高考数学高分二轮复习练习:专题五 第3讲 圆锥曲线中的热点问题 (1)
- 格式:doc
- 大小:333.50 KB
- 文档页数:21
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
第3讲 圆锥曲线中的定值、定点及证明问题[做真题](2019·高考全国卷Ⅲ节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[明考情]圆锥曲线中的定点、定值问题是高考命题的热点,无论是选择题、填空题,还是解答题,只要考查与曲线有关的运动变化,都可能涉及探究定点或定值,因而这类问题考查范围广泛,命题形式新颖.定值问题1.直接消参求定值:常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示:(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.例1.(2017·高考全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2.从特殊到一般求定值:常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.例2.(2015·高考四川卷)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.例3. (2019·贵阳市第一学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 为短轴的上端点,MF 1→·MF 2→=0,过F 2垂直于x 轴的直线交椭圆C 于A ,B两点,且|AB |= 2.(1)求椭圆C 的方程;(2)设经过点(2,-1)且不经过点M 的直线l 与椭圆C 相交于G ,H 两点.若k 1,k 2分别是直线MG ,MH 的斜率,证明:k 1+k 2为定值.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.[对点训练]已知椭圆方程为x 24+y 23=1,点F 为右焦点,若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).定点问题1.参数法:参数法解决定点问题的思路:(1)引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );(2)利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.例4.(2017·高考全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C的左焦点F .2.由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.例5.(2017·高考全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.例6. (2019·安徽省考试试题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为P ,右顶点为Q ,直线PQ 与圆x 2+y 2=45相切于点M ⎝⎛⎭⎫25,45.(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且P A →·PB →=0,求证:直线l 过定点.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化的量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.[提醒] (1)直线过定点,常令参数的系数等于0即可.如直线y =kx +b ,若b 为常量,则直线恒过点(0,b );若b k为常量,则直线恒过点⎝⎛⎭⎫-b k ,0. (2)一般曲线过定点,把曲线方程变为f 1(x ,y )+λf 2(x ,y )=0(λ为参数).解方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0,即得定点坐标. [对点训练](2019·开封市定位考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.证明问题代数转化法:圆锥曲线中的证明问题多涉及几何量的证明,比如涉及线段或角相等以及位置关系等等(注意一些常用的结论,如等腰三角形两底角相等,两直线斜率之和为0等).证明时,常把几何量用坐标表示,建立某个变量的函数,用代数方法证明,常将斜率利用整体法求解.例7.(2018·高考全国卷Ⅰ)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN例8.(2019·湖南省五市十校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交椭圆C于点M,求证:∠PFM=∠PFB.圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:①证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某点、某两条直线平行或垂直等;②证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.[对点训练](2019·合肥市第一次质量检测)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线交椭圆E 于A ,B 两点.若椭圆E 的离心率为22,△ABF 2的周长为4 6. (1)求椭圆E 的方程;(2)设不经过椭圆的中心而平行于弦AB 的直线交椭圆E 于点C ,D ,设弦AB ,CD 的中点分别为M ,N ,证明:O ,M ,N 三点共线.。
第3讲圆锥曲线中的热点问题【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2,|y2-y1|=(y1+y2)2-4y1y2.(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 3. 弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 4. 轨迹方程问题(1)求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.考点一 求轨迹方程例1 (2013·辽宁)如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时, A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝⎛⎭⎫-1,14,故切线MA 的方程为y =-12(x +1)+14. 因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是 y 0=-12(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎫x 1,x 214,B (x 2,x224),x 1≠x 2, 由N 为线段AB 中点知 x =x 1+x 22,③ y =x 21+x 228.④切线MA 、MB 的方程分别为 y =x 12(x -x 1)+x 214.⑤ y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y .因此AB 中点N 的轨迹方程为 x 2=43y .(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为圆锥曲线,则可考虑用定义法或待定系数法求解.