全等三角形简单题练习—辅导
- 格式:doc
- 大小:125.00 KB
- 文档页数:3
全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。
数学全全等三角形截长补短知识点及练习题及答案一、全等三角形截长补短1.如图,已知B (-1, 0),C (1, 0),A 为y 轴正半轴上一点,AB =AC ,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?2.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.3.已知:线段AB 及过点A 的直线l ,如果线段AC 与线段AB 关于直线l 对称,连接BC 交直线l 于点D ,以AC 为边作等边△ACE ,使得点E 在AC 的下方,作射线BE 交直线l 于点F ,连接CF .(1)根据题意将图1补全;(2)如图1,如果∠BAD =α(30°<α<60°).①∠BAE=_______,∠ABE=_______(用含有α代数式表示); ②用等式表示线段FA ,FE 与FC 的数量关系,并证明.(3)如图2,如果60°<α<90°,直接写出线段FA ,FE 与FC 的数量关系,不证明.4.如图①,ABC 和BDC 是等腰三角形,且AB AC =,BD CD =,80BAC ∠=︒,100∠=︒BDC ,以D 为顶点作一个50︒角,角的两边分别交边AB ,AC 于点E 、F ,连接EF .(1)探究BE 、EF 、FC 之间的关系,并说明理由;(2)若点E 、F 分别在AB 、CA 延长线上,其他条件不变,如图②所示,则BE 、EF 、FC 之间存在什么样的关系?并说明理由.5.通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.(解决问题)如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,则EF BE DF =+,试说明理由.证明:延长CD 到G ,使DG BE =,在ABE △与ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩∴ABE ADG ≌理由:(SAS )进而证出:AFE △≌___________,理由:(__________)进而得EF BE DF =+.(变式探究)如图,四边形ABCD 中,AB AD =,90BAD ∠=︒点E 、F 分别在边BC 、CD 上,45EAF ∠=︒.若B 、D ∠都不是直角,则当B 与D ∠满足等量关系________________时,仍有EF BE DF =+.请证明你的猜想.(拓展延伸)如图,若AB AD =,90≠︒∠BAD ,45EAF ∠≠︒,但12EAF BAD ∠=∠,90B D ∠=∠=︒,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.6.在△ABC 中,AB =AC ,点D 与点E 分别在AB 、AC 边上,DE //BC ,且DE =DB ,点F 与点G 分别在BC 、AC 边上,∠FDG 12=∠BDE . (1)如图1,若∠BDE =120°,DF ⊥BC ,点G 与点C 重合,BF =1,直接写出BC = ; (2)如图2,当G 在线段EC 上时,探究线段BF 、EG 、FG 的数量关系,并给予证明; (3)如图3,当G 在线段AE 上时,直接写出线段BF 、EG 、FG 的数量关系:_____________.7.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).8.如图,在菱形ABCD 中,∠A =60°,E 为菱形ABCD 内对角线BD 左侧一点,连接BE 、CE 、DE .(1)若AB =6,求菱形ABCD 的面积;(2)若∠BED =2∠A ,求证:CE =BE+DE .9.如图,//AD BC ,点E 在线段AB 上,DE 、CE 分别是ADC ∠、BCD ∠的角平分线,若3AD =,2BC =,求CD 的长.10.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD ,AD ∥BC ,AB =AD ,E 为对角线AC 上一点,∠BEC =∠BAD =2∠DEC ,探究AB 与BC 的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB =∠ABE ”;小源:“通过观察和度量,AE和BE存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB与BC的数量关系”.……老师:“保留原题条件,如图2, AC上存在点F,使DF=CF=k AE,连接DF并延长交BC于点G,求ABFG的值”.(1)求证:∠ACB=∠ABE;(2)探究线段AB与BC的数量关系,并证明;(3)若DF=CF=k AE,求ABFG的值(用含k的代数式表示).【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)见解析;(2)见解析;(3)∠BAC的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM⊥CD于点M,作AN⊥BE于点N,证明△ACM≌△ABN即可;(3)用截长补短法在CD上截取CP=BD,连接AP,证明△ABD≌△ACP,由全等性质可知△ADP是等边三角形,易知 BAC 的度数.【详解】(1)∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 2.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE ≌△CBM (AAS ),∴CE=BM=BD ,由(2)可证△HGF ≌△FEA (AAS ),∴GH=FE ,∵EF=CF+CE∴HG=CF+BD .故答案为:HG=CF+BD .【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.3.(1)作图见解析;(2)①260α-︒,120α︒-;②FA=FC +FE ,证明见解析;(3)AF=FC-EF .【分析】(1)先根据轴对称的性质作出线段AC ,再分别以A 、C 为圆心,AC 长为半径画弧,两弧交于点E ,可得等边△ACE ,最后根据题意画出图形即可;(2)①根据轴对称的性质可得∠BAC=2∠BAD=2α,根据等边三角形的性质可知∠EAC=60°,根据角的和差关系即可表示出∠BAE ;根据轴对称的性质和等边三角形的性质可得AB=AE ,根据等腰三角形的性质及三角形内角和定理即可表示出∠ABE ;②在FA 上截取FG=EF ,连接EG ,利用三角形内角和定理可得∠AFB=60°,即可证明△EFG 是等边三角形,根据角的和差故选可得∠AEG=∠CEF ,利用SAS 可证明△AEG ≌△CEF ,即可得出AG=CF ,根据线段的和差关系即可得结论;(3)由60°<α<90°可知点E 在直线l 右侧,根据题意画出图形,在FA 上截取FG=EF ,根据轴对称的性质可得AF ⊥BC ,BF=CF ,根据(2)中结论可得∠FBC=∠FCB=30°,利用三角形外角性质可得∠GFE=60°,可证明三角形EFG 是等边三角形,利用SAS 可证明△AEF ≌△CEG ,可得FA=CG ,根据线段的和差关系即可得答案.