三次函数的性质及简单应用
- 格式:docx
- 大小:26.17 KB
- 文档页数:2
三次函数的图像及性质形如的函数叫做三次函数,其中是自变量,是常数。
它具有以下性质:1、图像、单调区间与极值三次函数求导以后是二次函数,,它的零点个数决定了三次函数的极值情况与单调区间,下面是三次函数及其对应的导函数全部共六种图像:2、零点个数△=,若方程的判别式,则在R 上是单调函数,无极值,值域为,故有唯一的零点。
若方程的判别式,方程有两个不等的实根、,它们是函数的极值点,则:(i )当时,有一个零点;(ii )当时,有两个零点;32()(0)f x ax bx cx d a =+++≠x ,,,a b c d2()32f x ax bx c '=++xx 0a >0a <)3(412422ac b ac b -=-()0f x '=0∆≤()f x (,)-∞+∞()0f x '=0∆>1x 2x ()f x 12()()0f x f x ⋅>()fx xxxx12()()0f x f x ⋅=()f x(iii )当时,有三个零点。
3、对称中心三次函数的图象关于点对称,并且在处取得最小值,其图象关于直线对称. 证1 易知是奇函数,图象关于原点对称,则关于点对称. 4、过平面内一点能作三次函数图像切线的条数(1) (2012·大纲全国高考)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( )A .-2或2B .-9或3C .-1或1D .-3或1答案:A(2)函数f(x)=x 3-3x 2+x -1的图象关于( )对称A 、直线x=1B 、直线y=xC 、点(1,-2)D 、原点(3)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)的对称中心为M (x 0,y 0),记函数f (x )的导函数为f ′(x ),f ′(x )的导函数为f ″(x ),则有f ″(x 0)=0.若函数f (x )=x 3-3x 2,则f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫4 0322 017+f ⎝⎛⎭⎫4 0332 017=( )A .-8 066B .-4 033C .8 066D .4 033xxxx12()()0f x f x ⋅<()fx xx)0()(23>+++=a d cx bx ax x f ))3(,3(abf a b --)('x f a b x 3-=abx 3-=)3()3)(3()3()(2323abf a b x a b c a b x a d cx bx ax x f -++-++=+++=x ab c ax x g )3()(23-+=)(x f ))3(,3(a b f a b --2条1条【解析】由f (x )=x 3-3x 2得f ′(x )=3x 2-6x ,f ″(x )=6x -6,又f ″(x 0)=0,所以x 0=1且f (1)=-2,即函数f (x )的对称中心为(1,-2),即f (x )+f (2-x )=-4.令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫4 0322 017+f ⎝⎛⎭⎫4 0332 017,则S =f ⎝⎛⎭⎫4 0332 017+f ⎝⎛⎭⎫4 0322 017+…+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫12 017,所以2S =4 033×(-4)=-16 132,S =-8 066.解析 由f(x)=ax 3+bx 2+cx+d(a ≠0)的图象关于成中心对称知选C(4)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则( )A 、b ∈(-∞,0)B 、b ∈(0,1)C 、b ∈(1,2)D 、b ∈(2,+ ∞解析 显然f(0)=d=0,由f(x)=ax(x -1)(x -2)知a>0,又 f(x)= ax 3-3ax 2+2ax 比较系数可知b=-3a<0,故选A(5) 试确定的a,b,c,d 符号(答:a>0,b<0,c>0,d=0)(6)(2013课标全国Ⅱ卷,10)已知函数f(x)=x 3+ax 2+bx+c ) (A )x α∈R,f(x α)=0 (B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x 0是f (x )的极值点,则解析:由三次函数值域为R 知f(x)=0有解,A 正确;由性质可知B 正确;由性质可知若f(x)有极小值点,则由两个不相等的实数根,,则f(x)在(-∞,x 1)上为增函数,在上为减函数,在(x 2,,)上为增函数,故C 错。
专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。
以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。
∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。