(2)当曲线上动点的坐标受到另外一些点的坐标制约时,可以用相关点法,利用相关点法求解曲线方程需要注意两个方面:一是准确定位,即确定联动点,动点的轨迹可能与多个动点相关,但要抓住与其一起联动的点;二是找准关系,即根据已知准确求出动点与其联动点的坐标之间的关系,然后代入联动点所在曲线方程求解.设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN →=2MP →,PM →⊥PF →.(1)当点P 在y 轴上运动时,求点N 的轨迹C 的方程;(2)设A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)是曲线C 上的点,且|AF →|,|BF →|,|DF →|成等差数列,当AD 的垂直平分线与x 轴交于点E (3,0)时,求B 点坐标.解 (1)设N (x ,y ),则由MN →=2MP →,得P 为MN 的中点,所以M (-x,0),P (0,y 2).又PM →⊥PF →得PM →·PF →=0,PM →=(-x ,-y 2),PF →=(1,-y 2),所以y 2=4x (x ≠0).(2)由(1)知F (1,0)为曲线C 的焦点,由抛物线定义知,抛物线上任一点P 0(x 0,y 0)到F 的距离等于其到准线的距离,即|P 0F |=x 0+p2,所以|AF →|=x 1+p 2,|BF →|=x 2+p 2,|DF →|=x 3+p 2,根据|AF →|,|BF →|,|DF →|成等差数列,得x 1+x 3=2x 2, 直线AD 的斜率为y 3-y 1x 3-x 1=y 3-y 1y 234-y 214=4y 1+y 3,所以AD 中垂线方程为y =-y 1+y 34(x -3), 又AD 中点(x 1+x 32,y 1+y 32)在直线上,代入上式得x 1+x 32=1,即x 2=1,所以点B (1,±2). 考点二 圆锥曲线中的定值、定点问题例2 已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ),又F 坐标为(1,0),设l 交椭圆于A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2=8k 23+4k 2-2(4k 2-12)3+4k 21-8k23+4k 2+4k 2-123+4k2=-83. 所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83.(3)当直线l 斜率不存在时,直线l ⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 的中点N ⎝⎛⎭⎫52,0, 猜想,当直线l 的倾斜角变化时, AE 与BD 相交于定点N ⎝⎛⎭⎫52,0, 证明:由(2)知A (x 1,y 1),B (x 2,y 2),∴D (4,y 1),E (4,y 2),当直线l 的倾斜角变化时,首先证直线 AE 过定点⎝⎛⎭⎫52,0,∵l AE :y -y 2=y 2-y 14-x 1(x -4),当x =52时,y =y 2+y 2-y 14-x 1·⎝⎛⎭⎫-32=2(4-x 1)·y 2-3(y 2-y 1)2(4-x 1)=2(4-x 1)·k (x 2-1)-3k (x 2-x 1)2(4-x 1)=-8k -2kx 1x 2+5k (x 1+x 2)2(4-x 1)=-8k (3+4k 2)-2k (4k 2-12)+5k ·8k 22(4-x 1)·(3+4k 2)=0.∴点N ⎝⎛⎭⎫52,0在直线l AE 上.同理可证,点N ⎝⎛⎭⎫52,0也在直线l BD 上.∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点⎝⎛⎭⎫52,0.(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |, 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中 点,∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,① x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 考点三 圆锥曲线中的最值范围问题例3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点 P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭 圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4.故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 1与抛物线C 2的焦点均在x 轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:(1)求C 1,C 2(2)过点A (m,0)作倾斜角为π6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以线段CD 为直径的圆的外部,求m 的取值范围.解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 22=1,抛物线C 2的方程为y 2=9x .(2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =33(x -m ), 由⎩⎨⎧y =33(x -m )x 26+y22=1,由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23<m <23,①而x 1x 2=m 2-62,x 1+x 2=m ,故y 1y 2=33(x 1-m )·33(x 2-m ) =13[x 1x 2-m (x 1+x 2)+m 2] =m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,又F (-2,0),即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0.②由①②可得m 的取值范围是(-23,-3)∪(0,23).1. 求轨迹与轨迹方程的注意事项(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变.(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形. 2. 定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.3. 圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l 交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2. (1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围.解 (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42,∴a 2=2,b 2=1. ∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ), 由⎩⎪⎨⎪⎧y =k (x -2)x 22+y 2=1, 得(1+2k 2)x 2-8k 2x +8k 2-2=0.