【详解】(1)补全图形如下:(2)①260α-︒,120.α︒-①∵AB、AC关于直线l对称,∴∠BAD=∠CAD,AB=AC,∵△ACE是等边三角形,∴∠EAC=60°,AE=AC=EC,∵∠BAD=α,∴∠BAC=BAD+∠CAD=2∠BAD=2α,∴∠BAE=∠BAC-∠EAC=2α-60°.∵AB=AC,AC=AE,∴AB=AE,∴∠ABE=12(180°-∠BAE)=120°-α.故答案为:2α-60°,120°-α②数量关系是FA =FC +FE,证明如下:在FA上截取FG=EF,连接EG,由①得,∠ABE=120°-α,∠BAD=α,∴∠AFB=180°-∠ABE-∠BAD=60°,∴△EFG为等边三角形,∴EG=FE=FG,∠GEF=60°,∵△AEC是等边三角形,∴∠AEC=60°,AE=CE,∴∠AEC=∠GEF=60°,∴∠AEC-∠GEC=∠GEF-∠GEC,即∠AEG=∠CEF,在△AEG和△CEF中,EG EFAEG CEF AE CE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△CEF,∴AG=FC∴FA=AG+FG=FC+FE,(3)AF=FC-EF.∵60°<α<90°,∴如图所示,点E在直线l右侧,在FA上截取FG=EF,连接EG,∵AB、AC关于直线l对称,点F在直线l上,∴AF⊥BC,BF=CF,∴∠ABC=∠ACB=90°-α,由(2)可知∠ABE=120°-α,∴∠FBC=∠FCB=120°-α-(90°-α)=30°,∴∠EFG=∠FBC+∠FCB=60°,∴△EFG是等边三角形,∴∠FEG=60°,∵∠AEC=60°,∴∠AEF+∠AEG=∠CEG+∠AEG=60°,∴∠AEF=∠CEG ,在△AEF 和△CEG 中,EF EG AEF CEG AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△CEG ,∴AF=CG ,∴AF=FC-EF .【点睛】本题考查轴对称的性质、等边三角形的判定与性质及全等三角形的判定与性质,根据轴对称的性质正确得出对应边并熟练掌握相关性质及判定定理是解题关键.4.(1)EF=BE+FC ;(2)EF=FC-BE .【分析】(1)由等腰三角形的性质,解得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,延长AB 至G ,使得BG=CF ,连接DG ,进而证明GBD △()FCD SAS ≅,再根据全等三角形对应边相等的性质解得DG FD =,再结合等腰三角形的性质可证明DEF ()DGE SAS ≅,最后根据全等三角形的性质解题即可;(2)在CA 上截取CG=BE,连接DG ,由等腰三角形的性质,可得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,进而证明BED ≅()CGD SAS 得到DG DE =,据此方法再证明EDF ≅()GDF SAS ,最后根据全等三角形的性质解题即可.【详解】 (1)ABC 和BDC 是等腰三角形, ABC ACB ∴∠=∠DBC DCB ∴∠=∠80BAC AB AC ∠=︒=,50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90ABD ACD DCF ∴∠=∠=︒=∠延长AB 至G ,使得BG=CF ,连接DG18090GBD ABD ∠=︒-∠=︒在GBD △和FCD 中,BG=CF ,GBD DCF BD FD ∠=∠=,∴GBD △()FCD SAS ≅,DG FD ∴=BDG CDF ∴∠=∠50100EDF BDC ∴∠=︒∠=︒,50BDE CDF ∴∠+∠=︒50GDE BDG BDE CDF BDE ∠=∠+∠=∠+∠=︒在DEF 和DGE △中,DE=DE ,EDF GDE DF GD ∠=∠=,∴DEF ()DGE SAS ≅,EF EG BE GB BE CF ∴==+=+(2)在CA 上截取CG=BE,连接DGABC 是等腰三角形,80BAC ∠=︒50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90EBD GCD ∴∠=∠=︒CG BE BD CD ==,在BED 和CGD △中,CG=BE ,EBD GCD BD CD ∠=∠=,BED ∴≅()CGD SASDG DE ∴=在EDF 和GDF 中,FD=FD ,GDF EDF ED GD ∠=∠=,EDF ∴≅()GDF SASEF FG FC CG FC BE ∴==-=-【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.(1)AFE AFG △≌△,理由:SAS ;(2)180B D ∠+∠=︒,证明见解析;(3)BE+DF=EF .【分析】(1)在前面已证的基础上,得出结论AE AG =,进而证明AFE AFG △≌△,从而得出结论;(2)利用“解决问题”中的思路,同样去构造AFE AFG △≌△即可;(3)利用前面两步的思路,证明全等得出结论即可.【详解】(1)ABE ADG ≌,,,AE AG BAE DAG BE DG ∴=∠=∠=,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,45EAF ∠=︒,45FAG ∴∠=︒,在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;(2)满足180B D ∠+∠=︒即可,证明如下:如图,延长FD 至G ,使BE DG =,180B ADF ∠+∠=︒,180ADF ADG ∠+∠=︒,B ADG ∴∠=∠,在ABE △与ADG 中,AB AD B ADG BE DG =⎧⎪∠=∠⎨⎪=⎩()ABE ADG SAS ∴≌,,,AE AG BAE DAG BE DG ∴=∠=∠=,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,45EAF ∠=︒,45FAG ∴∠=︒,在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;(3)BE+DF=EF .证明如下:如图,延长FD 至G ,使BE DG =,在ABE △与ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩()ABE ADG SAS ∴≌,,AE AG BAE DAG ∴=∠=∠,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,12EAF BAD ∠=∠,12FAG EAD FAE ∴∠=∠=∠, 在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;.【点睛】本题考查了截长补短的方法构造全等三角形,能够理解前面介绍的方法并继续探究是解决问题的关键.6.(1)4;(2)FG=BF+EG,见解析;(3)FG=BF-EG【分析】(1)解直角三角形分别求出DF,CF即可解决问题.(2)如图2中,结论:FG=BF+EG.在EA上截取EH,使得EH=BF.利用两次全等,证明FG=GH即可解决问题.(3)如图3中,结论:FG=BF-EG.在射线EA上截取EH,使得EH=BF.利用两次全等,证明FG=GH即可解决问题.