当前位置:文档之家› 光纤传感器技术简介

光纤传感器技术简介

光纤传感器技术简介
光纤传感器技术简介

光纤传感器技术简介

摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。

关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用

An Introduction to Fiber Optic Sensor Technology

Liu Wj

Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field.

Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications

0引言

光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

光纤传感技术发展大致可以分为三个主要阶段[1]:第一阶段,传输型光纤传感器。20

世纪70年代中后期,光纤作为一种信息交换的基础,通过光学器件把带测量和光纤内的导光联系起来。第二阶段,单模光纤调制技术。单模光纤的深入应用,形成了强度、相位、波长、偏振、时分、频率、光栅等光纤传感技术。20世纪80年代中后期,光纤传感器近

百种,光纤传感器开始投入实际使用。第三阶段,20世纪90年代中后期,光纤传感技术

逐步形成五个主要领域:智能结构,工业,生物医学,自然生态和人居环境。

光纤在工业和通信中的大量应用使得光纤材料的成本和性能在近年来进步非常快。这使得光纤传感器在旋转、加速度、电磁场测量、温度、压力、声学、振动、位移和角度、应力、湿度、黏滞性、化学测量等诸多应用领域都具备了替代传统传感器的能力[2]。本文

将介绍光纤传感器的几种基本类型以及它们的具体应用,尽可能展现出光纤传感器技术的发展现状。

1光纤传感器的分类

光纤传感器的应用范围和采用到的技术种类都非常多,而且随着技术革新,光纤传感器的应用面也在不断拓宽。一般来说,大家还是按照习惯依据光纤传感器的测量量或者采用的技术来进行分类。2002年在美国波特兰俄勒冈进行的第15届光纤传感器大会(OFS-15)上发表的给类文章按照这两种方式划分的结果显示在图1上[3]。可以看到光栅传感器在应力、温度、压力和声学、电压电流方面的应用比较多一些;而在技术上,采用光纤光栅的几乎占了一半,另一些比如干涉仪传感技术,散射等采用的也很多。本节将会对光纤的分类进行整体性的简介,在这过程中选择一具有代表性的例子进行详述。

图1[3]在OFS-15会议上发表的文章依据测量量(a)和技术(b)划分的分布图

Fig. 1[3]Distribution of OFS-15 papers according to measurands(a) and technologies(b).

光纤传感器可以分为本征和非本征(intrinsic and extrinsic)两大类。本征的光纤传感器指光纤本身作为传感元件,它本身的物理性质把环境变量转化为对通过它内部的光的调制。这些调制包括光强、偏振、相位、波长等。事实上所有环境变量都可以转化成光学量的调制,一种环境变量可以通过很多光纤技术来测量,设计光纤传感器的难处在于要使它只对需要测量的环境变量敏感。非本征光纤传感器中,光纤只是作为传输介质,连接传感元件(将信号转化成调制过的光信号)以及远处的接收器[4]。

1.1.1 强度调制型光纤传感器

图2. 强度调制型光纤传感器系统基本结构

Fig2. Basic structure of intensity based fiber optic sensor system 强度调制型光纤传感器属于非本征(extrinsic)的光纤传感器,光纤在其中作为传输光路。传感系统的基本结构如图2所示,由控制单元、传输光路、和传感环境组成。系统通过传感元件对入射光进行强度调制,通过比较入射光强和接受光强的变化,并且知道环境带测量和调制量的变化关系,就可以对待测量进行测量。

强度调制型光纤传感器进行强度调制可以有很多种方式,下面分条进行简述:

透射:最简单的是利用光纤位移,固定入射光纤,移动接受光纤位置。由于出射光光锥的强度空间分布不同,接受光纤输出的光强就会随着位置改变。利用这种方式可以测量微小位移和振动。同样的也可以固定两个传输光纤,用一个光闸来起到强度调制的作用。光闸可以根据需要设计成不同的形式,比如采用光闸、光栅、光楔、微开关等。此外还可以用码盘或者码尺作为光闸进行数字式强度调制。

反射:反射式传感器是最早的光纤传感器之一,如多纤、双纤和带Y 型耦合器的单纤。光从光源耦合到光纤或传光束,射向被测物体,再从被测物体反射到另一个光纤或传光束,输出光强随物体距光纤探头端面的距离调制[1]。

模式损耗:模式损耗利用了光纤弯曲时光束的部

分传导模转变成辐射模从而实现强度的调制。图3[2]