三次函数性质的探索我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置.其中运用的较多的一次函数不等式性质是:()0>f在[m,n]上恒成立的充要条件x()0>fm()0>fn接着,我们同样学习了二次函数,图象大致如下:图1 图2利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置.总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢?三次函数专题一、定义:定义1、形如32(0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。
定义2、三次函数的导数232(0)y ax bx c a '=++≠,把2412b ac ∆=-叫做三次函数导函数的判别式。
由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。
特别是文科。
系列探究1:从最简单的三次函数3x y =开始反思1:三次函数31y x =+的相关性质呢? 反思2:三次函数31y x =-+的相关性质呢? 反思3:三次函数()311y x =-+的相关性质呢?(2012天津理)(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 B (A )0 (B )1 (C )2 (D )3系列探究2:探究一般三次函数)0()(23>+++=a d cx bx ax x f 的性质:先求导2()32(0)f x ax bx c a '=++>1.单调性:(1)若22120b ac =-≤△(),此时函数()f x 在R 上是增函数;(2)若22120b ac =->△(),令2()320f x ax bx c '=++=两根为12,x x 且12x x <,则()f x 在12(,),()x x -∞+∞上单调递增,在12(,)x x 上单调递减。
三次函数及高次函数的性质三次函数是指具有三次方程式的函数表达式,形式通常为 f(x) = ax^3 + bx^2 + cx + d,其中 a、b、c、d 是常数。
三次函数常见的性质包括零点的个数、导数的凸凹性、拐点的存在等。
除此之外,高次函数还包括四次函数、五次函数等更高次数的函数,它们也具有类似的性质。
1. 零点的个数:三次函数的特点之一是它至少有一个零点。
由于三次方程式的根为实数、复数或重数根,所以三次函数的图像通常会与 x 轴交于一个或多个点。
根据三次函数的系数,我们可以通过解方程或借助综合定理来确定零点个数和位置。
2. 导数的凸凹性:导数反映了函数在不同点处的斜率变化情况。
对于三次函数,它的导数是一个二次函数。
根据导数的正负性,我们可以判断三次函数在不同区间的凸凹性。
具体来说,当导数大于零时,函数在该区间上是上凸的;当导数小于零时,函数在该区间上是下凸的。
通过凸凹性判断,我们可以进一步分析函数的极值点、最值等。
3. 拐点的存在:拐点是函数图像在某一点处由凹转凸(或由凸转凹)的点。
对于三次函数,它的二阶导数是一个一次函数。
通过二阶导数的正负性,我们可以确定三次函数的拐点存在和位置。
对于高次函数,它们的性质与三次函数类似,但随着函数次数的增加,性质会变得更加复杂。
高次函数可能有多个拐点、多个零点,导数的次数也会增加,进而影响到函数的凸凹性。
因此,研究高次函数的性质时,我们需要更深入地分析导数和二阶导数的特征,判断函数的局部变化情况。
总结而言,三次函数及高次函数具有独特的性质,包括零点的个数、导数的凸凹性、拐点的存在等。
掌握这些性质有助于我们更深入地理解函数的变化规律,并在实际问题中应用函数来描述和解决。
因此,在学习数学和应用数学领域时,我们需要充分掌握和理解三次函数及高次函数的性质。
三次函数的图像与性质及应用一. 基本命题原理对于三次函数而言,其导函数为一个二次函数,那么根据其导函数的基本性质,可将三次函数的图象和性质梳理如下: 1.根的个数(0>a ).对于三次函数,其导函数为二次函数:,二次函数的判别式化简为:△=, (1)若,则恰有一个实根;(2)若,且,则0)(=x f 恰有一个实根; (3)若,且,则0)(=x f 有两个不相等的实根; (4)若,且,则0)(=x f 有三个不相等的实根.注:由图像可知:①0)(=x f 含有一个实根的充要条件是曲线)(x f y =与x 轴只相交一次, 即)(x f 在R 上为单调函数(或两极值同号),所以032≤−ac b (或032>−ac b ,且0)()(21>⋅x f x f ).②0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与x 轴有两个公共点且其中之一 为切点,所以032>−ac b ,且0)()(21=⋅x f x f .③0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与x 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.故032>−ac b 且0)()(21<⋅x f x f .)0()(23≠+++=a d cx bx ax x f )0(23)(2'≠++=a c bx ax x f ()0f x =d cx bx ax x f +++=23)()0(23)('2≠++=a c bx ax x f )3(412422ac b ac b −=−032≤−ac b 0)(=x f 032>−ac b 0)()(21>⋅x f x f 032>−ac b 0)()(21=⋅x f x f 032>−ac b 0)()(21<⋅x f xf2.