【详解】(1)∵DE∥BC,∴∠BDE+∠ABC=180°,∵∠BDE=120°,∴∠ABC=60°,∵DF⊥BF,∴∠BFD=90°,∴DF=BF•tan60°133==∵∠CDF1=∠BDE=60°,∠DFC=90°,2==,∴CF=DF•tan60°333∴BC=BF+CF=1+3=4;(2)如图2中,结论:FG=BF+EG.理由:在EA上截取EH,使得EH=BF.∵AB=AC ,∠B=∠C ,∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴∠ADE=∠AED ,∴∠DEH=∠B ,在△DBF 和△DEH 中,BF EH B DEH BD DE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△DEH (SAS ),∴DF=DH ,∠BDF=∠EDH ,∵∠FDG 12=∠BDE , ∴∠BDF+∠EDG=∠EDH+∠EDG=∠GDH 12=∠BDE , ∴∠GDF=∠GDH ,在△DGF 和△DGH 中,DF DH GDF GDH DG DG =⎧⎪∠=∠⎨⎪=⎩,∴△DGF ≌△DGH (SAS ),∴FG=HG ,∵HG=EG+HE=EG+BF ,∴FG=BF+EG ;(3)如图3中,结论:FG=BF-EG .理由:在射线EA 上截取EH ,使得EH=BF .∵AB=AC ,∠B=∠C ,∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴∠ADE=∠AED ,∴∠DEH=∠B ,在△DBF 和△DEH 中,BF EH B DEH BD DE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△DEH (SAS ),∴DF=DH ,∠BDF=∠EDH ,∴∠BDE=∠FDH ,∵∠FDG 12=∠BDE 12=∠FDH , ∴∠GDF=∠GDH ,在△DGF 和△DGH 中,DF DH GDF GDH DG DG =⎧⎪∠=∠⎨⎪=⎩,∴△DGF ≌△DGH (SAS ),∴FG=HG ,∵HG=HE-GE=BF-EG ,∴FG=BF=-EG .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 8.(1)3;(2)见解析【分析】(1)过点B作BH⊥AD于H,由直角三角形的性质可求BH的长,由菱形的面积公式可求解;(2)延长DE至M,使ME=BE,连接MB,由题意可证△ABD是等边三角形,△BCD是等边三角形,△BEM是等边三角形,可得∠CBD=∠ABD=60°=∠MBE,AB=BD=BC,BM =BE,由“SAS”可证∴△MBD≌△EBC,可得MD=EC,即可得结论.【详解】解:(1)如图,过点B作BH⊥AD于H,∵四边形ABCD是菱形,∴AB=AD=6,∵∠A=60°,BH⊥AD,∴∠ABH=30°,∴AH=1AB=3,BH=3AH=33,2∴菱形ABCD的面积=AD×BH=6×33=183;(2)如图,延长DE至M,ME=BE,连接MB,∵四边形ABCD是菱形,∴AB=AD=CD=BC,∠A=60°=∠BCD,∴△ABD是等边三角形,△BCD是等边三角形,∴∠CBD=∠ABD=60°,AB=BD=BC,∵∠BED=2∠A=120°,∴∠BEM=60°,又∵BE=ME,∴△BEM是等边三角形,∴BM=BE,∠MBE=∠DBC=60°,∴∠MBD=∠EBC,∴△MBD≌△EBC(SAS),∴MD=EC,∴CE=BE+DE.【点睛】本题主要考查了菱形的性质应用,结合等边三角形的性质是解题的关键.9.5【分析】如图,在DC 上截取DF DA =,连接EF ,先证明ADE FDE △≌△,得到AE EF =,5A ∠=∠,然后证明CEF CEB △≌△,得到CF BC =,即可求出答案.【详解】解:如图,在DC 上截取DF DA =,连接EF ,DE 是ADC ∠的角平分线,12∠∠∴=,在△ADE 和△FDE 中,,12,,AD DF DE DE =⎧⎪∠=∠⎨⎪=⎩()ADE FDE SAS ∴△≌△,AE EF ∴=,5A ∠=∠,//AD BC ,180A B ∴∠+∠=︒,56180∠+∠=︒,6B ∴∠=∠, CE 是BCD ∠的角平分线,34∴∠=∠,在CEF △和CEB △中,6,34,,B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()CEF CEB AAS ∴△≌△,CF BC ∴=,325CD DF CF AD BC ∴=+=+=+=.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定和性质,证明ADE FDE △≌△是解题关键.10.(1)见解析;(2)CB=2AB ;(3)23AB k FG k = 【分析】(1)利用平行线的性质以及角的等量代换求证即可;(2)在BE 边上取点H ,使BH=AE ,可证明△ABH ≌△DAE ,△ABE ∽△ACB ,利用相似三角形的性质从而得出结论;(3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K ,得出12AD DK CB DB ==,通过证明△ADK ∽△DBC 得出∠BDC=∠AKD=90°,再证DF=FQ ,设AD=a ,因此有DF=FC=QF=ka ,再利用相似三角形的性质得出AC=3ka ,3AB ka =,1122FG DF ka ==,从而得出答案.【详解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD ∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE 边上取点H ,使BH=AE∵AB=AD∴△ABH ≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE ∽△ACB ∴EB AE CB AB= ∴CB=2AB ; (3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K∵AD=AB∴12DK BD =∠AKD=90°∵12AB AD BC == ∴12AD DK CB DB == ∵AD ∥BC∴∠ADK=∠DBC∴△ADK ∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ设AD=a ∴DF=FC=QF=ka∵AD ∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD ∽△CQB∴12AD QA BC CQ == ∴AQ=ka=QF=CF∴AC=3ka∵△ABE ∽△ACB∴AE AB AB AC= ∴AB =同理△AFD ∽△CFG12DF AF FG FC == ∴1122FG DF ka ==AB FG k=. 【点睛】本题是一道关于相似的综合题目,难度较大,根据题目作出合适的辅助线是解此题的关键,解决此题还需要较强的数形结合的能力以及较强的计算能力.。
全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
11.1全等三角形◆随堂检测1.若两个三角形全等,猜想它们对应的高、中线、角平分线的关系是。
