2.(2022·高考全国卷甲)设点 <m></m> 在直线 <m></m> 上,点 <m></m> 和 <m></m> 均在 <m></m> 上,则 <m></m> 的方程为______________________.
解析:方法一:设 的方程为 ,则 解得 所以 的方程为 .
返回导航
√
返回导航
解析:因为直线 始终平分圆 的面积,所以直线 始终过圆的圆心 ,又圆 与直线 相切,则圆的半径 ,所以圆 的方程为 .故选D.
返回导航
求圆的方程的2种方法
几何法
通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程
代数法
用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程
A. B. C. D.
解析:选A.通解(常规求解法):设圆 的圆心坐标为 ,连接 , (图略).因为 , , ,所以 ,所以平行四边形 为菱形,所以 且 .
√
返回导航
可得 解得 或 (舍去),则圆心 的坐标为 .因为圆 的半径为 ,所以圆 的方程为 .故选A.优解(特值验证法):由题意可知,平行四边形 为菱形,则 ,即圆 的半径为 ,排除B,D;将点 代入选项A,C,显然选项A符合.故选A.
A. B. C. D.
解析:根据题意直线 与 轴的交点为 .因为圆与直线 相切,所以半径为圆心到切线的距离,即 ,则圆的方程为 ,故选A.
√
返回导航
(2)已知直线 与圆 相切,且直线 始终平分圆 的面积,则圆 的方程为( )
A. B. C. D.