)传感器:用于实时监测水温,通常采用温度传感器来获取水温数据。
2)单片机:作为系统的核心控制部分,负责根据传感器采集的水温数据进行控制算法处理,并输出控制信号给执行器。
3)执行器:负责控制水温调节设备,比如加热器或制冷器,以使水温保持在设定的恒温值附近。
4)人机界面:用于设定水温的目标值、显示当前水温以及系统的工作状态等信息,通常采用液晶显示屏或LED灯来实现。
2.系统工作原理系统工作流程如下:1)单片机通过传感器获取实时水温数据,并与设定的恒温值进行比较。
2)根据实时水温和设定值之间的差异,单片机通过模糊控制算法计算出调节水温的控制信号。
3)控制信号送往执行器,执行器根据信号控制加热器或制冷器对水温进行调节。
4)单片机不断循环执行上述步骤,使水温保持在设定的恒温值附近。
二、模糊控制算法设计模糊控制算法是一种基于模糊逻辑进行推理和决策的控制方法,适用于非线性、不确定性系统的控制。
在水温恒温控制系统中,可以设计如下的模糊控制算法:1.模糊化:将实时水温和设定水温映射到模糊集合,通常包括“冷”、“适中”和“热”等。
2.模糊规则库:根据实际情况,设定一系列的模糊规则,描述实时水温和设定水温之间的关系。
3.模糊推理:通过模糊规则库,进行模糊推理,得到相应的控制信号。
4.解模糊化:将模糊推理的结果映射到实际的控制信号范围内,作为执行器的输入。
通过模糊控制算法设计,可以更加灵活地调节水温,适应各种复杂环境下的恒温控制需求。
三、系统实现在实际系统的实现中,首先需要选择合适的传感器,并设计好传感器的接口电路来获取水温数据。
基于51单片机的水温自动控制系统沈统摘要:在现代化的工业生产中,温度是常用的测量机被控参数。
本水温控制系统采用AT89C51为核心控制器件,实现对水温在30℃到96℃的自动控制。
由精密摄氏温度传感器LM35D构成前置信号采集和调理电路,过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路,由74LS164和LED数码管构成两位静态显示用于显示实时温度值。
关键词:89C51单片机;LM35D温度传感器;ADC0809;MOC3041光电藕耦合器;水温自动控制0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势。
本文所阐述的就是一种基于89C51单片机的温度控制系统。
本温控系统可应用于温度范围30℃到96℃。
1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。
1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。
(2)当液位低于某一值时,停止加热。
(3)用AD转换器把采集到的模拟温度值送入单片机。
(4)无竞争-冒险,无抖动。
1.3技术指标(1)温度显示误差不超过1℃。
(2)温度显示范围为0℃—99℃。
(3)程序部分用PID算法实现温度自动控制。
(4)检测信号为电压信号。
2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。
AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。
其引脚图如图1所示。
2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。
在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。
基于PID的水温控制系统设计摘要本次设计采用proteus仿真软件,以AT89C51单片机做为主控单元,运用PID控制算法,仿真实现了一个恒温控制系统。
设计中使用温度传感器DS18B20采集实时温度,不需要复杂的信号调理电路和A/D转换电路,能直接与单片机完成数据的采集和处理,使用PID算法控制加热炉仿真模型进行温度控制,总体实现了一个恒温控制仿真系统。
系统设计中包含硬件设计和软件设计两部分,硬件设计包含显示模块、按键模块、温度采集模块、温度加热模块。
软件设计的部分,采用分层模块化设计,主要有:键盘扫描、按键处理程序、液晶显示程序、继电器控制程序、温度信号处理程序。
另外以AT89C51 单片机为控制核心,利用PID 控制算法提高了水温的控制精度,使用PID 控制算法实施自动控制系统,具有控制参数精度高、反映速度快和稳定性好的特点。
关键词:proteus仿真,PID,AT89C51,DS18B20温度控制目录1 系统总体设计方案论证 (1)1.1 设计要求 (1)1.2 总体设计方案 (2)2 系统的硬件设计 (3)2.1 系统硬件构成概述 (3)2.2 各单元总体说明 (4)2.3 按键单元 (5)2.4 LCD液晶显示单元 (6)2.5 温度测试单元 (7)2.6 温度控制器件单元 (8)3 恒温控制算法研究(PID)............................................................................. 错误!未定义书签。
3.1 PID控制器的设计 (10)3.2 PID算法的流程实现方法与具体程序 (12)4 系统的软件设计 (17)4.1 统软件设计概述 (17)4.2 系统软件程序流程及程序流程图 (18)4.3 温度数据显示模块分析 (19)4.4 测试分析 (22)5 模拟仿真结果 ...................................................................................................... 错误!未定义书签。