2.如图,△ABC≌△CDA,AC=7cm,AB=5cm,BC=8cm,则AD的长是()A、7cmB、5cmC、8cmD、6cm3.如果∆ABC≌∆ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=____,DC=__cm4.如图,已知△ABE≌△ACD,∠B=∠C,∠ADE=∠AED,指出这两个三角形的其他相等的边或角.◆典例分析例:如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.分析:全等三角形的对应角相等,根据该性质可得∠OAD=∠OBC.借助四边形和三角形的内角和(或三角形的外角性质)可求得∠C的度数.解:∵△OAD≌△OBC,∴∠OAD=∠OBC,∵∠0=65°,∠BEA=135°,∠O+∠OBE+∠OAE+∠BEA=360°,∴∠OBE=∠OAE=(360°-65°-135°)÷2=80°,∵∠BEA=135°,∴∠AEC=45°∴∠C=80°-45°=35°.提示:当已知两个三角形全等时,首先要考虑到全等三角形性质:全等三角形的对应边相等、全等三角形的A 'BDAC对应角相等.◆课下作业●拓展提高1.下列说法不正确的是( ) A 、全等三角形的周长相等; B 、全等三角形的面积相等; C 、全等三角形能重合;D 、全等三角形一定是等边三角形.2.已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ) A 、9.5cmB 、9.5cm 或9cmC 、9cmD 、4cm 或9cm3.△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,则AC= . 4.如图,△ABC ≌△ADE ,若∠BAE=120°,∠BAD=40°,求∠BAC 的度数.5.如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,求∠DGB 的度数 。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形的性质及判定(习题)例题示范例1:已知:如图,C 为AB 中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【思路分析】①读题标注:DDBB②梳理思路:要证全等,需要三组条件,其中必须有一组边相等.由已知得,CD=BE;根据条件C 为AB 中点,得AC=CB;这样已经有两组条件都是边,接下来看第三边或已知两边的夹角.由条件CD∥BE,得∠ACD=∠B.发现两边及其夹角相等,因此由 SAS 可证两三角形全等.【过程书写】先准备不能直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应.证明:如图∵C 为AB 中点ACEACE∴AC =CB ∵CD ∥BE ∴∠ACD =∠B 在△ACD 和△CBE 中 AC = CB(已证)ACD = B (已证) CD = BE (已知) ∴△ACD ≌△CBE (SAS )EC巩固练习1. 如图,△ABC ≌△AED ,有以下结论:①AC =AE ;②∠DAB =∠EAB ;③ED =BC ;④∠EAB =∠DAC . 其中正确的有( ) A .1 个B .2 个C .3 个D .4 个EAA1F EBC 2BDCD第 1 题图第 2 题图2. 如图,B ,C ,F ,E 在同一直线上,∠1=∠2,BF =EC ,要使△ABC ≌△DEF ,还需要添加一组条件, 这个条件可以是 ,理由是 ; 这个条件也可以是 ,理由是 ; 这个条件还可以是,理由是.3. 如图,D 是线段 AB 的中点,∠C =∠E ,∠B =∠A ,找出图中的一对全等三角形是,理由是.AC AG DFHB E B D第3 题图第4 题图4.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需要添加一组条件,这个条件可以是,理由是;这个条件也可以是,理由是;这个条件还可以是,理由是.BCDF5. 如图,将两根钢条 AA' , BB' 的中点连在一起,使 AA' , BB'可以绕着中点 O 自由旋转,这样就做成了一个测量工具,A'B' 的长等于内槽宽 AB .其中判定△OAB ≌△ OA'B' 的理由是 ()A .SASB .ASAC .SSSD .AASA B'A'E第 5 题图第 6 题图6. 要测量河两岸相对的两点 A ,B 的距离,先在 AB 的垂线 BF上取两点 C ,D ,使 CD =BC ,再定出 BF 的垂线 DE ,使 A ,C ,E 在一条直线上(如图所示),可以说明△E DC ≌△ABC ,得 ED =AB ,因此测得 ED 的长就是 AB 的长.判定△EDC ≌ △ABC 最恰当的理由是( ) A .SASB .ASAC .SSSD .AAA7. 已知:如图,M 是 AB 的中点,∠1=∠2,∠C =∠D .求证:△AMC ≌△BMD . 【思路分析】 ① 读题标注: ② 梳理思路: C DA要证全等,需要 组条件,其中必须有一组 相等.由已知得:=,= .A OB根据条件,得= .因此,由可证两三角形全等.【过程书写】证明:如图8.已知:如图,点B,F,C,E 在同一条直线上,且BC=EF,AB∥DE,AB=DE.A求证:△ABC≌△DEF.CB F E【思路分析】①读题标注:②梳理思路:D要证全等,需要组条件,其中必须有一组相等.由已知得:= ,= .根据条件,得= .因此,由可证两三角形全等.【过程书写】证明:如图思考小结1.两个三角形全等的判定有,, _,,其中AAA,SSA 不能证明三角形全等,请举反例进行说明.2.如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连接AC 并延长到D,使CD=CA;连接BC 并延长到E,使CE=CB ,连接DE 并测量出它的长度,DE 的长度就是A,B 间的距离.你能说明其中的道理吗A ECB D【参考答案】 巩固练习1. B2. AC =DF ,SAS ;∠B =∠E ,ASA ;∠A =∠D ,AAS3. △BCD ≌△AED ,AAS4. AC =AE ,SAS ;∠B =∠D ,ASA ;∠C =∠E ,AAS5. A6. B7. ①略②3,边∠1,∠2;∠C ,∠DM 是 AB 的中点,AM ,BM AAS【过程书写】证明:如图, ∵M 是 AB 的中点 ∴AM =BM在△AMC 和△BMD 中C =D (已知) 1 = 2 (已知) AM = BM (已证) ∴△AMC ≌△BMD (AAS ) 8. ①略②3,边BC ,EF , AB ,DE AB ∥DE ,∠B ,∠E SAS【过程书写】证明:如图, ∵AB ∥DE∴∠B =∠E在△ABC 和△DEF 中 AB = DE (已知)B = E (已证) BC = EF (已知)∴△ABC ≌△DEF (SAS )思考小结1. SAS ,SSS ,ASA ,AASAAA 反例:大小三角板SSA 反例:作图略2. 证明:如图,在△ABC 和△DEC 中AC = DC (已知)ACB = DCE (对顶角相等) BC = EC (已知) ∴△ABC ≌△DEC (SAS )∴AB =DE (全等三角形对应边相等) 即 DE 的长度就是 A ,B 间的距离。
全等三角形练习题含答案全等三角形练题一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。
