丝网除沫器的设计计算..
- 格式:doc
- 大小:5.91 MB
- 文档页数:21
丝网除沫器标准丝网除沫器是一种用于除去液体中悬浮的杂质和沫泡的设备,广泛应用于化工、石油、制药等行业。
为了确保其正常运行和有效去除沫泡,制定了一系列的标准,以规范其设计、制造和使用。
本文将就丝网除沫器的标准进行详细介绍。
首先,丝网除沫器的标准主要包括以下几个方面,设计标准、材料标准、制造标准、安装标准、使用标准和维护标准。
设计标准是指根据工艺流程和工作条件,对丝网除沫器的尺寸、结构、工作原理等进行设计的规范。
材料标准是指丝网除沫器所采用的材料必须符合特定的标准,以确保其耐腐蚀、耐高温、耐压等性能。
制造标准是指在生产过程中,丝网除沫器必须符合特定的制造工艺和质量控制要求。
安装标准是指在安装过程中,丝网除沫器必须符合特定的安装位置、连接方式、管道布局等要求。
使用标准是指在运行过程中,丝网除沫器必须符合特定的操作规程和安全要求。
维护标准是指在维护过程中,丝网除沫器必须符合特定的检修周期、维护项目、更换部件等要求。
其次,根据丝网除沫器的不同用途和工作条件,制定了相应的标准。
例如,对于在化工生产中使用的丝网除沫器,其标准将会更加严格,因为化工生产中往往涉及到腐蚀性介质、高温高压等恶劣条件,因此对于材料的选择、制造工艺、安装要求等都有着严格的规定。
而对于在一般工业生产中使用的丝网除沫器,其标准相对会更加简化,但仍然需要符合基本的设计、制造、使用要求。
再次,丝网除沫器的标准对于设备的性能和使用寿命有着重要的影响。
符合标准的丝网除沫器,能够保证其在工作过程中具有良好的除沫效果,不会因为设计缺陷或制造质量问题而导致运行不稳定或出现故障。
同时,符合标准的丝网除沫器,在使用过程中更容易进行维护和管理,能够延长设备的使用寿命,降低维护成本,提高生产效率。
最后,作为丝网除沫器的使用者和生产厂家,应当严格遵守相关的标准要求,确保生产、安装、使用和维护过程中都符合标准规定。
同时,也应当关注行业标准的更新和变化,及时调整和改进现有的设备和工艺,以满足不断发展的生产需求和质量要求。
丝网除沫器地设计计算丝网除沫器是一种常用的固体-液分离设备,主要用于将悬浮在液体中的固体颗粒、沫泡等杂质进行分离。
其工作原理是通过筛网或滤网的作用,使液体通过,而固体颗粒被截留下来。
丝网除沫器的设计计算包括筛孔尺寸、筛网材料、流速、流量等参数的确定。
1.筛孔尺寸的确定:筛孔尺寸是丝网除沫器设计中的重要参数,直接影响到杂质分离效果。
一般情况下,筛孔尺寸要根据液体中的固体颗粒大小及含量来确定。
如果固体颗粒较大或含量较高,筛孔尺寸应选择较大,以避免筛网堵塞。
如果固体颗粒较小或含量较低,筛孔尺寸应选择较小,以提高分离效果。
同时,还需考虑筛网的强度,避免过小的筛孔尺寸导致筛网损坏或破裂。
2.筛网材料的选择:丝网除沫器的筛网材料直接影响到设备的耐腐蚀性、耐磨性等性能。
一般情况下,可选择不锈钢、聚丙烯、尼龙等材料。
不锈钢筛网具有耐腐蚀、耐磨等特点,适用于处理腐蚀性较强的液体。
聚丙烯筛网具有耐磨、耐腐蚀、易清洗等特点,适用于处理一般液体。
尼龙筛网具有耐磨、耐酸碱蚀等特点,适用于处理耐腐蚀性较强的液体。
根据液体的特性,选择合适的筛网材料。
3.流速和流量的计算:丝网除沫器的流速和流量是设计中需要计算确定的参数。
流速一般通过液体在筛网上通过的时间来计算,单位为米/秒。
流量则等于流速乘以截面积,单位为立方米/秒。
根据液体的性质和处理量的要求,计算出合适的流速和流量。
同时,还需要考虑到筛网开放面积,以避免过高的流速导致筛网堵塞。
丝网除沫器的设计计算是一个综合考虑液体性质、固体颗粒、工作效率等多个因素的过程。
根据实际情况,结合工程经验和实验数据,计算得到适合的筛孔尺寸、筛网材料、流速和流量等参数,以保证设备的正常运行和分离效果的达到。
丝网除沫器的设计与计算_谢一乐一、设计流程1.确定设计要求和工艺参数,如处理流量、颗粒物粒径、过滤效率等。
2.选择适合的材料,一般使用不锈钢丝网。
3.确定丝网尺寸,包括孔径和丝径。
根据颗粒物粒径确定孔径,一般取颗粒物粒径的2倍作为孔径。
丝径一般根据丝网的强度和寿命来确定。