中展示的是微弯损耗的示意图,此外还有弯曲损耗和

光耦合器损耗。这种方式主要应用于测量应力,微小

位移、双向位移等。

折射率:原理很简单,是利用被测参数能引起折

射率较大变化的液体或固体材料取代光纤的部分包

层,使包层和纤芯的相对折射率变化成为响应参数。此外,还有倏逝波耦合型、等离子波型和反射系数型[1]。 接收光纤

光传感器

检测对象 光源 电子系统 光探测器 入射光纤

控制单元 强度调制

图3[2] 微弯损耗的光纤传感器示意图 Fig 3 Simple micro binding sensor

利用外界因素改变光纤中光波的相位,通过检测相位变化可以测量外界待测参量。由于光电传感器无法直接测量相位,可以采用干涉技术并采用相干光源,将相位变化转化为强度变化。常用的光纤干涉仪有光纤迈克尔逊干涉仪、光纤Mach-Zehnder干涉仪、三光束光纤干涉仪、光纤Sagnac干涉仪、光纤Fabry-Perot干涉仪、光纤环形腔干涉仪、光纤微分干涉仪等[1][2][4][5][6]。干涉型光纤传感器一般采用传统的单模光纤,由于外界应力等因素影响可能会使通过光纤的光束的两个不同偏振方向上折射率产生差异引起双折射现象,从而会使相干条纹移动,从而影响信号的信噪比[1][7]。图4[2]给出了其中部分光纤干涉仪的示意图。

a b

图4[2] a. Mech-Zehnder干涉仪

b. Michelson干涉仪

c. Fabry-Perot干涉仪

Fig.4[2] a.Mech-Zehnder interferometer-based fiber

optic sensor b. Michelson interferometer-based fiber

optic sensor c. Fabry-Perot interferometer-based fiber

optic sensor

c

1.1.3偏振调制型光纤传感器

光纤的折射系数受到应力等外界因素影响,会产生双折射现象,会对光束的偏振状态发生改变,这被称为弹光效应。利用高双折射的光纤作为传感元件,可以测量外界应力等的影响。除了弹光效应之外,利用旋光现象也可以改变光纤中光束的偏振状态。熔融石英光纤是各项同性的。在外加电场的情况下,会导致Kerr效应;在外加磁场的情况下回引起法拉第效应,这些都会导致光纤中的光束的偏正状态发生改变。利用旋光效应可以利用光纤传感器测量电磁量,是光纤传感器的一个重要的应用方向。偏振调制型光纤传感器一般利用线偏振光作为光源。

常见的光纤电流传感器就是利用了法拉第效应。我们知道电流周围会产生磁场,利用电流周围产生的磁场可以使光纤内的光纤发生偏转。熔融石英光纤的Verdet常数大约是0.065 min/Oe cm,很适合用来作为电流传感器。图5[8]就是一个光纤电流传感器的示意图。这里利用了线偏振的激光作为光源,经过传感部分以及镜面反射之后,测量出射光纤的偏振状态就可以推算出电流的大小了。

图5[8]反射式光纤电流传感器

Fig5[8] Reflection-type fiber-optic current sensor.

1.1.4光谱调制型光纤传感器

光谱调制型光纤又包括波长调制、频率调制以及光栅调制三种类型。与波长相关的物理现象可以调制入射光的光谱,通过光谱分析比色法等方法可以确定光谱的能量分布。影响波长的因素有黑体辐射、荧光光谱、磷光光谱、光声光谱、化学发光、吸收光谱[1]。这一类光纤传感器可以用于温度测量,化学特性测量等方面。需要注意的是传感器探测效率受到光谱强度分布以及光电传感器响应特性的限制,比如利用黑体辐射效应制作的温度传感器在低于200摄氏度的时候由于辐射强度下降信噪比变差,测量的精度就会下降了[2]。

光谱频率调制主要指光学多普勒效应,当光源和探测器与被测物体发生相对运动时对接收光的频率产生影响。在光纤多普勒系统中,采用单色偏振光源,经过分束器入射至多模光纤,光纤另一端插入流体以探测流体速度。入射光经过流体散射后被光纤收集经由光纤返回再经过分束器被探测器接受。通过探测光信号的多普勒频移就可以知道待测物体运动速度。

光栅调制型光纤传感器(FBG)是应用最多的光纤传感器之一,其中应用最广也是结构最简单的就是光纤Bragg光栅传感器,其结构示意图如图6[3]所示。光纤Bragg光栅折射率呈周期分布,波矢方向和光纤轴线方向一致,FBG的Bragg波长与光栅周期Λ和反向耦合模有

图6[3]光纤Bragg光栅示意图

Fig.6[3] fiber Bragg grating

效折射率满足光栅方程λ#=2n '((Λ,外界环境因素诸如应力、电磁场(旋光现象)、温度等会使的光栅的有效折射率以及光栅周期发生改变,即Δλ#=2n '((ΔΛ+2Δn .//Λ。由于能够使FBG 的Bragg 波长发生改变的因素非常多,只要能够合理地对传感器进行设计,就可以利用FBG 对特定的物理量进行有效测量。

