专升本数学真题及答案解析
- 格式:docx
- 大小:37.41 KB
- 文档页数:3
2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。
专升本数学真题及答案及解析在许多人的职业发展中,专升本成为了一种非常常见的求学途径。
然而,专升本考试的数学部分却是让很多人感到头疼的一环。
为了帮助考生们更好地应对专升本数学考试,下面将介绍一些经典的真题及其答案和解析。
第一题:设a,b,c是各自属于自然数的方程ax2 + (b + 1)x - (c - 1) = 0在R中有唯一解,则a,b,c的取值范围是?解析:根据题目所给出的条件,该方程在R中有唯一解,因此它的判别式为0,即(b + 1)2 - 4ac + 4 = 0。
经化简后可得b2 - 4ac - 3 = 0。
由于a,b,c都属于自然数,所以a,b,c的取值范围限制在自然数集合中。
解这个方程得到b = ±√(4ac + 3),根据b的取值范围限制,可以得出结论:4ac + 3是一个完全平方数,并且在自然数范围内。
第二题:过点(a,b)的直线与曲线y = ln(1 - x)交于一点,求a的范围。
解析:设过点(a,b)的直线方程为y = kx + (b - ka),将两个方程联立得到ln(1 - x) = kx + (b - ka)。
由于直线与曲线交于一点,所以它们的解必然相等,即有ln(1 - x) = kx + (b - ka)。
将该方程进行化简得到kx2 + (1 - k - ln(1 - x))x + (ka - b) = 0。
由于直线与曲线交于一点,所以该方程必然有相等的两个解,即判别式为0。
解这个方程得到x = 0和x = 1 - e^(-k)。
又因为x的范围是[0,1],所以0 ≤ 1 - e^(-k) ≤ 1,解这个不等式可以得到 -ln(2) ≤ k ≤ 0。
因此,a的范围为 -ln(2) ≤ a ≤ 0。
通过解析上述两道数学题目,我们可以看到在专升本数学考试中,解题需要综合运用数学知识点,并注意合理推断和化简,以得到正确的结果。
考生们在备考过程中,可以通过练习类似的题目来提高对数学知识的理解和应用能力。
专升本高数真题答案及解析随着社会竞争的日益激烈,越来越多的人开始选择专升本的途径来提升自己的学历和能力。
其中,高等数学作为专升本考试的重要科目之一,对于许多考生来说是一个难题。
为了帮助考生更好地准备高数的考试,下面我们将介绍一些专升本高数真题的答案及解析。
一、选择题部分:1. 如表达式 (x^2-1)/(x-1),在x=1时的取值:答案:无定义解析:由于分母为x-1,当x=1时,分母为零,造成整个表达式的取值无定义。
2. 函数 f(x) = |x-3| 的定义域是:答案:x≥3或x≤3解析:绝对值函数的定义域可以根据函数图像在x轴上的取值范围来确定。
对于f(x) = |x-3|,其图像在x=3处取得最小值0,向两边无限延伸,所以定义域为x≥3或x≤3。
3. 设函数 f(x) = 2^x ,则 f(2x) = ?答案:2^2x = 4^x解析:根据指数函数的性质,对于 f(2x),相当于在原函数的自变量上乘以2,所以 f(2x) = 2^(2x) = 4^x。
二、填空题部分:1. 关于异或运算,以下哪个命题是正确的:(1分)答案:B解析:异或运算满足交换律,即 A^B = B^A。
2. 设函数 f(x) 满足 f'(x) = 2x^3+3x^2-4 ,则 f(x) =______ 。
答案:1/2x^4 + x^3 - 4x + C (C为常数)解析:根据导函数与原函数的关系,可以得到 f(x) 的形式,再通过求导积分即可得出答案。
三、解答题部分:1. 求函数 f(x) = 2x^3 + 3x^2 + 4x + 5 在区间 [-1,1] 上的极值点。
答案:极小值点为 (-1, 2) ,极大值点为 (1, 14)。
解析:通过求导,将导函数等于零求出的x值代入原函数,得到对应的y值,即为极值点。
2. 已知函数 f(x) = (x-2)^2 - 4x + 3 ,判断 f(x) 的类型并求出其顶点坐标。
数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。
2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。
又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。
联立两个方程,得到d = 2,故选A。
3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。
4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。
广东省2022年普通高等学校专升本招生考试高等数学本试卷共20小题,满分100分。
考试时间120分钟。
一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一项符合题目要求)1.若函数1,1(),1x x f x a x +≠⎧=⎨=⎩,1x =在处连续,则常数a =( )A.-1B.0C.1D.22.1lim(13)xx x →-=()A.3e - B.13e-C.1D.3e 3.1lim 0n n x n u u ∞→==∑是级数收敛的( )A.充分条件B.必要条件1C.充要条件D.即非充也非公必要条件得分阅卷人4.2+1()()1f x f x dx x∞=⎰已知是函数的一个原函数,则( )A.2B.1C.-1D.-25.xf (x 2+y 2)dy 化为极坐标形成的二次积分,则 I =()110I dx =⎰⎰将二次积分 A.2sec ()400d f p dp πθθ⎰⎰ B.2c ()40cs d pf p dp πθθ⎰⎰B.2sec 2()04d f p dp πθθπ⎰⎰ D.2csc 2()04d pf p dp πθθπ⎰⎰二、填空题(本大题共5小题,每小题3分,共15分)6.