4.计算丝网面积,根据处理流量和液体速度来确定。
5.设计支撑框架,以支撑丝网,并使其能够对液体施加一定的压力。
二、丝网计算1.孔径计算孔径指的是丝网的开洞尺寸,可以根据颗粒物的大小来确定。
一般取颗粒物粒径的2倍作为孔径大小。
2.丝径计算丝径是指丝网线的直径,它的大小会影响丝网的强度和寿命。
一般可以根据下列公式来计算:丝往行数=开洞率×孔径÷丝径开洞率一般为50%~60%,行数一般为6~10行。
根据计算结果选择合适的丝径。
3.丝网面积计算丝网面积的大小需要根据处理流量和液体速度来确定。
一般可以根据下列公式来计算:A=Q÷(v×ρ)其中,A为丝网面积,Q为处理流量,v为液体速度,ρ为液体密度。
三、支撑框架设计支撑框架是用来支撑丝网的,它需要保证丝网有足够的强度,并且能够对液体施加一定的压力。
一般可以采用方形或圆形的结构,并在框架上加上适当的加强筋。
四、实际使用中的注意事项1.定期清洗丝网,避免堵塞。
2.观察丝网是否磨损严重,若出现大面积磨损需及时更换。
3.根据实际情况调整丝网面积和丝网孔径,以满足处理要求。
以上是丝网除沫器的设计与计算的基本方法和注意事项。
在实际设计中,需要根据具体的工艺参数和使用需求进行合理的调整和优化,以达到较好的除沫效果。
储气—气液分离容器的工艺计算1.气液分离器的选用对湿饱和蒸汽进行气液分离的目的从气源流入储气罐的蒸汽为湿饱和蒸汽,湿蒸汽中含有一定量的液态水颗粒,这将会对饱和蒸汽的精确计量造成不利的影响。
为提高饱和蒸汽中气相质量含率,改善饱和蒸汽的计量精度,需要在储气罐中设置气液分离装置,滤除饱和蒸汽中的液态水颗粒。
不同类型气液分离器及其适用情况目前工业当中最常用的共有两种类型的气液分离设备,分别为立/卧式重力分离器和立/卧式丝网分离器。
重力分离器通常用于液体颗粒直径大于200m μ的气液分离,对于直径较小的液体颗粒则分离效果较差;而丝网分离器可以有效分离气体中直径大于3m μ~5m μ的液体颗粒。
湿蒸汽中液态水颗粒直径一般在数十至数百微米量级,若采用重力分离器则难以完全滤除,因此宜采用丝网分离器对湿饱和蒸汽进行气液分离。
丝网除沫器的基本原理工业中一般用液体颗粒的直径对雾、沫、液滴进行定义,直径<10m μ的液体颗粒称为雾;直径介于10m μ~1000m μ的液体颗粒称为沫;直径>1000m μ的液体颗粒称为液滴。
丝网分离器能有效分离气体中直径大于3m μ~5m μ的液体颗粒,因此又称作丝网除沫器或丝网除沫器。
丝网除沫器主要构成为一固定安装的丝网组件,由丝网和上下支承栅条组成,具有结构简单、重量轻、空隙率大、压力降小、接触表面积大、除沫效率高、安装操作维修方便、使用寿命长等优点。
其工作原理如图所示。
当带有液体颗粒的气体以一定速度上升通过丝网时,由于雾沫上升的惯性作用,雾沫与丝网细丝相碰撞而被附着在细丝表面上。
细丝表面上雾沫的扩散、雾沫的重力沉降,使雾沫形成较大的液滴并沿着细丝流至网丝的交接点处。
细丝的可润湿性、液体的表面张力及细丝的毛细管作用,使得液滴越来越大,当聚集的液滴大到其自身产生的重力超过气体的上升力与液体表面张力的合力时,液滴就会脱离细丝而下落至容器底部。
丝网除沫器对气体中雾沫颗粒的捕集效率达98%%,气体通过丝网除沫器后基本上不含雾沫。
HG/T21618-1998丝网除沫器一、丝网除沫器的标记示例例1:DN2000mm,H=150mm,过滤网型式为SP型,材料为NS-80,格栅、支承件材料为316的上装式丝网除沫器,标记为:HG/T21618丝网除沫器S2000-150SPNS-80/316例2:DN4000mm,H=100mm,过滤网型式为DP型,材料为316L,格栅、支承件材料为304的下装式丝网除沫器,标记为:HG/T21618丝网除沫器X4000-100DP316L/304。
二、丝网除沫器的型式丝网除沫器的型式分为上装式和下装式两种,见图1-1、图1-2所示。
上装式丝网除沫器的通径范围为DN300~DN5200mm。
下装式丝网除沫器的通径范围为DN700~DN4600mm。