除了FBG 型的光栅调制光纤传感器,还有其他一些特殊设计的光纤光栅比如长周期光纤光栅、倾斜光纤光栅、采样光纤光栅等[3],都具有各自的独特性。光纤光栅还可以用来做光纤干涉传感器,一般是利用光纤光栅构成传感阵列做成干涉仪。

1.2 多元(multiplexing)光纤传感器和分布式(distributed )光纤传感器

在实际应用中有时需要多元的传感系统,最直接的办法就是制作一个包含多个分立传感器的传感网络或者阵列。最常用的有时间多元分布(TDM)、波长多元分布(WDM)和空间多元分布(SDM)。

TDM 式传感器中,采用脉冲光源,通过时序分布的信号来分辨网络中各个传感器返回的数值。图7[2]是WDM 式和SDM 式多元光纤传感器的示意图。在WDM 光纤传感器中,每一个分立传感部分对应不同波长的光,探测器利用分光器接收整个光谱的信号,一次就可以得到各个传感器返回的数据。这是在能量以及效率上最高的一种方式。图7(b )是由四个传感器组成的多元系统,光源发出两种不同频率的光,传输到四个不同位置的传感器上再经过光耦合器,分别将两种不同频段的传感器输出信号耦合在一起由两个信号接收器来接收。通过对信号在频谱上做傅里叶变化就可以分辨出各个传感器的数据信号。

图7[2] a.波长分布多元传感系统(WDM) b.空间分布多元传感系统(SDM)

Fig.7[2] a. wavelength distributed multiplexing(WDM) b. spatial distributed multiplexing(SDM)

分布式光纤传感器朱旭一个光源和一根探测线路,可对眼光纤传输路径的传感对象进行探测。分布式光纤传感器集信息传输与传感功能与一体,在整个一长段光纤上都是对环境量敏感的。一个分布式光纤传感器可以取代许许多多分立的传感器起到的功能。现在最常用的是1976年,Barnoski 等发明的光时域反射计(Optical Time Domain Reflectometer, OTDR )

[1]。光在光纤传输过程中眼光纤各点产生散射,散射光沿入射光相反的方向回到光纤的注入端,该背向散射光包含光在光纤传输中损耗的信息。此外,分布式光纤传感器还有利用拉曼散射、FBG 、偏振态等作为测量信号的技术类型。

2 光纤传感器的应用

光纤传感器的应用十分广泛,因为它独特的物理光学性质使光纤传感器几乎可以用来 a b

测量所有能够想到的物理量。下面选取一些具体案例来进行介绍。

2.1.1光学层析成像[1][6][9]

光层析成像技术主要有光相干层析成像(Optical Coherence Tomography, OCT),光过程层析成像(Optical Process Tomography, OPT)光弥散层析成像(Diffuse Optical Tomography, DOT)等。其中OCT采用低相干干涉技术(白光干涉或宽光谱干涉)和共焦显微镜原理,对生物样品内部组织细微结构成像的分辨能力达到微米量级,探测深度也达到毫米量级。OCT技术可以使临床上实现对人体组织非接触且无损伤的诊断和动态监测。DOT利用生物组织被近红外光远阵列发出的光照射,经过镜面反射,多次散射和吸收后被光探测器阵列接收。OCT和DOT技术在生物和临床医学方面都有广阔应用前景。OPT的特点是光通过介质时光强度的变化与光路上不同介质的分布及介质的衰减有关。当被测介质在各个方向或位置有足够多的投影数据时,可以利用一定的重建算法将被测信息用图像的形势变现出来。OPT面向工业-工程油井、管线等场所,高精度地解决流体过程测量问题。光纤体积小,安全性高,不受电磁干扰以及能够进行组成分布式测量网络的优点在这里就体现出来了。

2.1.2光纤传感器在工程领域中的应用

随着光纤传感器技术的发展,在土木工程领域光纤传感器得到了广泛的应用。利用分布式光纤传感器,可以测量混凝土结构变形及内部应力,检测大型结构、桥梁健康状况等,其中最主要的都是将光纤传感器作为一种新型的应变传感器使用。

光纤传感器可以黏贴在结构物表面用于测量,同时也可以通过预埋实现结构物内部物理量的测量。利用预先埋入的光纤传感器,可以对混凝土结构内部损伤过程中内部应变的测量,再根据荷载-应变关系曲线斜率,可确定结构内部损伤的形成和扩展方式。同时分布式光纤温度传感器也可以应用在建筑上。

2.1.3其他

光纤传感器在能源领域也有很多应用。它可以做成电流传感器,检测传输电缆的负载。利用多元FBG分布式光栅,可以远距离的检测在恶劣环境下的电缆的情况。光纤传感器因为其不受电磁干扰,耐腐蚀,可以组成长距离监控网络等优点,在核电,风能发电等领域也有广泛应用。