A.3个 B.4个 C.5个 D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40° C.25°或40° D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为3+1,那么这个三角形的面积为()A.1 B.3/2 C.3 D.不能确定二、解答题:1、已知:如图,△ABC中,AB=AC,AD=BD,AC=DC求:∠B的度数2、已知:Rt△ABC中,∠BAC=90°,AD是BC边上的高,BF平分∠ABC,交AD于E。
求证:△AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。
求证:∠ABO=∠CDO4、已知:如图△ABC中,BC边中垂线DE交∠BAC的平分线于D,DM⊥AB于M,DN⊥AC于N。
求证:BM=CN5、已知:如图,△ABC中,∠ACB=90°,M为AB的中点,DM⊥AB于M,CD平分∠ACB,交AB于E求证:DE=DF6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC 于点E,PF⊥BC于点F。
求证:DE=DF。
1(2)B DC ' 全等三角形练习题一、概念:全等形:能够完全重合的图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角:把两个全等的三角形重合到一起.重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.二、全等三角形的性质:全等三角形的对应边相等、对应角相等.三、三角形全等的条件:1. 三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”).2. 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).3. 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).4. 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”). 练习:1. 如图(1),如果△AOC ≌ △BOD ,则对应边是__________,对应角是_____________;如图(2),△ABC ≌ △CDA ,则对应边是_____________,对应角是_______________;2. 已知ABC ∆≌'''C B A ∆,A 与'A ,B 与'B 是对应顶点,ABC ∆的周长为10cm ,AB =3cm ,BC =4cm. 则''B A = cm ,''C B = cm ,''C A = cm.3. 已知ABC ∆≌DEF ∆,A 与D ,B 与E 分别是对应顶点,052=∠A , 067=∠B ,BC =15cm ,则F ∠= ,FE = cm.6. 如图,△ABC ≌ ADE ∆,B ∠和D ∠是对应角,AB = AD 是对应边,写出另外两组对应边和对应角.7. 如图,△ABC ≌ △A ′B ′C ′,∠C =25°,BC =6cm, AC =4cm, 你能得出△A ′B ′C ′中哪些角的大小、哪些边的长度?8. 如图,△ABD ≌ △EBD, △DBE ≌ △DCE, B, E, C 在一条直线上.C图1 图2 图3E图5 图6图4(1)BD是∠ABE的平分线吗?为什么?(2)DE⊥BC吗?为什么?(3)点E 平分线段BC吗?为什么?9. 将一几何图形放在平面镜前,则该图形与镜子里的图形全等,因为它们的______________相同11. 如图在AFD∆和CEB∆中,点A,E,F,C在同一条直线上有下面四个论断:(1)AD =CB ,(2)AE =CF ,(3)DB∠=∠,(4)AD //BC .请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.12. 填空题:(1)如图1,已知:AC =DB,要使ABC∆≌DCB∆,只需增加一个条件是_____ ____.(2)如图2,已知:ABC∆中,090=∠C,AM平分CAB∠,CM =20cm那么M到AB的距离是 .(3)如图3,已知:在ABC∆和DEF∆中,如果AB =DE,BC =EF,只要找出∠ =∠或 = 或 // ,就可证得ABC∆≌DEF∆.(4). 已知:如图4,AB =EB,∠1=∠2,∠ADE =120°,AE、BD相交于F,则∠3的度数为___ ___.(5). 如图5, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△__ ____ , 根据是__ ________.(6). 已知:如图6 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC =AE.若AB = 5 , 则AD =___________.例1.在△ABC中,AB=AC,AD是三角形的中线.求证:△ABD≌△ACD 例2.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证:AB=AD3。
全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。
全等三角形练习题及答案全等三角形是几何学中的一个重要概念,它指的是具有相同形状和大小的两个三角形。
在解决几何问题时,判断两个三角形是否全等是常见的步骤之一。
本文将提供一些全等三角形的练习题,并附带答案供参考。
练习题一:已知△ABC和△DEF,其中∠B=∠E,∠C=∠F,AC=DF。
判断△ABC与△DEF是否全等,请给出理由并画出示意图。
答案:根据已知条件可知,在△ABC和△DEF中,有两对对应全等的角度,即∠B=∠E,∠C=∠F。
另外,还已知AC=DF。
根据SAS(边-角-边)全等三角形的判定条件,当两个三角形的两边及夹角分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△ABC与△DEF是全等三角形。
下图是△ABC与△DEF的示意图:A D/\/\B––– C E–––F练习题二:已知△PQR和△RST,满足条件PR=RS,PR∥RS,∠Q=∠T。
请判断△PQR与△RST是否全等,并给出理由。
答案:根据已知条件可知,在△PQR和△RST中,有两对对应全等的角度,即∠Q=∠T。
另外,还已知PR=RS。
根据ASA(角-边-角)全等三角形的判定条件,当两个三角形的两个夹角及夹角间的边分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△PQR与△RST是全等三角形。
练习题三:已知△ABC和△DEF,满足条件∠A=∠D,BC=EF,AC=DF。
请判断△ABC与△DEF是否全等,并给出理由。
答案:根据已知条件可知,在△ABC和△DEF中,有一对对应全等的角度,即∠A=∠D。
另外,还已知BC=EF和AC=DF。
根据SSS(边-边-边)全等三角形的判定条件,当两个三角形的三条边分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△ABC与△DEF是全等三角形。
练习题四:已知△XYZ和△UVW,满足条件XY=VW,YZ=UW,且∠X=∠U。
请判断△XYZ与△UVW是否全等,并给出理由。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