图1-1上装式丝网除沫器图1-2下装式丝网除沫器三、丝网除沫器的尺寸1、DN300 ̄600上装式丝网除沫器主要外形尺寸重量(KG)公称直径DNHH1D丝网格栅/定杆支承件1002101.061.670.193001502603001.591.720.191002101.832.270.194001502604002.752.320.191002102.812.890.195001502605004.222.940.191002103.993.470.196001502606005.993.520.19ND300 ̄600上装式丝网除沫器ND700 ̄1600上装式丝网除沫器2、DN700 ̄1600上装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1D丝网格栅及定距杆支承件1002185.778.608.637001502686208.678.788.631002188.868.469.8880015026872013.308.639.8810021811.1511.3211.090015026882016.7311.4911.010021813.6912.4212.12100015026892020.5512.6112.1210021816.3213.6813.171100150268102024.4814.0513.1710021819.3615.7414.491200150268112029.4615.9314.4910022822.9722.8419.021300150278122034.4723.1519.0210022826.5924.3620.691400150278132039.9024.5820.6910022830.4726.6722.431500150278142045.7226.9922.4310022833.7631.0723.501600150278152050.6431.4323.50ND1700 ̄3200上装式丝网除沫器ND3400 ̄4800上装式丝网除沫器3、DN1700 ̄3200上装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1D丝网格栅支承件1003603935671700150410160053366710036044367118001504101700663771100360494075190015041018007341751003605443792000150410190081447910036065568722001504102100985787100360786795240015041023001186895100360917310326001504102500136741031003851068513928001504352700158861391003851219914930001504352900182100149100385138111159320015043531002071121594、DN3400 ̄4800上装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1H2D丝网格栅及定距杆支承件10035060015612631234001504006503280234127312100350600175139315360015040065034802621413151003506001941593293800150400650368029216232910035060021617634540001504006503880323177345100350600239189359420015040065040803591923591003506002592023744400150400650428039120437410035060028522440146001504006504480427227401100350600310243414480015040065046804652454145、DN5000 ̄5200上装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1H2D丝网格栅及定距杆支承件10035060033726655050001504006504880505269550100350600364283569520015040065050805462865696、DN700 ̄1600下装式丝网除沫器ND3400 ̄4800上装式丝网除沫器ND5000 ̄5200上装式丝网除沫器7、ND1700 ̄3200下装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1D丝网格栅及定距杆支承件100370393591170015042016005336911003704436971800150420170066379710037049401011900150420180073411011003705443107200015042019008144107100370655611822001504202100985711810037078671282400150420230011868128100370917313826001504202500136741381003951068517728001504452700158861771003951219918930001504452900182100189100395138111201320015044531002071122018、DN3400 ̄4800下装式丝网除沫器主要外形尺寸重量(kg)公称直径DNHH1H2D丝网格栅及定距杆支承件10035060015612636934001504006503280234127369100350600175139372360015040065034802621413721003506001941593893800150400650368029216238910035060021617642840001504006503880323177428100350600239189434420015040065040803591924341003506002592024434400150400650428039120444310035060028522447346001504006504480427227473。
储气—气液分离容器的工艺计算1.气液分离器的选用对湿饱和蒸汽进行气液分离的目的从气源流入储气罐的蒸汽为湿饱和蒸汽,湿蒸汽中含有一定量的液态水颗粒,这将会对饱和蒸汽的精确计量造成不利的影响。
为提高饱和蒸汽中气相质量含率,改善饱和蒸汽的计量精度,需要在储气罐中设置气液分离装置,滤除饱和蒸汽中的液态水颗粒。
不同类型气液分离器及其适用情况目前工业当中最常用的共有两种类型的气液分离设备,分别为立/ 卧式重力分离器和立/ 卧式丝网分离器。
重力分离器通常用于液体颗粒直径大于200 m 的气液分离,对于直径较小的液体颗粒则分离效果较差;而丝网分离器可以有效分离气体中直径大于3 m〜5 m 的液体颗粒。
湿蒸汽中液态水颗粒直径一般在数十至数百微米量级,若采用重力分离器则难以完全滤除,因此宜采用丝网分离器对湿饱和蒸汽进行气液分离。
丝网除沫器的基本原理工业中一般用液体颗粒的直径对雾、沫、液滴进行定义,直径<10 m的液体颗粒称为雾;直径介于10 m〜1000 m的液体颗粒称为沫;直径>1000 m的液体颗粒称为液滴。
丝网分离器能有效分离气体中直径大于3 m〜5 m的液体颗粒,因此又称作丝网除沫器或丝网除沫器。
丝网除沫器主要构成为一固定安装的丝网组件,由丝网和上下支承栅条组成,具有结构简单、重量轻、空隙率大、压力降小、接触表面积大、除沫效率高、安装操作维修方便、使用寿命长等优点。
其工作原理如图所示当带有液体颗粒的气体以一定速度上升通过丝网时,由于雾沫上升的惯性作用,雾沫与丝网细丝相碰撞而被附着在细丝表面上。
细丝表面上雾沫的扩散、雾沫的重力沉降,使雾沫形成较大的液滴并沿着细丝流至网丝的交接点处。
细丝的可润湿性、液体的表面张力及细丝的毛细管作用,使得液滴越来越大,当聚集的液滴大到其自身产生的重力超过气体的上升力与液体表面张力的合力时,液滴就会脱离细丝而下落至容器底部。
丝网除沫器对气体中雾沫颗粒的捕集效率达98%%,气体通过丝网除沫器后基本上不含雾沫。