若0→x 时,无穷小量x 2与x x m 32+等价,则常数m =7.2225,log t x t t dy dx y t=⎧=-=⎨=⎩设则8.椭圆13422=+y x 所围成的图形绕x 轴旋转一周而成的旋转体体积为9.微分方程2'=-y ex的通解是10.ln (,)(,)ye e Z xe e dz==函数在点处的全微分得分阅卷人三、计算题(本大题共8小题,每小题6分,共48分)12.2212=tan ,x d yy arc x dx=设求13.设函数21sin ,00,0x x x x ⎧≠⎪⎨⎪=⎩,利用导数定义(0)f '.14.求不定积分2.得分阅卷人15.已知tan ln cos xdx x C=-+⎰,求定积分24sec x xdx π⎰.16.2(,)2z z z Z f x y Z x y e y x y∂∂==--∂∂设是由方程所确定的隐函数,计算.17.cos ,sin (0)0,2Dxd D y x x y πσ=≤≤=⎰⎰计算二重积分其中是曲线和曲线2x π=围成的有界闭区域。
上海成人高考专升本数学真题考试及答案详解(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设集合A={x|x²3x+2=0},B={x|x²5x+6=0},则A∩B=()A. {1, 2}B. {2, 3}C. {1, 3}D. {1, 2, 3}2. 若函数f(x)=2x²3x+1在区间(a,b)上单调递增,则a,b的关系为()A. a>bB. a=bC. a<bD. 无法确定3. 设函数g(x)=ln(x²+1),则g'(x)=()A. 2x/(x²+1)B. x/(x²+1)C. 2x²/(x²+1)D. 1/(x²+1)二、判断题(每题1分,共20分)4. 若函数h(x)在区间(∞,+∞)上连续,则h(x)在该区间上有界。
()5. 若矩阵A为对称矩阵,则A的特征值必为实数。
()三、填空题(每空1分,共10分)6. 若函数f(x)=e^(2x),则f'(x)=______。
7. 若矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则|A|=______。
四、简答题(每题10分,共10分)8. 简述拉格朗日中值定理的内容及其应用。
9. 若函数f(x)在区间[a,b]上可积,证明:f(x)在[a,b]上必有界。
五、综合题(1和2两题7分,3和4两题8分,共30分)10. 设函数f(x)=x³3x+1,求f(x)在区间[2,2]上的最大值和最小值。
11. 已知矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 &4\end{bmatrix}\),求矩阵A的特征值和特征向量。
12. 设函数g(x)=x²e^x,求g(x)的不定积分。
13. 已知函数f(x)=ln(x+1),求f(x)的麦克劳林展开式的前三项。
专升本的数学真题及答案解析教育是一个人发展的重要途径,而高等教育则是一个人实现自身追求的关键。
对于那些已经参加过工作但希望提升自己的专业水平的人来说,专升本是一个非常重要的途径。
在专升本考试中,数学科目常常是让人头疼的一门。
为了帮助考生们更好地备考,本文将提供一些数学真题及其答案解析。
一、单选题1. 一个开口朝下的抛物线的顶点坐标是(3,4),则它的对称轴方程是:A. x = 3B. x = -3C. y = 3D. y = -3答案:A. x = 3解析:由题可知,顶点坐标为(3,4),所以对称轴与y轴平行,过顶点的直线的方程应为x = 3。
2. 已知函数f(x) = 2x + 3,g(x) = x^2,则f(g(x))的解析式为:A. f(g(x)) = 2x^2 + 3B. f(g(x)) = x^2 + 3C. f(g(x)) = 2x^2 + 9D. f(g(x)) = x^4 + 3答案:A. f(g(x)) = 2x^2 + 3解析:将g(x)代入f(x)的解析式中得到 f(g(x)) = 2(x^2) + 3 = 2x^2 + 3。
二、填空题1. 已知抛物线y = ax^2 + bx + c的顶点为(2,3),则a + b + c的值为__________。
答案:4解析:由题可知,顶点坐标为(2,3),所以2a + b = -4,并且由于顶点在抛物线上,所以3 = 4a + 2b。
解方程组可得a = 1,b = -6,c = 9,所以a + b + c = 4。
2. 已知三角形ABC,其中∠B = 90°,AC = 10,BC = 6,则三角形ABC的面积为__________。
答案:15解析:根据勾股定理,可得AB = √(AC^2 - BC^2) = √(10^2 -6^2) = √(100-36) = √64 = 8。
所以三角形ABC的面积为(1/2) * AB * BC = (1/2) * 8 * 6 = 24/2 = 12。
专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。
A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。
A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。
A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。
A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。
2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。
3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。
4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。