全等三角形练习题含答案全等三角形练习题含答案夯实基础一、耐心选一选,你会开心:(每题6分,共30分)1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A.①②③④B.①③④C.①②④D.②③④2.如果是中边上一点,并且,则是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3.一个正方形的侧面展开图有()个全等的正方形.A.2个B.3个C.4个D.6个4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个5.下列说法正确的是()A.若,且的两条直角边分别是水平和竖直状态,那么的两条直角边也一定分别是水平和竖直状态B.如果,,那么C.有一条公共边,而且公共边在每个三角形中都是腰的两个等腰三角形一定全等D.有一条相等的边,而且相等的边在每个三角形中都是底边的两个等腰三角形全等二、精心填一填,你会轻松(每题6分,共30分)6.如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌,AB 的对应边是,BC的对应边是,∠BCA的对应角是.第6题第7题7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的'对应角是.8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.9.已知,,,则,,和的度数分别为,,.10.请在下图中把正方形分成2个、4个、8个全等的图形:三、细心做一做,你会成功(共40分)11.找出下列图中的全等图形.12.找出下列图形中的全等图形.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)13.如图,AB=DC,AC=DB,求证AB∥CD.综合创新14.如图,点在一条直线上,△△你能得出哪些结论?(请写出三个以上的结论)[来源:ZXXK]15.把一张方格纸贴在纸板上.按图1所示画上正方形,然后沿图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?中考链接16.如图,,则的度数为( )A.B.C.D.17.如图,若,且,则.18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.参考答案夯实基础1.A2.D3.C4.A.5.B6.△ADC,AD,AC,∠DCA7.EF,∠DFE8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.9.;,,10.分法可分别如下所示:11.根据全等形的定义得全等形有天鹅、荷花.12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.∴AB∥CD.综合创新14.由△△可得到△△等.15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比宽大一点点.这意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.16.C17.18.2。
1.3 探索三角形全等的条件(6)分层练习1.图中是全等的三角形是()A.甲和乙B.乙和丁C.甲和丙D.甲和丁【答案】B【分析】比较三条边的长度一致的就是全等三角形.【详解】解:比较三角形的三边长度,发现乙和丁的长度完全一样,即为全等三角形,故选:B.2.将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是()A.SSS B.SAS C.ASA D.AAS【答案】A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.3.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④【答案】A【分析】根据全等三角形的SSS判定条件解答即可.【详解】解:∵AE=FB,∴AE+BE=FB+BE,∴AB=FE,在△ABC和△FED中,AC=FDBC=ED,AB=FE∴△ABC≌△FED(SSS),∵AE=BE和BF=BE推不出AB=FE,∴可利用的是①或②,故选:A.4.如图,在△ABC中,AB=AC,D为BC的中点,则下列结论中:①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC,其中正确的个数为( )A.1个B.2个C.3个D.4个【答案】D【分析】由D为BC中点可得BD=CD,利用SSS即可证明△ABD≌△ACD,根据全等三角形的性质逐一判断即可.【详解】∵D为BC的中点,∴BD=CD,又∵AB=AC,AD为公共边∴△ABD≌△ACD(SSS),故①正确,∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD⊥BC,故②③④正确.综上所述:正确的结论有①②③④共4个,故选D.【答案】3【分析】根据已知利用全等三角形的判定方法SSS得出全等三角形即可.【详解】解:全等三角形共有3对,△ACE≅△ADE,△ACB≅△ADB,△ECB≅△EDB,理由:在△ECB和△EDB中EB=EBEC=ED,BC=BD∴△ECB≅△EDB(SSS),在△ACE和△ADE中AC=ADAE=AE,EC=ED∴△ACE≅△ADE(SSS),在△ACB和△ADB中AB=ABAC=AD,BC=BD∴△ACB≅△ADB(SSS).故答案为:3.8.如图,点E、F在BD上,且AB=CD,BF=DE,AE=CF,试说明:点O是AC的中点.请你在横线上补充其推理过程或理由.解:因为BF=DE,所以BF―EF=DE―EF,因为AB=CD,AE=CF,所以_______________(理由:SSS)所以∠B=∠D(理由:_________________)因为∠AOB=∠COD(理由:_________________)所以△ABO≌△CDO所以__________________(理由:全等三角形对应边相等)所以点O是AC中点.【答案】△ABE≌△CDF,全等三角形对应角相等,对顶角相等,AO=CO【分析】由“SSS”可证△ABE≌△CDF,可得∠B=∠D,由“AAS”可证△ABO≌△CDO,可得AO=CO,即可求解.【详解】解:因为BF=DE,所以BF―EF=DE―EF,因为AB=CD,AE=CF,所以△ABE≌△CDF(理由:SSS),所以∠B=∠D(理由:全等三角形对应角相等),因为∠AOB=∠COD(理由:对顶角相等),所以△ABO≌△CDO,所以AO=CO(理由:全等三角形对应边相等),所以点O是AC中点,故答案为:△ABE≌△CDF,全等三角形对应角相等,对顶角相等,AO=CO.9.如图,AB=AD,BC=CD,AC、BD相交于E,由这些条件可以得到若干结论,请你写出其中3个正确结论(不要添加字母和辅助线,并对其中一个给出证明)结论1:结论2:结论3:证明:【答案】结论1:△ABC≌△ADC结论2:∠BCA=∠DCA结论3:AC平分∠BAD证明结论3,见详解【分析】结合题意,得出三个结论;利用“SSS”证明△ABC≌△ADC,由全等三角形的性质即可证明AC平分∠BAD.【详解】结论1:△ABC≌△ADC结论2:∠BCA=∠DCA结论3:AC平分∠BAD证明结论3:在△ABC和△ADC中,AB=ADAC=ACCB=CD,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD.10.