由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12.x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2),y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆C 上,∴(8k 2)2[t (1+2k 2)]2+2(-4k )2[t (1+2k 2)]2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209,∴(1+k 2)[64k 4(1+2k 2)2-4·8k 2-21+2k 2]<209,∴(4k 2-1)(14k 2+13)>0, ∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, 又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2,∴实数t 的取值范围为(-2,-263)∪(263,2).(推荐时间:70分钟)一、选择题1. 已知方程x 2k +1+y 23-k=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是 ( )A .k <1或k >3B .1<k <3C .k >1D .k <3答案 B解析 若椭圆焦点在x 轴上,则⎩⎪⎨⎪⎧k +1>03-k >0k +1>3-k ,解得1<k <3.选B.2. △ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4) 答案 C解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线 的右支,方程为x 29-y 216=1(x >3).3. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得:F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|, ∴|FM |>4,即|y 0+2|>4, 又y 0≥0,∴y 0>2.4. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.5. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是( )A .(0,+∞)B .(13,+∞)C .(15,+∞)D .(19,+∞)答案 B解析 设椭圆与双曲线的半焦距为c , PF 1=r 1,PF 2=r 2. 由题意知r 1=10,r 2=2c , 且r 1>r 2,2r 2>r 1, ∴2c <10,2c +2c >10, ∴52<c <5⇒1<25c2<4, ∴e 2=2c 2a 双=2c r 1-r 2=2c 10-2c =c 5-c ;e 1=2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c. ∴e 1·e 2=c 225-c 2=125c 2-1>13. 二、填空题6. 直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________.答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m =1表示椭圆,∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点, ∴要使直线与椭圆总有公共点,应有: 025+12m≤1,m ≥1, ∴m 的取值范围是m ≥1且m ≠5.7. 设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF →1·PF →2的值等于________. 答案 -2解析 易知当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-3,0),F 2(3,0),不妨设P (0,1), ∴PF →1=(-3,-1),PF →2=(3,-1), ∴PF →1·PF →2=-2.8. 已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________. 答案522-1 解析 过点P 作抛物线的准线的垂线,垂足为A ,交y 轴于B ,由抛物线方程为y 2=4x 得焦点F 的坐标为(1,0),准线为x =-1,则由抛物线的定义可得 d 1+d 2=|P A |-|AB |+d 2=|PF |-1+d 2, |PF |+d 2大于或等于焦点F 点P 到直线l , 即|PF |+d 2的最小值为|1-0+4|2=522,所以d 1+d 2的最小值为522-1.9. (2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2x 2+(y -a )2=a 得y 2+(1-2a )y +a 2-a =0. 即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0a -1≥0,解得a ≥1.三、解答题10.已知直线x -2y +2=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =103分别交于M ,N 两点. (1)求椭圆C 的方程;(2)求线段MN 的长度的最小值.解 (1)如图,由题意得椭圆C 的左顶点为A (-2,0),上顶点为 D (0,1),即a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)直线AS 的斜率显然存在且不为0,设直线AS 的方程为y =k (x +2)(k >0),解得M (103,16k3),且将直线方程代入椭圆C 的方程,得(1+4k 2)x 2+16k 2x +16k 2-4=0.设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-41+4k 2.由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S (2-8k 21+4k 2,4k1+4k 2). 又B (2,0),则直线BS 的方程为y =-14k (x -2),联立直线BS 与l 的方程解得N (103,-13k ).∴|MN |=⎪⎪⎪⎪16k 3+13k =16k 3+13k ≥216k 3·13k =83. 当且仅当16k 3=13k ,即k =14时等号成立,故当k =14时,线段MN 的长度的最小值为83.11.(2013·课标全国Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB |.解 (1)设圆P 的半径为r , 则|PM |=1+r ,|PN |=3-r , ∴|PM |+|PN |=4>|MN |,∴P 的轨迹是以M 、N 为焦点的椭圆,左顶点除外, 且2a =4,2c =2,∴a =2,c =1, ∴b 2=a 2-c 2=3.∴P 的轨迹曲线C 的方程为x 24+y 23=1(x =-2).(2)由(1)知:2r =(|PM |-|PN |)+2≤|MN |+2=4, ∴圆P 的最大半径为r =2.此时P 的坐标为(2,0). 圆P 的方程为(x -2)2+y 2=4. ①当l 的方程为x =0时,|AB |=23, ②设l 的方程为y =kx +b (k ∈R ),⎩⎪⎨⎪⎧|-k +b |1+k 2=1|2k +b |1+k 2=2解之得:⎩⎪⎨⎪⎧ k =24b =2或⎩⎪⎨⎪⎧k =-24b =-2. ∴l 的方程为y =24x +2,y =-24x - 2. 联立方程⎩⎨⎧x 24+y 23=1y =24x +2化简:7x 2+8x -8=0∴x 1+x 2=-87,x 1x 2=-87,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=187.12.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O 为坐标原点. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;(3)在(2)的条件下,试求△AOB 的面积S 的最小值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.(3)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1, 故45≤S ≤1,故S 的最小值为45.。