此外光纤传感器在航天器也有很多应用。它可以用来检测飞机及航天器的温度,检测机身和机翼各部位压力,作为陀螺仪等。光纤传感器还可以用在石油工业,它可以用来探测底下石油的流量,温度,流速等物理量。较成熟的应用是采用非本征光纤F—P腔传感器测量井下的压力和温度。

光纤还可以用来制作智能材料。20世纪70年代,美国弗吉尼亚理工学院暨州立大学的Claus等将光纤买入炭纤维增强符合材料,使材料具有感知应力和断裂损伤的能力,即自适应材料[10]。智能结构具有某种形式的自诊断功能,光纤传感器具有良好传光特性,无需其他媒介就可以把被测量与光纤内光特效联系起来,已经成为智能结构中常用的信息传输与传感载体。

3小结

自从光纤发明以来,光电子技术和光纤技术在不断地飞速发展。经历了二十多年的研发阶段,光纤传感技术已经进入了实用化阶段,形成了光纤传感器的一个新领域。不少光纤传感器以其特有的有点,逐渐替代传统的电子传感器。利用光纤传感器技术制造的系统可以把传统电子仪表系统改造成更为安全可靠的光纤式仪表系统。

此外,随着光子晶体、纳米材料等领域的发展,新的原理不断应用到光纤传感器技术中,光纤传感器技术和这些新技术互相推动着各自的发展。光纤传感器具有很多优点,如何把实验室中开发出的新型传感器投入到实际应用中,提高稳定性并,降低光纤传感器的使用成本仍然是新时代光纤传感技术的重要课题。

致谢

感谢金革老师以及所有《物理电子学导论》课的授课老师

[参考文献] (References)

[1]李川等2012.光纤传感技术北京:科学出版社

[2]Gholamzadeh B, Nabovati H. Fiber optic sensors[J]. World Academy of Science, Engineering and Technology, 2008, 42(3): 335-340.

[3]Lee B. Review of the present status of optical fiber sensors[J]. Optical fiber technology, 2003, 9(2): 57-79.

[4]F.Yu,S.Yin, Fiber optic sensors. Marcel-Dekker, 2002.

[5]Grattan K T V, Sun T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical, 2000, 82(1): 40-61.

[6]刘铁根江俊峰等2012.11 分立式光纤传感技术与系统北京:电子工业出版社

[7]C.M.Davis, E.F.Carome, M.H.Weik, S.Ezekiel, R.E.Einzig, Fiber optic sensors technology handbook. Optical Technologies- A Division of Dynamic System INC.

[8]Lee B. Review of the present status of optical fiber sensors[J]. Optical fiber technology, 2003, 9(2): 57-79.

[9]廖延彪.黎敏光纤传感器的今日与发展[会议论文] 2003

[10]Claus R O,Mckeenman J C,Mary R G,et al. 1988.Optical fiber sensors and signal processing for smart materials and structures. ARO smart materials, structures and mathematical issues workshop proceeding:15~16

干涉型光纤传感器的消偏振衰落技术研究

第38卷第8期2009年8月 光 子 学 报 ACTA PH OT ON ICA SINICA V ol.38N o.8A ug ust 2009 * 国家高技术研究发展计划(2006A A 0A A 102-03)资助T el:010-********Email:jingzheng uo @https://www.doczj.com/doc/432704787.html, 收稿日期:2008-06-17修回日期:2008-07-23 干涉型光纤传感器的消偏振衰落技术研究* 荆振国1a ,殷锴1a,1b ,张敏1a ,王立威1a ,朱耀强2,王子秋2,王宏华2,廖延彪1a (1清华大学a.电子工程系,b.精密仪器与机械学系,北京100084)(2中海油田服务股份有限公司技术中心,河北燕郊065201) 摘 要:本文对消除干涉型光纤传感器信号偏振衰落的偏振分集接收PDR(Polarizatio n Div ersity Receiver)技术进行了理论分析.通过三态PDR 方式,,能够避免传输光偏振态变化导致干涉信号完全衰落的现象,使干涉信号有效幅度在一定范围内变化.采用基于反正切计算的相位生成载波PGC(Phase Generated Carrier )解调技术的相位测量结果不受由于偏振衰落导致干涉信号有效幅度变化的影响.提出结合三态PDR 方式和基于反正切计算的PGC 解调技术消除偏振衰落问题的影响,实现干涉型光纤传感器中相位信号的理想解调.关键词:干涉型光纤传感器;偏振衰落;偏振分集接收;相位生成载波 中图分类号:T N247 文献标识码:A 文章编号:1004-4213(2009)08-2024-5 0 引言 近年来,干涉型光纤传感器成为光纤传感器领域最受关注的研究方向之一[1-4] .干涉型光纤传感器通过一定长度的敏感光纤可以实现极高的灵敏度[5-6].构成光纤干涉仪主体部分的光纤存在着双折射现象,会使光纤中传播光信号的偏振态发生变化[7].当发生干涉的两束光的偏振态不一致时,会使干涉信号的幅度发生衰落,.两束光的偏振状态完全正交时,两束光完全不相干,干涉信号的幅度衰落为零.为了从干涉信号中解调出对外界传感信息敏感的相位信号,需要克服偏振衰落现象,使干涉信号维持一定的幅度. 当前解决干涉型光纤传感器中的偏振衰落问题的途径主要有:全保偏光路方式、法拉第旋镜方式和偏振分集探测方式等[8-10]. 基于反正切计算的相位生成载波PGC 解调技术,具有灵敏度高,动态范围大等优势,与传统的基于微分交叉相乘DCM (Differentiate Cross Multiply )的PGC 解调技术相比,其相位测量结果不受由于偏振衰落,导致干涉信号幅度变化的影响.PDR PGC 解调技术可以理想地解决干涉型光纤传感器系统的偏振衰落问题. 本文将PDR 技术与基于反正切计算的PGC 解调技术结合消除偏振,衰落其优势在于干涉型光纤传感器的时分复用系统应用中,可以利用单一的偏 振分集探测单元结合相应的解调技术解决时分复用阵列中所有光纤干涉仪的偏振衰落问题,极大地降低了系统的成本,简化了传感器的制作工艺和系统结构. 1 消除偏振衰落的PDR 方案 在PDR 方案中,光纤干涉仪输出经分束后,经过Y 方向与X 方向成H 角的检偏器,由探测器探测. 光纤干涉仪的传感臂输出的X 、Y 方向的偏振分量分别为 A x cos (X t +