如图,AD=CB,E,F是AC上两动点,且有DE=BF(1)若E,F运动如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若E,F运动如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E,F不重合,AD和CB平行吗?说明理由.【答案】(1)详见解析;(2)成立,证明详见解析;(3)AD与CB不一定平行,理由详见解析.【分析】(1)根据AF=CE可得AF+EF=CE+EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(2)根据AF=CE可得AF-EF=CE-EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(3)根据已知两个条件,不能判定△ADE≌△CBF,不能确定∠A=∠C,即可得AD和CB不一定平行.【详解】(1)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,在△ADE和△CBF中AD=CB DE=BF AE=CF,∴△ADE≌△CBF.(2)成立.理由如下:∵AF=CE,∴AF-EF=CE-EF,即AE=CF,在△ADE和△CBF中AD=CB DE=BF AE=CF,∴△ADE≌△CBF.(3)AD与CB不一定平行,理由如下:∵只给了两组对应相等的边,∴不能判定△ADE≌△CBF,∴不能判定∠A与∠C的大小关系,∴AD与CB不一定平行.11.中国现役的第五代隐形战斗机歼—20的机翼如图,为适应空气动力的要求,两个翼角∠A,∠B必须相等. 制造中,工作人员只需用刻度尺测量PA=PB,CA=CB就能满足要求,说明理由.【分析】连接PC,证明△APC≌△BPC(SSS)即可证明∠A=∠B;【详解】解:如图所示,连接PC,∵PA=PB,PC=PC,AC=BC,∴△APC≌△BPC(SSS),∴∠A=∠B;12.如图,在四边形ABCD中,CB⊥AB于点B,CD⊥AD于点D,点E,F分别在AB,AD上,AE AF=,CE=CF.若AE=8,CD=6,求四边形AECF的面积.【答案】)8【分析】连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;【详解】解:连接AC ,如图,在△ACE 和△ACF 中AE =AF CE =CF AC =AC∴△ACE ≌△ACF (SSS ).∴S △ACE =S △ACF ,∠FAC =∠EAC .∵CB ⊥AB ,CD ⊥AD ,∴CD =CB =6.∴S △ACF =S △ACE =12AE ·CB =12×8×6=24.∴S 四边形AECF =S △ACF +S △ACE =24+24=48.(1)【旧题重现】《学习与评价》19P 有这样一道习题:如图①,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的BC 、B C ¢¢边上的中线,AD A D ¢¢=,AB =A ′B ′,BC =B ′C ′.求证:△ABC≌△A ′B ′C ′.证明的途径可以用下面的框图表示,请填写其中的空格..(2)【深入研究】如图②,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的BC 、B C ¢¢边上的中线,AD A D ¢¢=,AB =A ′B ′,AC =A ′C ′.判断△ABC 与△A ′B ′C ′是否仍然全等.(3)【类比思考】下列命题中是真命题的是 .(填写相应的序号)①两角和第三个角的角平分线分别相等的两个三角形全等;②一边和这条边上的中线以及高分别相等的两个三角形全等;③斜边和斜边上的高分别相等的两个直角三角形全等;④两边和第三边上的高分别相等的两个三角形全等;⑤底边和一腰上的中线分别相等的两个等腰三角形全等.【答案】(1)①BD =12BC ;②B ′D ′=12B ′C ′;③AD =A ′D ′;④∠B =∠B ′(2)全等,见解析(3)①②③⑤【分析】(1)根据三角形中线的定义及全等三角形的判定与性质可得出答案;(2)延长AD 至E ,使DE =AD ,连接BE ,延长A ′D ′至E ′,使D ′E ′=A ′D ′,连接B ′E ′.证明△ADC≌△EDB(SAS ).由全等三角形的性质得出AC =EB ,∠DAC =∠E ,同理A ′C ′=E ′B ′,∠D ′A ′C ′=∠E ′.证明△ABE≌△A ′B ′E ′(SSS ).得出∠BAE =∠B ′A ′E ′,∠E =∠E ′.则可证明△ABC≌△A ′B ′C ′(SAS );(3)根据全等三角形的判定方法可得出结论.【详解】(1)证明:∵AD 是△ABC 的中线,∴BD =12BC ,∵A ′D ′分别是△A ′B ′C ′的中线,∴B ′D ′=12B ′C ′,∵BC =B ′C ′,∴BD =B ′D ′,在△ABD 和△A ′B ′D ′中,BD =B ′D ′AD =A ′D ′AB =A ′B ′,∴△ABD≌△A ′B ′D ′(SSS ),∴∠B =∠B ′,在△ABC 和△A ′B ′C ′中,AB =A ′B ′∠B =∠B ′BC =B ′C ′,∴△ABC≌△A ′B ′C ′(SAS ).故答案为:①BD =12BC ;②B ′D ′=12B ′C ′;③AD =A ′D ′;④∠B =∠B ′;(2)解:△ABC 与△A ′B ′C ′仍然全等,理由如下:延长AD 至E ,使DE =AD ,连接BE ,延长A ′D ′至E ′,使D ′E ′=A ′D ′,连接B ′E ′.∵AD 和A ′D ′分别是△ABC 和△A ′B ′C ′的BC 和B ′C ′边上的中线,∴BD =CD ,B ′D ′=C ′D ′.在△ADC 和△EDB 中,AD =DE ∠ADC =∠BDE BD =CD,∴△ADC≌△EDB(SAS ).∴AC=EB,∠DAC=∠E,同理A′C′=E′B′,∠D′A′C′=∠E′.∵AC=A′C′,∴EB=E′B′.∵AD=A′D′,AD=DE,A′D′=D′E′,∴AE=A′E′.∵AB=A′B′,∴△ABE≌△A′B′E′(SSS).∴∠BAE=∠B′A′E′,∠E=∠E′.∴∠DAC=∠D′A′C′.∴∠BAC=∠B′A′C′,又AB=A′B′,AC=A′C′,∴△ABC≌△A′B′C′(SAS),(3)①两角和第三个角的角平分线分别相等的两个三角形全等,正确,符合题意;②一边和这条边上的中线以及高分别相等的两个三角形全等,正确,符合题意;③斜边和斜边上的高分别相等的两个直角三角形全等,正确,符合题意;④两边和第三边上的高分别相等的两个三角形全等,说法错误,如图,在△ABC与△AB C′中,AB=AB,AC=A C′,高AD相同,但是△ABC与△AB C′不全等.故④不符合题意;⑤底边和一腰上的中线分别相等的两个等腰三角形全等,正确,符合题意.故答案为:①②③⑤.(初步探索)(1)如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小明同学探究此问题的方法是:延长FD 到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是___________;(灵活运用)(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由.