第3讲 圆锥曲线中的热点问题高考定位 1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真 题 感 悟1.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m+34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2. 答案 52.(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM→=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x . 由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0). 由⎩⎨⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <1,又因为k ≠0,故k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线P A 的方程为y -2=y 1-2x 1-1(x -1).令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ=2为定值.3.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎨⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=y A -1m +-y A -1m =-2m =-1,得m =2, 此时l 过椭圆右顶点,不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.则k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x2=2kx 1x 2+(m -1)(x 1+x 2)x 1x2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解之得m =-2k -1,此时Δ=32(m +1)>0,方程有解, ∴当且仅当m >-1时,Δ>0,∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 所以l 过定点(2,-1).考 点 整 合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响. 2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题. 3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.热点一 圆锥曲线中的最值、范围【例1】 (2018·西安质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线x +3y -1=0被以椭圆C 的短轴为直径的圆截得的弦长为 3. (1)求椭圆C 的方程;(2)过点M (4,0)的直线l 交椭圆于A ,B 两个不同的点,且λ=|MA |·|MB |,求λ的取值范围.解 (1)原点到直线x +3y -1=0的距离为12, 由题得⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=b 2(b >0),解得b =1.又e 2=c 2a 2=1-b 2a 2=34,得a =2.所以椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率为0时,λ=|MA |·|MB |=12.当直线l 的斜率不为0时,设直线l :x =my +4,点A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧x =my +4,x 24+y 2=1,消去x 得(m 2+4)y 2+8my +12=0.由Δ=64m 2-48(m 2+4)>0,得m 2>12, 所以y 1y 2=12m 2+4.λ=|MA |·|MB |=m 2+1|y 1|·m 2+1|y 2|=(m 2+1)|y 1y 2|=12(m 2+1)m 2+4=12⎝ ⎛⎭⎪⎫1-3m 2+4. 由m 2>12,得0<3m 2+4<316,所以394<λ<12.综上可得:394<λ≤12,即λ∈⎝ ⎛⎦⎥⎤394,12.探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解. (2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围. 【训练1】 (2018·浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此,PM 垂直于y 轴. (2)解 由(1)可知⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 2,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2| =324(y 20-4x 0)32. 因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 热点二 定点、定值问题 考法1 圆锥曲线中的定值【例2-1】 (2018·烟台二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,斜率为12的直线与椭圆交于A ,B 两点,若线段AB 的中点为D ,且直线OD 的斜率为-12.(1)求椭圆C 的方程;(2)若过左焦点F 斜率为k 的直线l 与椭圆交于M ,N 两点,P 为椭圆上一点,且满足OP ⊥MN ,问:1|MN |+1|OP |2是否为定值?若是,求出此定值;若不是,说明理由.解 (1)由题意可知c =3,设A (x 1,y 1),B (x 2,y 2), 则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减并整理得,y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·k OD =-b 2a 2.又因为k AB =12,k OD =-12,代入上式得,a 2=4b 2. 又a 2=b 2+c 2,c 2=3,所以a 2=4,b 2=1, 故椭圆的方程为x 24+y 2=1.(2)由题意可知,F (-3,0), 当MN 为长轴时,OP 为短半轴, 则1|MN |+1|OP |2=14+1=54,否则,可设直线l 的方程为y =k (x +3),联立⎩⎪⎨⎪⎧x24+y 2=1,y =k (x +3),消y 得,(1+4k 2)x 2+83k 2x +12k 2-4=0, 则有x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,所以|MN |=1+k 2|x 1-x 1| =1+k 2⎝ ⎛⎭⎪⎫-83k 21+4k 22-4⎝ ⎛⎭⎪⎫12k 2-41+4k 2=4+4k 21+4k 2, 设直线OP 方程为y =-1k x , 联立⎩⎪⎨⎪⎧x 24+y 2=1,y =-1k x ,根据对称性不妨令P ⎝⎛⎭⎪⎫-2k k 2+4,2k 2+4, 所以|OP |=⎝⎛⎭⎪⎫-2k k 2+42+⎝ ⎛⎭⎪⎫2k 2+42=4+4k 2k 2+4. 故1|MN |+1|OP |2=1+4k 24+4k 2+1⎝ ⎛⎭⎪⎫4+4k 2k 2+42=1+4k 24+4k 2+k 2+44+4k 2=54, 综上所述,1|MN |+1|OP |2为定值54.