极值情况:三次函数(0>a ),导函数为二次函数,二次函数的判别式化简为:△=, (1) 若,则)(x f 在),(+∞−∞上为增函数;(2)若,则)(x f 在和上为增函数,)(x f 在),(21x x 上为减函数,其中. 证明:c bx ax x f ++=23)('2, △=)3(412422ac b ac b −=−,(1) 当0≤∆ 即032≤−ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞−∞为 增函数.(2) 当0>∆ 即032>−ac b 时,解方程0)('=x f ,得由0)('>x f 得1x x <或2x x >,)(x f 在),(1x −∞和),(2+∞x 上为增函数.由0)('<x f 得21x x x <<,)(x f 在),(21x x 上为减函数.总结以上得到结论:三次函数d cx bx ax x f +++=23)((0>a ) (1)若032≤−ac b ,则)(x f 在R 上无极值;(2)若032>−ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.d cx bx ax x f +++=23)()0(23)(2'>++=a c bx ax x f )3(412422ac b ac b −=−032≤−ac b 032>−ac b ),(1x −∞),(2+∞x aacb b x a ac b b x 33,332221−+−=−−−=aacb b x a ac b b x 33,332221−+−=−−−=3.对称中心三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心为点))3(,3(abf a b f −−,该点是三 次函数的拐点,此点的横坐标也是二阶导数的零点.4.三次方程根与系数得关系(1)已知实系数多项式32()x ax bx cx d ϕ=+++有三个根,设为123,,.x x x123122331123,,.b c dx x x x x x x x x x x x a a a++=−++==−(2)由三次方程根与系数的关系:32()()()()().x a x b x c x a b c x ab bc ca x abc +++=+++++++5.对称中心处的切线拐点是函数凸凹性发生转换的点,即由凸转凹,或者由凹转凸,即0)(0''=x f ,当0x x <时,0)(''<x f 或0)(''>x f ,当0x x >时,0)(''>x f 或0)(''<x f .如图,点A 为函数)(x f 的拐点,做点A 处的切线,可以看到,具有单个拐点的函数)(x f y =可以看作是1个凸函数和1个凹函数通过拐点进行缝合,它们在缝合点处具有相同的切线l ,这条切线l 将平面分别两个半平面,一半包含一个凸函数,另一半包含一个凹函数二.典例应用★应用1.函数的性质考察.例 2.已知曲线3()3f x x x λ=−+在点(,())A m f m 处的切线与曲线的另外一个交点为,B P 为线段AB 的中点,O 为坐标原点.(1)求()f x 的极小值并讨论()f x 的奇偶性.(2)当函数()f x 为奇函数时,直线OP 的斜率记为k ,若34k −,求实数m 的取值范围. 解析:(1)2()333(1)(1)f x x x x '=−=+−,当11x −<<时,()0f x '<;当1x >时,()0f x '>.当0λ=时3()3f x x x =−,显然3()3()f x x x f x −=−+=−,所以()f x 为奇函数.当0λ≠时(1)2,(1)2f f λλ−=+=−+,显然(1)(1)f f −≠. 且(1)(1)20f f λ−+=≠,所以()f x 为非奇非偶函数.(2)2()33f x x '=−,所以曲线在点(,())A m f m 处的切线方程为()()32333()y m m m x m λ−−+=−−,其与原曲线方程33y x x λ=−+,联立化简得:2()(2)0x m x m −+=.从而()32,86(0)B m m m m λ−−++≠.所以3732,22m m m P λ⎛⎫−++− ⎪⎝⎭,3732m m k m λ−−=.由于(0,2),18m k ∀∈; 即当(0,2)m ∈时,都有32721m m λ−.令3()721h m m m =−,则2()212121(1)(1)h m m m m '=−=+−,易知当01m <<时,()0h m '<;当12m <<时,()0h m '>.即()h m 在(0,1)上递减,在(1,2)上递增,所以当(0,2)m ∈时,min ()(1)14h m h ==−,所以2147λλ−⇔−,从而实数λ的取值范国为(,7]−∞−. 注:可以看到,切点的横坐标恰好便是方程①的二重根.例3.(切割线定理)如果我们将上述的内容再结合三次函数韦达定理,就可以得到更多有趣的结论.如图,过切点A ))(,(A A x f x 的切线与三次函数)(x f y =的图象交于B 点,同时,过))(,(00x f x 的割线AD 与三次函数)(x f y =的图象交于C A D ,,三点. 