1、 操作气速的计算操作气速与除沫效率的关系如下图所示。
(1)计算液泛速度液泛速度计算公式为: g gL f K V ρρρ−=式中:f V —液泛速度,即造成液泛现象的最低气流速度,s m / K —气液过滤网常数,与丝网网型有关,可参考下表进行选取 网型常数K SP0.201 HP0.233 DP0.198 HR 0.222L ρ—工作温度及压力下,液体颗粒的密度,3/m Kgg ρ—工作温度及压力下,气体的密度,3/m Kg(2)计算操作气速求得液泛速度f V 之后,操作气速可用下式进行选择:f g V V )8.0~5.0(= 式中:g V —操作气速,s m /2、除沫器直径的计算丝网除沫器直径的计算,由所需的气体处理量和操作气速有关。
圆形的丝网除沫器,其直径由以下公式计算确定:gV Q D ×=π4 式中:D —丝网除沫器计算直径,mQ —丝网除沫器的气体处理量,即每秒钟通过丝网除沫器的气体体积,s m /3g V —操作气速,s m /3、F616A12丝网除沫器的计算过程. ⑴该丝网除沫器按照工艺设计参数计算所需的直径范围: 由附件1丝网除沫器基础数据可以得到:容积重量为m=5.38Kg ÷(3.14×0.15×0.3×0.3)m ³=126.92Kg/m ³ 根据附件2:HGT 21618-1998 丝网除沫行业标准可以确定: 该除沫器网型为HP 型,K 取0.233该丝网除沫器设计的基础数据为:g ρ=37.99Kg/m³ L ρ=547.724Kg/m³液泛速度为:f V =0.233×((547.724-37.99)/37.99)1/2=0.8535 m/s操作气速为:gV =0.5×0.8535=0.4268 m/s g V =0.8×0.8535=0.6828m/s该丝网除沫器进气流量为:Q=5595.7m³/h该丝网除沫器的直径范围为:〔(4×5595.7÷3600)/(3.14×0.6828)〕1/2<D <〔(4×5595.7÷3600)/(3.14×0.4268)〕1/2计算得直径范围为:1.703m<D<2.514m⑵该丝网除沫器实际操作气速为:V=(5595.7÷3600)/(3.14×0.3×0.3)=5.50 m/s g。
丝网除沫器的设计计算..(mm )(3/m Kg ) (32/m m)定SP 标准型 扁丝0.1×0.4 1684750.9788 性能介于型HR之间。
每100mm 的网垫层丝网圆丝0.23320DP 高扁丝0.1×0.3 1866260.9765 除雾效果好,但注:(1)表中数据均为304不锈钢材质金属丝网性能参数(2)堆积密度:除沫器网块的质量与其所占空间体积的比值比表面积:多孔固体物质单位质量所具有的内表面积与外表面积之和空隙率:散粒材料的堆积体积中,颗粒之间的空隙体积占堆积体积的百分率对湿饱和蒸汽进行除雾,没有对压力损失的严格要求,为尽量将饱和蒸汽中的液体颗粒滤除干净,选用DP高效型过滤网,使用圆形网丝。
2.1.3丝网除沫器网块厚度丝网除沫器网块的网层厚度分为100mm 和150mm 两种规格。
如气体内雾沫含量较低或除沫要求不高,可采用H=100mm 的丝网除沫器;如其体内雾沫含量较高且除沫要求较高,则需采用150mm 的除沫器。
为提高除沫效率,采用150mm 厚度规格丝网除沫器2.2 丝网除沫器安装形式的选择丝网除沫器分上装式和下装式。
当人孔位于丝网除沫器的上方时,选用上装式丝网除沫器;当人孔位于丝网除沫器的下方时,则选用下装式丝网除沫器。
根据储气容器的结构设计,丝网除沫器应安装于人孔上方,因此采用下装式安装结构。
2.3 丝网除沫器尺寸的计算2.3.1 操作气速的计算操作气速即气体通过丝网的速度,操作气速应选取适宜。
操作气速过底,雾沫在气体中的惯性太小,处于飘浮状态,通过丝网层时雾沫在丝网中飘浮而不能除净;操作气速太高,聚集的液滴不易从丝网中下落,液体充满丝网,使被捕集的液滴又飞溅起来,又被气体夹带走,造成液泛现象,从而降低除沫效率。
操作气速与除沫效率的关系如下图所示。