【答案】(1)∠BAE+∠FAD=∠EAF,证明见解析(2)成立,理由见解析【分析】(1)如图1,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,得到∠BAE=∠DAG,AE=AG,再证明△AEF≌△AGF,得到∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF 即可;(2)同(1)证明即可.【详解】(1)解:∠BAE+∠FAD=∠EAF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠B=∠ADC=90°,∴∠ADG=∠B=90°,∵DG=BE,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD,DG=BE,∴EF=DG+FD=GF,又∵AE=AG,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF.故答案为:∠BAE+∠FAD=∠EAF;(2)解:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF.。
全等三角形sss练习题附答案1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。
试用你所学的知识说明理由。
4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.中考1.如图,AD=BC,AB=DC. 求证:∠A+∠D=180°2.已知:如图,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A.参考答案:随堂检测:1、②①③.解析:本题是利用SSS画全等三角形的尺规作图步骤,“作直线BP,在BP上截取BC=a”也可表达为“画线段BC=a”2、由全等可得 AD垂直平分BC3、公共边相等是两个三角形全等的一个条件.由于AC=AD,BC=BD,AB=AB,所以,△ABC≌△ABD,所以,∠CAB=∠DAB,即AB平分∠CAD. 拓展提高:1、76.解析:先证明全等,再利用全等三角形的对应角相等和三角形内角和定理答案: 02、C.解析:利用SSS证明两个三角形全等3、由于已知DE=DF,EH=FH,连结DH,这是两三角形的公共边,于是,?DE?DF?在△DEH和△DFH中, ?EH?FH?DH?DH?所以△DEH≌△DFH,所以∠DEH=∠DFH。
4、根据条件OA=OC,EA=EC,OA、EA和OC、EC恰好分别是△EAC和△EBC的两条边,故可以构造两个三角形,利用全等三角形解决解:连结OE在△EAC和△EBC中?OA=OC??EA=EC?OE=OE?∴△EAC≌△EBC∴∠A=∠C体验中考:1、由条件可构造两个全等三角形证明:连结AC∵AD=BC,AB=DC,AC=CA∴△ABC≌△CDA∴∠BAC=∠ACD∴AB∥CD∴∠A+∠D=180°2、证明:连接BD.在△ABD和△CBD中,∵AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD.∴∠C=∠A.三角形全等的判定SSS练习题1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
D
(2)
B D
C ' 全等三角形练习题
一、概念:
全等形:能够完全重合的图形叫做全等形.
全等三角形:能够完全重合的两个三角形叫做全等三角形.
对应顶点、对应边、对应角:把两个全等的三角形重合到一起.重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.
二、全等三角形的性质:全等三角形的对应边相等、对应角相等.
三、三角形全等的条件:
1. 三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”).
2. 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).
3. 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).
4. 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”). 练习:
1. 如图(1),如果△AOC ≌ △BOD ,则对应边是__________,对应角是_____________;
如图(2),△ABC ≌ △CDA ,则对应边是_____________,对应角是_______________;
2. 已知ABC ∆≌'''C B A ∆,A 与'A ,B 与'B 是对应顶点,ABC ∆的周长为10cm ,AB =3cm ,BC =4cm. 则
''B A = cm ,''C B = cm ,''C A = cm.
3. 已知ABC ∆≌DEF ∆,A 与D ,B 与E 分别是对应顶点,052=∠A , 0
67=∠B ,BC =15cm ,则F ∠= ,FE = cm.
6. 如图,△ABC ≌ ADE ∆,B ∠和D ∠是对应角,AB = AD 是对应边,写出另外两组对应边和对应角.
7. 如图,△ABC ≌ △A ′B ′C ′,∠C =25°,BC =6cm, AC =4cm, 你能得出△A ′B ′C ′中哪些角的大小、哪些边的长度?
8. 如图,△ABD ≌ △EBD, △DBE ≌ △DCE, B, E, C 在一条直线上.
D
C
图
1 图
2 图3
E
图5 图6
图4
(1)BD是∠ABE的平分线吗?为什么?
(2)DE⊥BC吗?为什么?
(3)点E 平分线段BC吗?为什么?
9. 将一几何图形放在平面镜前,则该图形与镜子里的图形全等,因为它们的______________相同
11. 如图在AFD
∆和CEB
∆中,点A,E,F,C在同一条直线上有下面四个论断:
(1)AD =CB ,(2)AE =CF ,(3)D
B∠
=
∠,(4)AD //BC .
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.
12. 填空题:
(1)如图1,已知:AC =DB,要使ABC
∆≌DCB
∆,只需增加一个条件是_____ ____.
(2)如图2,已知:ABC
∆中,0
90
=
∠C,AM平分CAB
∠,CM =20cm那么M到AB的距离
是 .
(3)如图3,已知:在ABC
∆和DEF
∆中,如果AB =DE,BC =EF,只要找出∠ =∠或 = 或 // ,就可证得ABC
∆≌DEF
∆.
(4). 已知:如图4,AB =EB,∠1=∠2,∠ADE =120°,AE、BD相交于F,则∠3的度数为___ ___.(5). 如图5, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△A EC , 根据是_________
再证△BDE ≌△__ ____ , 根据是__ ________.
(6). 已知:如图6 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC =AE.若AB = 5 , 则AD =___________.
例1.在△ABC中,AB=AC,AD是三角形的中线.求证:△ABD≌△ACD
例2.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证:AB=AD。