我们有以下结论:三次函数切割线定理. (1)abx x B A −=+2; (2)D C B A x x x x +=+; (3)A F E x x x 2=+.证明:显然,方程①整理可得:0)())((000'23=+−−+++x f x x x f d cx bx ax .结合上述重根个数定理以及韦达定理可得:abx x B A −=+2,结论(1)证毕. (2)设直线AD 的方程为m kx y +=,代入)(x f y =的表达式结合韦达定理可得:abx x x D C A −=++,再联立a b x x B A −=+2,可证得:D C B A x x x x +=+.(3)同理,如图a bx x x E E B −=++,再联立a b x x B A −=+2,可得:A F E x x x 2=+.练习1.(2016年天津卷)设函数R b a b ax x x f ∈−−−=,,)1()(3. (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x x =,且)()(10x f x f =,其中10x x ≠,求证:3201=+x x . 解析:(2)过极值点0x x =做函数)(x f 图象的切线)(0x f y =,其与)(x f y =交点横坐标为1x x =. 将函数b ax x x f −−−=3)1()(展开可得:)1()3(3)(23+−−+−=b x a x x x f 由上述切割线定理可知:3201=+x x ,证毕.练习2. 下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( ) ①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠−时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠−时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④由上述结论易得:A.★应用2.三次函数的切线个数例4.已知函数()33f x x x =−.(1)求()f x 在区间[]()0,0m m >上的最大值和最小值; (2)在曲线2yx 上是否存在点P ,使得过点P 可作三条直线与曲线()y f x =相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由. 解析:(2)假设存在符合条件的点()2,P a a,切点设为()300,3x xx −.所以,根据导数几何意义可得:()2300200333a x x x a x −−=−−即322002330x ax a a −++=①故问题转化为关于0x 的方程①存在三个不同实根.令()322233g x x ax a a =−++,则()()2666g x x ax x x a '=−=−;当0a =时,()260g x x ='≥,()g x 单调递增,不合题意;当0a >时,易知()g x 在(),0−∞单调递增,在()0,a 单调递减,在(),a +∞单调递增,从而()()000g g a ⎧>⎪⎨<⎪⎩,即2323030a a a a a ⎧+>⎨−++<⎩解得:a >0a <时,易知()g x 在(),a −∞单调递增,在(),0a 单调递减,在()0,+∞单调递增从而()()000g a g ⎧>⎪⎨<⎪⎩,即3223030a a a a a ⎧−++>⎨+<⎩解得:3a −<<,综上,存在符合条件的点()2,P a a,其横坐标的取值范围为⎛⎫−⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 注.三次函数的切线条数是三次函数中典型应用之一,其实质就是在讨论三次方程根的个数,是一类非常典型的函数与方程综合问题,颇受命题人青睐.★应用3.三次方程的根与韦达定理同样是2020年全国三卷23题,不等式选做题,依然以三次方程根与系数的关系命制而 成,下面予以分析,希望各位读者在高三备考时重视对三次方程根与系数关系的认识程度, 有备无患!例5.设直线y t =与曲线()23C y x x =−:的三个交点分别为()()()A a t B b t C c t ,,,,,,且a b c <<.现给出如下结论:①abc 的取值范围是()04,;②222a b c ++为定值;③6a b c ++=. 其中正确结论的为解析:设()()232369y f x x x x x x ==−=−+,则()23129f x x x '=+-,令()0f x '=,解得:1x =或3x =;当1x <或3x >时,0fx,当13x <<时,()0f x '<;∴()f x 在)1,(−∞上是增函数,在(1,3)上是减函数,在(3,+∞)上是增函数;当1x =时,()f x 取得极大值()14f =,当3x =时,()f x 取得极小值()30f =;作出函数()f x 的图象如图所示:∵直线y t =与曲线()23C y x x =−:有三个交点,由图象知04t <<. 令()()232369g x x x t x x x t =−=+---,则a b c ,,是()0g x =的三个实根.