光纤传感器的应用研究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

常用的五类光纤传感器基本原理解析

常用的五类光纤传感器基本原理解析 根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。 1)强度调制型光纤传感器 基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。 这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。 2)相位调制型光纤传感器 基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。 目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。

光纤传感器的制作工艺及工程应用研究

光纤传感器的制作工艺及工程应用研究 陈涛 深圳太辰光通信股份有限公司广东深圳518040 摘要:光纤传感器是以光纤为基础制作的新型传感器设备,具有抗电磁干扰能力强、电绝缘性好、耐腐蚀、测量范围广、体积小以及传输容量大等优点,常用于检测位移、温度、偏振、压力等,现代光纤传感器能在高压环境下代替人工完成作业,因此被广泛用于医疗、交通、电力、机械、航空航天等各个领域。如今光纤传感技术的应用推动通信技术的飞速发展,在众多产业有重要的地位。基于此,本文将着重分析探讨光纤传感器的制作工艺及其应用要点。 关键词:光纤传感器;制作;应用 1、光纤传感器基本原理概述 光纤传感器主要分为传感型和传光型等两类,其中传感型的传感器主要是利用被测对象的物理和化学的状态变化来引起光纤传输特性的变化,并通过传光特性来检测光纤中所传输光波的强度、相位等的变化,最终确定被测对象的状态。而传光型的传感器主要是利用被测对象的状态变化,引起光变换器件工作状态的变化,通过利用传光特性来检测光变换器中光纤所传输光波参数的变化,最终确定被测对象的状态。 1)典型的光纤传感器光源有发光二极管和半导体激光器;白炽灯也可用于某些化学传感器。2)光纤包括石英光纤、玻璃光纤和塑料光纤,其中石英光纤和玻璃光纤主要用于红外波段,塑料光纤则主要用于可见光波段;在某些传感器中还需要用专门研制的特殊光纤。3)光纤器件是为了使信号被限制在纤芯范围内传输,或是为了改变光的某些参数使其更适合于测量的部件,典型的光纤器件有光纤耦合器、滤波器、衰减器等,在一些简单的光纤传感器中有时没有光纤器件。4)传感元件是根据被测信号来调制光纤传输光参数的部件,它有时候是光纤本身,如拉曼散射式光纤温度传感器。5)探测器是用来对光信号进行检测的器件,一般包括光电二极管、光电三极管、光电池、光电雪崩二极管、光电倍增管等。6)信号处理单元接收光电探测器输出的电信号,将其还原为被测信号,

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

光纤传感器的三大要素

光纤传感器的三大要素 光纤传感器的原理: 在如今科学技术飞速发展的社会,光纤传感器的发展技术也是很受重视的,光纤传感器在各行业中的应用也不错,今天小编收集和整理了一些有关于光纤传感器的基本知识,希望大家都能好好的浏览以下的内容。光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量。(1)功能型——利用光纤本身的某种敏感特性或功能制成(2)传光型——光纤仅仅起传输光的作用,它在光纤端面或中间加装其它敏感元件感受被测量的变化。光纤传感器的测量原理有两种。(1)物性型光纤传感器原理,物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测

物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压等。(2)结构型光纤传感器原理,结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 光纤传感器的特点一。灵敏度较高;二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;五。而且具有与光纤遥测技术的内在相容性。光纤传感器的优点是与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。电绝缘性能好,抗电磁干扰能力强,非侵入性,高灵敏度,容易实现对被测信号的远距离监控,耐腐蚀,防爆,光路有可挠曲性,便于与计算机联接。传感器朝着灵敏、精确、适应性强、小

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

两种典型的光纤传感器研究现状与发展趋势.