5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。
三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。
2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。
3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。
2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。
A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。
A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。
A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。
A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。
A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。
8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。
9. 已知抛物线y=x^24x+3的顶点坐标为______。
10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。
三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。
12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。
13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。
四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。
五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。
专升本数学真题及答案解析
导语:专升本考试是许多在职人员想要提升学历的首选方式。
而
数学作为专升本考试的一门重要科目,考生在备考过程中需要掌握一
定的解题技巧和方法。
本文将给大家分享一些,希望对备考的考生有
所帮助。
第一部分:代数与函数
1、已知函数 f(x) = (x - 3)(2x + 1),求函数 f(x) 的最小值。
解析:首先将函数 f(x) 展开得到 f(x) = 2x^2 - 5x - 3。
根
据二次函数的性质可知,当 x = -b/2a 时,二次函数的值取得最小值。
所以, f(x) 的最小值可以通过计算 x 的值得到:x = -(-5)/2*2 =
5/4。
将 x = 5/4 代入 f(x) 中,可以计算出 f(x) 的最小值为 -
65/8。
2、已知等差数列 (a1 , a2 , ...) 的第 n 项为 an,第 m 项
为 am,求证:an + am = a(n+m)。
解析:根据等差数列的性质,可知第 n 项 an = a1 + (n - 1)d,第 m 项 am = a1 + (m - 1)d,其中 a1 是等差数列的首项,d 是等
差数列的公差。
将这两个等式相加得到 an + am = 2a1 + (n + m -
2)d。
而 a(n+m) = a1 + (n + m - 1)d,很显然,两个等式相等,即
an + am = a(n+m)。
第二部分:几何与立体几何
1、在平面直角坐标系中,已知点 A(2,3) 和点 B(-2,-3),求直
线 AB 的斜率。
解析:直线 AB 的斜率可以通过计算两点之间的纵坐标变化与横坐标变化之比得到。
设点 A 的横坐标为 x1,纵坐标为 y1,点 B 的横坐标为 x2,纵坐标为 y2,直线 AB 的斜率为 k。
则有 k = (y2 - y1)/(x2 - x1)。
代入已知数据可得 k = (-3 - 3)/(-2 - 2) = 6/-4 = -3/2。
2、在三角形 ABC 中,已知边 AB = 3,边 AC = 4,角 BAC 的度数为60°,求角 ABC 的度数。
解析:根据三角形的内角和定理可知,三角形 ABC 的内角之和为180°。
已知角 BAC 的度数为60°,则角 ABC 的度数可以通过计算角 BAC 和角 BCA 的度数之和与180° 的差值得到。
角 BAC 和角BCA 的度数之和为180° - 60° = 120°。
所以,角 ABC 的度数为180° - 120° = 60°。
第三部分:概率与统计
1、某超市连续三天销售某商品的情况如下:第一天销售 200 件,第二天销售 150 件,第三天销售 100 件。
求这三天销售的平均数。
解析:销售的平均数等于总销售量除以天数。
所以,这三天销售的平均数为 (200 + 150 + 100)/3 = 450/3 = 150。
2、已知甲乙两个班级的数学成绩分布如下:甲班成绩在 90 分以上的学生有 30 人,乙班成绩在 90 分以上的学生有 20 人,两个班级成绩超过 90 分的学生总数为 40 人,求甲、乙两个班级的总人数。
解析:设甲班的总人数为 x,乙班的总人数为 y,根据题目中的
数据可知,x + y = 40。
甲班成绩在 90 分以上的学生有 30 人,乙
班成绩在 90 分以上的学生有 20 人,所以 x - 30 = 20,即 x = 50。
代入第一个方程可得 y = 40 - x = 40 - 50 = -10。
很显然,乙班的
总人数不能为负数,所以这个题目没有解。
结语:本文简要讲述了专升本数学的真题及解析,涵盖了代数与
函数、几何与立体几何、概率与统计三个方面。
希望这些题目和解析
对备考的考生有所帮助,让他们能更好地准备数学科目,顺利通过专
升本考试。
加油!。