除沫效率(%)操作气速(m/s )10050液泛速度90807060(1)计算液泛速度液泛速度计算公式为: ggL f KV ρρρ-= 式中:f V —液泛速度,即造成液泛现象的最低气流速度,s m / K —气液过滤网常数,与丝网网型有关,可参考下表进行选取Lρ—工作温度及压力下,液体颗粒的密度,3/m Kggρ—工作温度及压力下,气体的密度,3/m Kg(2)计算操作气速求得液泛速度f V 之后,操作气速可用下式进行选择: f g V V )0.1~2.0(= 式中:gV —操作气速,s m /入公式可得s m K V g g L f /86.1593.9593.9852.8198.0=-=-=ρρρs m s m V V f g /86.1~/372.086.1)0.1~2.0()0.1~2.0(=⨯==压力为1.6Mpa 时的操作气速当储气罐内压力为1.6Mpa 时,温度为204C ︒。
饱和蒸汽的密度gρ为8.522Kg 液体颗粒的密度为8573/m Kg ,选用DP 高效型丝网,K 的值为0.198。
将以上数据代入公式可得s m KV g g L f /98.1522.8522.8857198.0=-=-=ρρρ s m s m V V f g /98.1~/396.098.1)0.1~2.0()0.1~2.0(=⨯==压力为1.4Mpa 时的操作气速当储气罐内压力为1.4Mpa 时,温度为198C ︒。
饱和蒸汽的密度gρ为7.551Kg 液体颗粒的密度为8653/m Kg ,选用DP 高效型丝网,K 的值为0.198。
将以上数据代入公压力为1.0Mpa 时的操作气速当储气罐内压力为1.0Mpa 时,温度为184C ︒。
饱和蒸汽的密度gρ为5.63/Kg 液体颗粒的密度为8823/m Kg ,选用DP 高效型丝网,K 的值为0.198。
将以上数据代入公式可得s m K V g g L f /47.263.563.5882198.0=-=-=ρρρs m s m V f /47.2~/494.047.2)0.1~2.0()0.1~2.0(=⨯=压力为0.8Mpa 时的操作气速当储气罐内压力为0.8Mpa 时,温度为175C ︒。
饱和蒸汽的密度gρ为4.618Kg 液体颗粒的密度为892.13/m Kg ,选用DP 高效型丝网,K 的值为0.198。
将以上数据代入公式可得s m KV g g L f /74.2618.4618.41.892198.0=-=-=ρρρ s m s m V f /74.2~/548.074.2)0.1~2.0()0.1~2.0(=⨯=压力为0.6Mpa 时的操作气速2.3.2 除沫器直径的计算丝网除沫器直径的计算,由所需的气体处理量和操作气速有关。
圆形的丝网除 沫器,其直径由以下公式计算确定:gV QD ⨯=π4 式中:D—丝网除沫器计算直径,mQ —丝网除沫器的气体处理量,即每秒钟通过丝网除沫器的气体体积,sm /3gV —操作气速,s m /732.076.1⨯⨯ππ取最大直径的丝网除沫器直径为1000mm,根据公式gV QD ⨯=π4可得:其能处理的最小气量为s m sm m /57.04/732.0)0.1(32=⨯⨯π;其能处理的最大气量为s m sm m /38.14/76.1)0.1(32=⨯⨯π;则1000mm 丝网除沫器所能处理气量范围为:s m s m /38.1~/57.033 )按设计计划,要求丝网除沫器的最小气体处理量为s m h m h Kg /001.0/6.3Kg/m2.679/7.9333==(0.0097h t /,0.5Mpa ) 按照公式gV QD ⨯=π4计算的所需要的丝网除沫器直径选择范围为:m D m 732.0001.0476.1001.04⨯⨯<<⨯⨯ππ计算得: mm D mm 4227<<但根据HG/T 21618—1998标准,下装式丝网除沫器的最小直径为700mm ,由公式QD =4可得,700mm 丝网除沫器可以进行有效除沫处理的最小气量和最丝网除沫器的气液分离效率有两部分构成,分别是直接拦截分离效率和惯性撞击效率。
(1)直接拦截气体流过丝网结构时,如果气体中的液滴大于丝网结构的孔径,它们将受到孔的拦截而被分离出来。
若液滴直接撞击丝网,它们也将被拦截。
