高中数学-学生-反函数
- 格式:doc
- 大小:348.72 KB
- 文档页数:10
反函数
1.反函数
【知识点归纳】
【定义】一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x 表示出,得到x
=g(y).若对于y 在中的任何一个值,通过x=g(y),x 在A 中都有唯一的值和它对应,那么,x=g(y)就表
示y 是自变量,x 是因变量是y 的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记
作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
【性质】
反函数其实就是y=f(x)中,x 和y 互换了角色
(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x 对称;函数及其反函数的图形关于直线y=x 对称
(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y 轴垂直的直线
截时能过 2 个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;
(8)反函数是相互的且具有唯一性;
(9)定义域、值域相反对应法则互逆(三反);
(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).
1/ 1。
一、对数1、对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .易得:log a N a N =——对数恒等式,自然对数:以e 为底的对数成为自然对然,记作ln,常用对数:以10为底的对数,记作lg 。
实际上指数与对数只是数量间的同一关系的两种不同形式. 2、指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0). 要能灵活运用这个关系,能随时将二者互化。
3、对数运算性质:①log a (MN )=log a M +log a N . ②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④log m na M =nmlog a M .(M >0,N >0,a >0,a ≠1) ⑤换底公式:log b N =bNa a log log (0<a ≠1,0<b ≠1,N >0).二、反函数1、反函数定义一般地,对于函数y=f(x),设它的定义域为D ,值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,使y=f(x),这样得到的x=()1fy -。
在习惯上,自变量用x 表示,而函数用y 表示,所以把它改写为()1y f x -=()x A ∈2、关于反函数的结论(1)关于反函数的定义域与值域分别是其原函数的值域和定义域, (2)互为反函数的两个函数y=f(x)与()1y f x -=图像关于直线y=x 对称;若点M (a ,b )在y=f(x)的图像上,则点'M (b,a)必在()1y fx -=图像上;(3)一般地,偶函数不存在反函数(y=c,{}0x ∈除外,其中c 为常数),奇函数不一定有反函数,若有反函数,则反函数也是奇函数;(4)原函数与其反函数的单调性相同,但单调区间不一定相同,单调函数必有反函数,有反函数的函数不一定是单调的,比如1y x=; 对数、反函数知识梳理(5)y=f(x)与()1y fx -=互为反函数,设f(x)定义域为D ,值域为A ,则有f[()1fx -]=x ()x A ∈,()()1f f x x x D -=∈⎡⎤⎣⎦;(6)如果函数y=f(x)的图像关于直线y=x 对称,那么它存在反函数,并且其反函数就是它本身;(7)反函数存在条件:函数的定义域与值域之间的对应关系一一对应; (8)x=f(y), ()1y f x -=,()1x f y -=与函数y=f(x)的比较;(9)y=f(x)与()1y fx -=图像若有公共点,并非一定在y=x 上,例如:f(x)=116x⎛⎫ ⎪⎝⎭与()1116log f x x -⎛⎫ ⎪⎝⎭=有两个公共点(1/2,1/4)与(1/4,1/2)关于y=x 对称3、求反函数的步骤(1)求反函数y=(x)的值域(若值域显然,解题时常略去不写);(2)反解:由y=(x)解出()1x f y -=;(3)改写:在()1x fy -=中,将x,y 互换得到()1y f x -=;(4)标明反函数的定义域,即(1)中求出的值域。
高中数学解题技巧之函数反函数求解在高中数学中,函数反函数是一个重要的概念,它在各个数学分支中都有广泛的应用。
理解和掌握函数反函数的求解方法,对于解题和理解数学概念具有重要意义。
本文将介绍函数反函数的求解技巧,并通过具体的例题进行解析,帮助高中学生和他们的父母更好地理解和应用这一概念。
函数反函数的求解是指在已知一个函数的情况下,找到它的反函数。
反函数是指将原函数的自变量和因变量互换位置后得到的新函数。
要求一个函数有反函数,首先需要保证原函数是一一对应的,即每个自变量对应唯一的因变量。