两种典型的光纤传感器研究现状与发展趋势 ① 郑宏军 1, 黎昕 1, 杨恒新 2 (1. 聊城师范学院物理系 , 山东聊城 252059 2. 南京邮电学院 , 南京210003 摘要 :介绍了两种典型光纤传感器的研究和应用情况 , 提出了光纤传感器存在的问题及发展方向 , 为光纤传感器的深入研究提供了有益参考 . 关键词 :光纤传感器 , 光纤陀螺 , 光纤温度传感器 中图分类法 :T P 212. 14文献标识码 :A 文章编号 :20281204 1引言 光纤通信、 , 其中光纤通信是主体 [1]. , 且以体积小、重量轻、检测分辨率高、灵敏度高、、抗腐蚀性强等明显优于传统传感器的、医疗卫生、国防工程等重要部门 . 1987年 , 国家科委制定了《传感 [], 同年 , 国务院发布的信息技术政策中把传感器列为重点发展的新技术之一 . 1996年 , 经国家批准 , 在机械部沈阳仪器仪表工艺研究所开始筹建“传感器国家工程研究中心” , 加强了传感器工程化研究工作 . 可见 , 光纤传感器及其应用技术的研究非常重要 . 2光纤传感器的工作原理 图 1是光纤传感器的原理结构图 . 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成 . 众所周知 , 描述光波特征的参量很多 (如光强、波长、振幅、相位、偏振态和模式分布等 , 这些参量在光纤传输中都可能会受外界影响而发生改变 , 特别如温度、压力、加速度、电压、电流、位移、振动

、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时 , 都会使这些参量发生相应变化 . 光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小 . 图 1光纤传感器的原理结构图 2001年 12月传感技术学报 第 4期①来稿日期 :2001204209 光纤传感器按其作用不同可分为两种类型 :传光型和敏感型 [3]. 传光型光纤传感器中的光纤只是作为传光介质 , 其光路中必须另加其他的传感元件 . 敏感型光纤传感器中的光纤不仅传光 , 而且会随外界因素作用使传光特性发生相应变化 . 光纤传感器按其检测方法不同主要又可分为两种类型 :强度型和相位型 . 强度型光纤传感器是利用传感对象和光纤中传输光波的光强关系来检测相关物理量的 , 通常采用多模光纤 , 结构相对简单可靠 . 相位型光纤传感器是利用传感对象和光纤中光波相位变化关系 , 通过干涉的方法测得相移 , 从而来检测相关物理量 , 通常采用单模光纤组成双光路 , 结构和技术相对复杂 , 但灵敏度较高 . 此外 , 还有光频率调制型和

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光纤传感器原理与应用

光纤传感器原理与应用 1 引言 传感器技术、通信技术、计算机技术是现代信息技术的三大支柱,传感器作为探测与获取外界信息的重要环节之一而被应用于工业、农业及军事等各个领域。 近20多年来,光纤传感器的发展则大有取代传统传感器的趋势。光纤传感器是光通信和集成光学技术发展的结晶,与以往的传感器不同,它将被测信号的状态以光学的形式取出[1]。光信号不仅能被人所直接感知,利用半导体二极管等小型简单元件还可以进行光电、光学转换,极易与一些电子装备相匹配。此外,光纤不仅是一种敏感元件,还是一种优良的低损耗传输线,因此,光纤传感器还可以用于传统的传感器所不适用的远距离测量。 自从20世纪70年代末光纤传感器诞生以来,便由于其具有的防火、防爆、精度高、损耗低、体积小、重量轻、寿命长、性价比高、复用性好、响应速度快、抗电磁干扰、频带范围宽、动态范围大、易与光纤传输系统组成遥测网络等优点而被广泛地应用于各行各业。随着对其研究的不断深入,光纤传感器势必会对科学研究、国民生产、日常生活等诸多领域产生深远影响。 2 光纤传感器基本构成及原理 光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。 光纤传感器按传感原理可分为两类:一类是传光型(非功能型)传感器[2],另一类是传感型(功能型)传感器[3]。在传光型光纤传感器中,光纤仅作为光的传输媒质,对被测信号的感觉是靠其它敏感元件来完成的,这种传感器中出射光纤和入射光纤是不连续的,两者之间的调制器是光谱变化的敏感元件或其它性质的敏感元件。在传感型光纤传感器中光纤兼有对被测信号的敏感及光信号的传输作用,将信号的“感”和“传” 合而为一,因此这类传感器中光纤是连续的。