探究提高 1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】 已知椭圆C :x 2a 2+y 2b 2=1过点A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. (1)解 由题意知a =2,b =1.所以椭圆方程为x 24+y 2=1,又c =a 2-b 2= 3.所以椭圆离心率e =c a =32. (2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y 0-1x 0(x -0),令y =0,得x N =x 01-y 0,从而|AN |=2-x N =2+x 0y 0-1,由A 点坐标(2,0)得直线P A 方程为y -0=y 0x 0-2(x -2),令x =0,得y M =2y 02-x 0,从而|BM |=1-y M =1+2y 0x 0-2,所以S 四边形ABNM =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 即四边形ABNM 的面积为定值2. 考法2 圆锥曲线中的定点问题【例2-2】 (2018·衡水中学质检)已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2P A →·PB→=|PQ →|2.(1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点. (1)解 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ). ∵2P A →·PB→=|PQ →|2, ∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4), 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.∴GH 中点E 1坐标为⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1, 同理,MN 中点E 2坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴kE 1E 2=-3k2(k 2-1),∴lE 1E 2的方程为y =-3k 2(k 2-1)⎝ ⎛⎭⎪⎫x -23,∴过点⎝ ⎛⎭⎪⎫23,0, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0.探究提高 1.动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0)2.动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】 已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB→=-4,求证:直线l 恒过定点; (2)若直线l 与曲线M 相切,求P A →·PB →(点P 坐标为(1,0))的最大值. 解 设l :x =my +n ,A (x 1,y 1),B (x 2,y 2). 由⎩⎨⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0. ∴y 1+y 2=4m ,y 1y 2=-4n . ∴x 1+x 2=4m 2+2n ,x 1x 2=n 2. (1)证明 由OA →·OB→=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. ∴直线l 方程为x =my +2, ∴直线l 恒过定点(2,0).(2)∵直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, ∴|1-n |1+m 2=2,且n ≥3, 整理得4m 2=n 2-2n -3(n ≥3).① 又点P 坐标为(1,0),∴由已知及①,得 P A →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,∴当n =3时,y =4-4n 取得最大值-8. 故P A →·PB→的最大值为-8.热点三 圆锥曲线中的存在性问题【例3】 (2018·江南名校联考)设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解 (1)在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,∴CA ·CB =43,代入上式得CA +CB =2 2. 椭圆长轴2a =22,焦距2c =AB =2. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2), 联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.假设x 轴上存在定点D (x 0,0),使得DE →·DF →为定值.∴DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2 =(2x 20-4x 0+1)k 2+(x 20-2)1+2k 2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, ∴2x 20-4x 0+1=2(x 20-2),解得x 0=54, 此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.探究提高 1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练4】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.解 (1)因为c a =12,所以a =2c ,b =3c , 设椭圆方程x 24c 2+y 23c 2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1,解得c 2=1,a 2=4,b 2=3,所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4), 由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=32k 23+4k 2,①x 1x 2=64k 2-123+4k 2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k 23+4k 2.④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设故直线l 的方程为y =56(x -4)或y =-56(x -4).1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值. 3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.一、选择题1.若双曲线x 2λ-y 21-λ=1(0<λ<1)的离心率e ∈(1,2),则实数λ的取值范围为( )A.⎝ ⎛⎭⎪⎫12,1 B .(1,2) C .(1,4) D.⎝ ⎛⎭⎪⎫14,1 解析 易c =1,a =λ,且e ∈(1,2),∴1<1λ<2,得14<λ<1.答案 D2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2B.12C.14D.18解析 根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18. 答案 D3.