接下来,我们将介绍函数反函数的求解方法。
首先,我们来看一个简单的例子。
假设有一个函数 f(x) = 2x + 3,我们需要求解它的反函数。
我们可以按照以下步骤进行求解:1. 将 f(x) = 2x + 3 中的 x 和 f(x) 互换位置,得到 x = 2f(x) + 3。
2. 解方程 x = 2f(x) + 3,将 f(x) 表示为 x 的函数。
3. 将方程 x = 2f(x) + 3 移项得到 2f(x) = x - 3。
4. 将方程 2f(x) = x - 3 中的 x 和 f(x) 互换位置,得到 f(x) = (x - 3) / 2。
通过以上步骤,我们成功地求解出了函数 f(x) = 2x + 3 的反函数 f^(-1)(x) = (x - 3) / 2。
这个例子展示了函数反函数求解的基本步骤。
接下来,我们来看一个更复杂的例子。
假设有一个函数 g(x) = e^(2x + 1),我们需要求解它的反函数。
对于指数函数的反函数求解,我们可以按照以下步骤进行:1. 将 g(x) = e^(2x + 1) 中的 x 和 g(x) 互换位置,得到 x = e^(2g(x) + 1)。
2. 将方程 x = e^(2g(x) + 1) 取对数,得到 ln(x) = 2g(x) + 1。
3. 将方程 ln(x) = 2g(x) + 1 中的 g(x) 表示为 x 的函数。
高中阶段的反函数
反函数是高中数学中一个重要的概念。
在数学中,如果一个函数的输入和输出可以通过某种规则互相转化,那么这个函数就有一个相应的反函数。
反函数用来描述一个函数的逆运算,它可以帮助我们更好地理解和分析函数的性质和特点。
在高中数学中,反函数是一个重要的概念,它涉及到函数的对称性、单调性、极值和零点等方面的问题。
反函数的求法可以通过交换自变量和因变量,或者利用反函数的定义式来得到。
反函数的性质和特点都可以通过具体的例子来进行说明。
例如,对于函数y = 2x + 1,它的反函数为x = (y - 1) / 2。
通过这个例子,我们可以看到反函数的输入和输出互换的特点,即原函数的自变量变成了反函数的因变量,原函数的因变量变成了反函数的自变量。
在高中数学中,反函数还涉及到复合函数的概念。
如果两个函数互为反函数,那么它们的复合函数就等于自己,即f(g(x)) = g(f(x)) = x。
这个性质可以帮助我们更好地理解反函数的逆运算和复合函数的概念。
总之,反函数是高中数学中一个重要的概念,它涉及到函数的对称性、单调性、极值和零点等方面的问题。
我们需要认真学习和掌握反函数的定义、求法和性质,以便更好地理解和应用函数的相关知识。
- 1 -。
反函数基本公式大全反函数基本公式大全:一、反三角函数公式:1、arcsin(-x)=-arcsinx2、arccos(-x)=π-arccosx3、arctan(-x)=-arctanx4、arccot(-x)=π-arccotx5、arcsinx+arccosx=π/2=arctanx+arccotx6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x8、当x∈〔0,π〕,arccos(cosx)=x9、x∈(—π/2,π/2),arctan(tanx)=x10、x∈(0,π),arccot(cotx)=x11、x〉0,arctanx=arctan1/x,12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)二、高中数学反函数:1、反正弦函数:正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。
记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1] ,值域[0,π]3、反正切函数:正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。
记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
4、反余切函数:余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。
记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
高考反函数问题常见类型解析反函数是高中数学中的重要概念之一,也是学生学习的难点之一。
在历年高考中占有一定的比例。
为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。
一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( )A. (]a ∈-∞,1B. [)a ∈+∞2,C. (][)a ∈-∞+∞,,12D. []a ∈12,解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的子区间(]-∞,a 或[)a ,+∞上是单调函数。