光纤传感器的应用实例

功率放大器的制作与调试实训报告 一、实训目的 1.通过自己动手实践加深对集成运算放大器工作原理的认识。 2.通过思考实验中遇到的问题来加深对电子技术知识的认识。 3.通过动手焊接电路和查找线路中的故障来培养自己的动手能力。 二、实训线路及器材 1.实训电路 2.工作原理 图上所示电路为本作品—双电源供电BTL音频功率放大器(双声道)原理图,本作品自带电源电路,简单实用。其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。TDA 2030(1)为同相放大器,输入信号Vin通过交流

耦合电容C1馈入同相输入端1脚。D7为整流桥堆起整流作用,C13.C14起滤波作用,R5是音量调节电位器,C1是输入耦合电容,。R2、R6决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为(R2+R6)/R6=(0.68+22)/0.68=33.3倍,C15起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。C3、C5、C7、C8为电源高频旁路电容,防止电路产生自激振荡 3.元器件清单 名称规格型号数量位号 集成电路TDA2030 1 IC 整流二极管1N4007 2 D1,D2 电阻器100K 4 R1,R2,R3,R5 电阻器 4.7K 1 R4 电阻器 电阻器 电阻器 电阻器 电阻器 电阻器 电阻器 瓷片电容器 瓷片电容器 瓷片电容器 瓷片电容器 电解电容 电解电容 电位器 电位器 2P接线输出端子 音频输入插座 3P电源插座 直推电源开关 IC散热器 散热器螺丝 发光LED 变压器 瓷片电容 4.实训主要材料 设计的TDA2030采用双电源供电,采用双电源输入,可采用一个变压器,通过变压器把220V常用电压变成正负12V作为电源输入。 5.实训工具 三、训练步骤及内容 1. 第一步是画电路原理图,根据老师给的图画出原理图。 2.第二步是分析原理图,我在分析次原理图时发现原理比较简单,就是以TDA2030A为放大芯片,加上电源滤波电容和过压过流保护,和反馈部分的电阻,基本上就没什么了。分

光纤传感器结构原理及分类

光纤温度传感器 1、光纤传感器结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,见图(b)。 由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光是一种电磁波,其波长从极远红外的lmm到极远紫外线的10nm。它的物理作用和生物化学作用主要因其中的电场而引起。因此,讨论光的敏感测量必须考虑光的电矢量E的振动,即 A——电场E的振幅矢量;ω——光波的振动频率; φ——光相位;t——光的传播时间。 可见,只要使光的强度、偏振态(矢量A的方向)、频率和相位等参量之一随被测量状态的变化而变化,或受被测量调制,那么,通过对光的强度调制、偏振调制、频率调制或相位调制等进行解调,获得所需要的被测量的信息。 2、光纤传感器的分类

注:MM多模;SM单模;PM偏振保持;a,b,c功能型、非功能型、拾光型 (1)根据光纤在传感器中的作用 光纤传感器分为功能型、非功能型和拾光型三大类。 1)功能型(全光纤型)光纤传感器 利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤) 作传感元件,将“传”和“感”合为一体的传感器。光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感” 的功能。因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提高灵敏度。 2)非功能型(或称传光型)光纤传感器 光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。光纤不连续。此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。但灵敏度也较低,用于对灵敏度要求不太高的场合。

光纤传感器的分类及应用

光纤传感器的分类及应用 2008级光信息科学与技术3班牛鑫 学号:200841801071 光纤传感器(Optical Fiber Transducer)就是利用光导纤维的传光特性,把被测量转换为光特性(强度、相位、偏振态、频率、波长)改变的传感器。它的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。 随着现代科学技术的发展, 信息的获得显得越来越重要。传感器正是感知、检测、监控和转换信息的重要技术手段。光纤传感器是继光学、电子学为一体的新型传感器, 与以往的传感器不同, 它将被测信号的状态以光信号的形式取出。光信号不仅能被人所直接感知, 利用半导体二极管如光电二极管等小型简单元件还可以进行光电、电光转换, 极易与一些电子装配相匹配, 这是光纤传感器的优点之一; 另外光纤不仅是一种敏感元件, 而且是一种优良的低损耗传输线; 因此, 光纤传感器还可用于传统的传感器所不适用的远距离测量。近年来光纤传感器得到了越来越广泛的应用。 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。它具有很多独特的优点:1、灵敏度高由于光是一种波长极短的电磁波, 通过光的相位便得到其光学长度。以光纤干涉仪为例, 由于所使用的光纤直径很小, 受到微小的机械外力的作用或温度变化时其光学长度要发生变化, 从而引起较大的相位变化。2、测量速度快光的传播速度最快且能传送二维信息, 因此可用于高速测量。对雷达等信号的分析要求具有极高的检测速率, 应用电子学的方法难以实现, 利用光的衍射现象的高速频谱分析便可解决。3 、信息容量大被测信号以光波为载体, 而光的频率极高, 所容纳的频带很宽, 同一根光纤可以传输多路信号。4 、适用于恶劣环境光纤是一种电介质, 耐高压、耐腐蚀、抗电磁干扰, 可用于其它传感器所不适应的恶劣环境中。另外, 利用光纤的柔韧性可将光纤传感器做成各种形状的传感器及传感器阵列, 用于多参数测量。 光纤传感器可以分为两大类:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。 一、功能型传感器 功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。优点:结构紧凑、灵敏度高。缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等 二、非功能型传感器 非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。

光纤传感器的基本原理及在医学上的应用.