(2018·北京东城区调研)已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y23=1的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( ) A .210-5 B .210-4 C .410-11D .410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.∴m =4.联立⎩⎨⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.∵x ≤2,∴x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5.答案 A4.(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C的离心率为( ) A. 5B .2C. 3D. 2解析 不妨设一条渐近线的方程为y =b a x ,则F 2到y =ba x 的距离d =|bc |a 2+b2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3. 答案 C 二、填空题5.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是________. 解析 双曲线C :x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,联立⎩⎨⎧y 2=x ,y =b a x消去y ,得b 2a 2x 2=x .由x 0>1,知b 2a 2<1,b 2<a 2.∴e 2=c2a 2=a 2+b 2a 2<2,因此1<e < 2.答案 (1,2)6.(2018·武汉模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0), B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4.∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x ,在(-∞,-2)递减,在(-2,0)递增. ∴当x =-2,即y 2=-2时,|AC |+|BD |的最小值为3. 答案 3 三、解答题7.已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求动圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.(1)解 由题意得点M 与点(0,1)的距离等于点M 与直线y =-1的距离. 由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明 由题意知直线l 的斜率存在,设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),由⎩⎨⎧x 2=4y ,y =kx -2得x 2-4kx +8=0, Δ=16k 2-32>0得k 2>2, ∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +2,则直线AC 恒过点(0,2).8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2. 又4a 2+1b 2=1,∴a 2=8,b 2=2.故所求椭圆C 的方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14×(x 1+x 2)2-4x 1x 2 =5(4-m 2), 点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+(4-m 2)2=2,当且仅当m 2=2即m =±2时上式等号成立,故△P AB 面积的最大值为2.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由. 解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1.故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝ ⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t9,且-3<t <3.由PM→=NQ →得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.又-3<t <3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.10.(2018·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.(1)证明 法一 当直线AB 垂直于x 轴时,不妨取y 1=22,y 2=-22, 所以y 1y 2=-8(定值).当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2), 由⎩⎨⎧y =k (x -2),y 2=4x得ky 2-4y -8k =0, 所以y 1y 2=-8.综上可得,y 1y 2=-8为定值. 法二 设直线AB 的方程为my =x -2.由⎩⎨⎧my =x -2,y 2=4x得y 2-4my -8=0,所以y 1y 2=-8. 因此有y 1y 2=-8为定值. (2)解 存在.理由如下:设存在直线l :x =a 满足条件,则AC 的中点E ⎝ ⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21, 因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a ,所以所截弦长为 2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2,当1-a =0,即a =1时,弦长为定值2,这时直线的方程为x =1. 11.(2018·西安模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左右顶点分别为A ,B ,P 为椭圆C 上任一点(不与A ,B 重合).已知△PF 1F 2的内切圆半径的最大值为2-2,椭圆C 的离心率为22. (1)求椭圆C 的方程;(2)直线l 过点B 且垂直于x 轴,延长AP 交l 于点N ,以BN 为直径的圆交BP 于点M ,求证:O ,M ,N 三点共线.解 (1)由题意知,c a =22,∴c =22a . 又b 2=a 2-c 2, ∴b =22a .设△PF 1F 2的内切圆半径为r , 则S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·r , =12(2a +2c )·r =(a +c )r ,故当△PF 1F 2面积最大时,r 最大, 即P 点位于椭圆短轴顶点时,r =2-2, ∴(a +c )(2-2)=bc ,把c =22a ,b =22a 代入,解得a =2,b =2,∴椭圆方程为x 24+y 22=1.(2)由题意知,直线AP 的斜率存在,设为k , 则AP 所在直线方程为y =k (x +2), 联立⎩⎪⎨⎪⎧y =k (x +2),x 24+y 22=1,消去y ,得(2k 2+1)x 2+8k 2x +8k 2-4=0, 则有x P ·(-2)=8k 2-42k 2+1,∴x P =2-4k 22k 2+1,y P =k (x P +2)=4k 2k 2+1,得BP →=⎝ ⎛⎭⎪⎫-8k 22k 2+1,4k 2k 2+1,又N (2,4k ),∴ON →=(2,4k ). 则ON →·BP →=-16k 22k 2+1+16k 22k 2+1=0,∴ON ⊥BP ,而M 在以BN 为直径的圆上, ∴MN ⊥BP ,∴O ,M ,N 三点共线.Ruize知识分享。