而已知函数f x ()在区间[1,2]上存在反函数,所以[](]12,,⊆-∞a 或者[][)12,,⊆+∞a ,即a ≤1或a ≥2。
故选(C )点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。
特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。
二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113B. y x x =-+≥-()()113C. y x x =+≥()()103 D. y x x =-+≥()()103解析:由x ≤0可得x 230≥,故y ≥-1,从y x =-231解得x y =±+()13因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113故选(B )。
点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。
三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
高一反函数知识点随着数学课程的深入学习,高中一年级的学生将接触到更多的数学概念和知识点。
在这篇文章中,我将为大家介绍高一学生将学习的一个重要内容,那就是反函数(Inverse Function)。
一、反函数的定义及性质反函数指的是由一个函数得到的新函数,其输入和输出之间的关系与原函数相反。
如果一个函数f的定义域与值域分别为A和B,那么对于B中的每一个元素b,存在一个唯一的元素a,使得f(a) = b。
这时候我们将这个新函数称为f的反函数,记作f^-1。
一个函数与其反函数之间存在以下几个性质:1. 函数f与其反函数f^-1互为关联:f(f^-1(x)) = x,f^-1(f(x)) = x。
即使用一个函数后再使用其反函数,或者先使用反函数再使用原函数,最终结果都会回到原来的输入。
2. 函数与其反函数的图像关于直线y = x对称:如果一个点(x, y)在函数f的图像上,那么点(y, x)则会在反函数f^-1的图像上。
3. 函数的定义域和值域互换:如果f的定义域为A,值域为B,那么f^-1的定义域就是B,值域就是A。
二、求反函数的方法在学习反函数时,我们面临的主要问题就是如何求得一个函数的反函数。
下面是几种常见的求反函数的方法:1. 代数法对于一些简单的函数,我们可以使用代数法求取其反函数。
具体的步骤是:- 将函数表示为y = f(x)的形式;- 将原方程中的y替换为x,将x替换为y,并且解出y;- 将得到的y表示为f^-1(x),即可得到反函数。
2. 图像法对于一些能够绘制出函数图像的函数,我们可以使用图像法求取其反函数。
具体的步骤是:- 绘制出函数f的图像;- 将图像关于直线y = x进行对称;- 根据对称后的图像,确定反函数的图像。
3. 复合函数法对于一些较为复杂的函数,我们可以使用复合函数法求取其反函数。
具体的步骤是:- 假设函数f的反函数为f^-1(x),即y = f^-1(x);- 将f(y)替换为x,并解出关于y的方程;- 将得到的y表示为f^-1(x),即可得到反函数。
高中数学反函数教案一、教学目标1. 理解函数与反函数的概念,能够求解反函数;2. 掌握反函数的性质和求解方法;3. 能够应用反函数解决相关问题。
二、教学重点1. 函数与反函数的概念;2. 反函数的求解方法;3. 反函数的性质。
三、教学内容1. 函数与反函数的概念- 函数的定义和表示:定义域、值域、映射关系;- 反函数的定义:对任意的y,存在唯一的x,使得f(x)=y,则称y关于x的函数为f的反函数,记为$f^{-1}$(y)。
2. 反函数的求解方法- 交换x和y的位置,并解出y,得到反函数表达式;- 注意判断反函数的存在性和唯一性。
3. 反函数的性质- 函数与反函数互为反函数;- 函数与反函数的图像关于y=x对称;- 反函数的定义域与原函数的值域相同,反函数的值域与原函数的定义域相同。
四、教学过程1. 导入:通过实例引入函数与反函数的概念,让学生理解反函数的概念。
2. 讲解:介绍函数与反函数的定义、求解方法和性质,引导学生掌握。
3. 练习:设计反函数的求解问题,让学生灵活运用反函数的概念来解决问题。
4. 总结:归纳反函数的概念和性质,让学生总结学习内容。
五、教学案例已知函数$f(x)=2x+1$,求其反函数。
解:设反函数为$y=f^{-1}(x)$,则有$y=2x+1$,交换x和y的位置可得$x=2y+1$,解出y 得$y=\frac{x-1}{2}$,因此,函数的反函数为$f^{-1}(x)=\frac{x-1}{2}$。
六、课堂练习1. 已知函数$f(x)=3x-2$,求其反函数;2. 若函数$g(x)$的反函数为$h(x)$,求$f(x)=\frac{1}{g(x)}$的反函数。
七、作业布置1. 完成课堂练习;2. 预习下节课内容,复习反函数的概念和性质。
八、教学反思本节课重点介绍了函数与反函数的概念、求解方法和性质,通过实例讲解和课堂练习,学生基本掌握了反函数的相关知识。
下节课将继续深入探讨反函数的应用和拓展,激发学生对数学的兴趣和探索欲望。