2008年 9月中国医学物理学杂志 Sep .,2008 第 25卷第 5期 Vol. 25. No. 5 光纤传感器的基本原理及在医学上的应用 孙素梅 1, 陈洪耀 2, 3, 尹国盛 2(1. 漯河医学高等专科学校 , 河南漯河 462000; 2. 河南大学物理与电子学院 , 河南开封 475004; 3. 中国科学院安徽光学精密机械研究所 , 安徽合肥 230031 摘要 :目的 :本文的目的简要介绍光纤传感器的基本原理和简单分类 , 重点阐述传光型光纤传感器在医学的压力、流速、 pH 值等五方面的应用。方法 :光纤传感器基本原理是将光源发出的光经光纤送入调制区 , 在调制区内 , 外界被测参数与进入调制区的光相互作用 , 使光的强度、频率、相位、偏振等发生变化成为被 调制的信号光 , 再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类 :一类是传光型传感器 , 另一类是传感型传感器。结 果 :目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点 :小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束 , 就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后 , 扩大了内窥镜 的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的 , 且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术 时 , 血管镜可提供很多重要的信息 , 用以引导激光辐射的方向 , 选择激光的能量和持续时间 , 并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断 , 也正进 入治疗领域中 , 例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症 的有效途径 , 但微波加温治疗癌症技术的温度难以控制 , 而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测 , 从而使温度不致于过高杀死人体的正常

光纤传感器结构原理及分类[图]

光纤传感器结构原理及分类[图] 1、光纤传感器结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,见图(b)。 由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。 光是一种电磁波,其波长从极远红外的lmm到极远紫外线的10nm。它的物理作用和生物化学作用主要因其中的电场而引起。因此,讨论光的敏感测量必须考虑光的电矢量E的振动,即 A——电场E的振幅矢量;ω——光波的振动频率;φ——光相位;t——光的传播时间。 可见,只要使光的强度、偏振态(矢量A的方向)、频率和相位等参量之一随被测量状态的变化而变化,或受被测量调制,那么,通过对光的强度调制、偏振调制、频率调制或相位调制等进行解调,获得所需要的被测量的信息。 2、光纤传感器的分类 注:MM多模;SM单模;PM偏振保持;a,b,c功能型、非功能型、拾光型 (1)根据光纤在传感器中的作用 光纤传感器分为功能型、非功能型和拾光型三大类。 1)功能型(全光纤型)光纤传感器 利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合为一体的传感器。光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感”的功能。因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提高灵敏度。 2)非功能型(或称传光型)光纤传感器 光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。光纤不连续。此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。但灵敏度也较低,用于对灵敏度要求不太高的场合。 3)拾光型光纤传感器 用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。 (2)根据光受被测对象的调制形式 形式:强度调制型、偏振调制、频率调制、相位调制。

光纤传感器技术及其应用

学业论文 题目:光纤传感技术及其应用 姓名:赵晓雷 所在学院:机电工程学院 专业班级:电气一班 学号: 100101110 指导老师:李娜 日期: 2011年12月

光纤传感器技术及其应用一:光纤传感器的定义、结构、特点与分类; 二:光纤传感器的原理与应用; 三:光纤传感器在检测技术中的应用; 四:光纤传感器的发展前景; 参看文献:《光纤传感器技术及其应用》;作者:王玉田

一:光纤传感器的定义、结构、特点与其分类; 1.定义, 中文名称:光纤传感器 英文名称:optical fiber transducer 定义1:利用光导纤维的传光特性,把被测量转换为光特性(强度、 相位、偏振态、频率、波长)改变的传感器。 应用学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科)。 定义2:利用光纤技术和光学原理,将感受的被测量转换成可用 输出信号的传感器。 应用学科:机械工程(一级学科);传感器(二级学科);传感 器一般名词(三级学科)。 2.光纤传感器的特点: 一、灵敏度较高 二、几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三、可以制造传感各种不同物理信息(声、磁、温度、旋转等)的件; 四、可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五、而且具有与光纤遥测技术的内在相容性。

附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。 2.光纤传感器结构 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成。 3.光纤传感器的分类; 功能型、非功能型和拾光型三大类。 1)功能型(全光纤型)光纤传感器 利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)

相关主题
文本预览
相关文档 最新文档