直接拦截可以收集一定数量比其孔径小的颗粒单网直接拦截效率计算公式为:)]222(11)1()1ln()1(2[21542R R R R R R R K u R +--++++-++=αη式中:434ln 212--+-=αααu Kεα-=1ε为丝网孔隙率wD d R =d 为液体颗粒的平均直径,m ;wD为丝网丝径,m(2)惯性撞击液滴在流动的气体中具有质量和速度,所以它具有动量。
当气体和它所夹带的液滴通过丝网时,气体将选取阻力最小的通道流过,并且将顺着丝网结构改变方向,即流线发生偏折。
因为液滴具有动量,所以较大液滴由于惯性作用仍然向前作直线运动,使位于气流中心或者接近气流中心处的液滴投向或撞击到丝网上而被分离出来。
在气液分离中,惯性撞击对粒径大于20 μm 的大液滴所起的作用是比较明显的。
当操作气速小于液泛速度时,单网惯性撞击捕沫效率计算公式为:K I Φ=η 式中:K—碰撞系数,wg gL D V d K μρ182=Φ为与α和R 相关的参数,对应关系见下表d—液体颗粒的平均直径,m w D —丝网丝径,31019.0-⨯ mgμ—气体动力粘度,s m Kg ./g V —操作气速L ρ—工作温度及压力下,液体颗粒的密度,3/m Kg gρ—工作温度及压力下,气体的密度,3/m Kg(3)当操作气速小于液泛速度时,丝网除沫器总的除沫效率计算公式为:n I R C E )](1[1ηη+--=,式中:E —总除沫效率,%100⨯C—与丝网型式有关的系数n—丝网层数64103102.60048.0--⨯=⨯⨯=Φ=K I η3)总效率计算36.0)]10300086.0(15.01[1)](1[1456=⨯+⨯--=+--=-nI R C E ηη.湿蒸汽通过通过700mm 除沫器的除沫效率计算过程为:(1)单网直接拦截效率计算0.02350.9765-11==-=εα026.0==wD dR15.1434ln 212=--+-=αααu K00086.0)]222(11)1()1ln()1(2[21542=+--++++-++=R R R R R R R K u R αη2)单网惯性撞击捕沫效率计算435262104.121019.01041.1180026.01.91710518----⨯=⨯⨯⨯⨯⨯⨯⨯==)(w g gL D V d K μρ=Φ0.00482.4 丝网除沫器压损的计算气体通过丝网除沫器后的压降损失可以通过以下公式进行计算,一般要求丝网除沫器的的压降损失控制在250-500Pa 以下。
81.9)1(2⨯-=∆wc g g D G H fV p ερ式中: p∆—压力损失,Paf —丝网对气体的摩擦系数,对于金属丝网,一般可以取 1.5g V —操作气速,取1.584s m /H —丝网厚度,取0.15mg ρ—气体密度,取10.573/m Kgε—丝网孔隙率,可参照下表进行选取网型 空隙率ε SP 0.9788 HP 0.9839 DP 0.9765 HR0.9832c G —重力加速度,取9.8/s mw D —丝网丝径,31019.0-⨯ m丝网除沫器的结构有两种,分别为盘形结构和条形结构。
盘形结构即用丝网盘卷成所需直径大小的除沫器,这种结构要求丝网在盘卷时的波纹交错,且疏密一致,否则易产生气体短路,影响除沫效果。
盘型结构仅适用于直径较小的丝网除沫器,直径一般在300mm ~600mm 的范围内。
条形结构是目前普遍使用的一种结构,它是用丝网一层一层地平铺,铺至规定的层数,在网层上下各放一块格栅,将网层压至除沫器所需的高度尺寸,用定距杆和扎丝使其固定成为整块。
条形网块的形状和大小,依据除沫器的直径而定。
条型结构除沫器的适用直径范围较宽,一般在300mm~5200mm的范围内。
1- 网层 2-格栅 3-定距杆 4-扎丝储气罐所用丝网除沫器采用条形结构3.储气—除雾容器的设计储气—除雾容器的设计要求工作介质湿饱和蒸汽结构形式为方便多层丝网除雾器的安装,采用立式结构最高工作压力2.0 MPa 设计压力不低于最高工作压力的1.1倍,即不低于10.2⨯=PMPa最高工作温度215℃设计温度取最高工作温度的1.12361.1215=⨯=T公称容积10 3m丝网除沫器。