∴()()()3269x x x t x a x b x c +=-----,即()()323269x x x t x a b c x ab ac bc x abc −+−=−+++++−,∴6a b c ++=,9ab bc ac ++=,abc t =,①③正确;∴()()2222218a b c a b c ab bc ac ++=++++=-,∴②正确;综上,正确的命题序号是①②③.故答案为:①②③.★应用4.三次方程根的分布下面这道题目是2020年三卷的导数压轴题,其实质考察了三次函数的零点分布.但其却 具有非常丰厚的数学背景,即三次方程根的三角形式,也是此题的命题原理.为此,此题 先用函数思想求解,再给出其命题背景.例6.(2020全国3卷)设函数c bx x x f ++=3)(,曲线)(x f y =在点))21(,21(f 处的切线与y 轴垂直. (1)求b ;(2)若)(x f 有一个绝对值不大于1的零点,证明:)(x f 所有的零点的绝对值都不大于1.解析:(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =−.(2)由(1)可得33()4f x x x c =−+,故'2311()33()()422f x x x x =−=+−,令'()0f x >,得12x >或12x <−;令'()0f x <,得1122x −<<,所以()f x 在11(,)22−上单调递减,在1(,)2−∞−,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c −=−−=+=−=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f −>或(1)0f <,即14c >或14c <−.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c −=−>−=+>=−>=+>,又32(4)6434(116)0f c c c c c c −=−++=−<,由零点存在性定理知()f x 在(4,1)c −−上存在唯一一个零点0x ,即()f x 在(,1)−∞−上存在唯一一个零点,在(1,)−+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <−时,111111(1)0,()0,()0,(1)0424244f c f c f c f c −=−<−=+<=−<=+<,又32(4)6434(116)0f c c c c c c −=++=−>,由零点存在性定理知()f x 在(1,4)c −上存在唯一一个零点0'x ,即()f x 在(1,)+∞上存在唯一一个零点,在(,1)−∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.应用5.三次函数的拐点切线 例7.已知函数()321132f x x ax bx =++在区间[)(]1,1,1,3−内各有一个极值点. (1)求24a b −的最大值;(2)当248a b −=时,设函数()y f x =在点()()1,1A f 处的切线为l ,若在点A 处穿过()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 解析:(1)因为函数()321132f x x ax bx =++在区间[)(]1,1,1,3−内分别有一个极值点, 所以b ax x x f ++='2)(在区间[)(]1,1,1,3−内分别有一个实根,设两实根为1x ,2x (1x <2x ),则b a x x 4212−=−,且4012≤−<x x ,于是4402≤−<b a ,16402≤−<b a ,且当11−=x ,32=x ,即2−=a ,3−=b 时等号成立,故24a b −的最大值是16(2)由b a f ++='1)1(知)(x f 在点()()1,1A f 处的切线l 的方程是)1)(1()1(−'=−x f f y ,即a x b a y 2132)1(−−++=,因为切线l 在点A 处穿过()y f x =的图象所以]2132)1[()()(a x b a x f x g −−++−=在1=x 两边附近的函数值异号,则1=x 不是)(x g 的极值点,而a x b a bx ax x x g 2132)1(2131)(23++++−++=,且)1)(1(1)1()(22a x x a ax xb a b ax x x g ++−=−−+=++−++=',若a −−≠11,则1=x 和a x −−=1都是)(x g 的极值点,所以a −−=11,即2−=a ,又由248a b −=得1−=b ,故x x x x f −−=2331)(.五.习题演练习题1.已知函数()()23f x x x =−,若()()()f a f b f c ==,其中a b c <<,则( )A .12a <<B .6a b c ++=C .2a b +>D .abc 的取值范围是()0,4 解析:因为()()23f x x x =−,所以()231293(3)(1)f x x x x x =−=−−'+,令()0f x '=,解得:1x =或3x =,当0f x 时,3x >或1x <,所以()f x 单调递增区间为(),1−∞和()3,+∞;当()0f x '<时,13x <<,所以()f x 单调递减区间为()1,3;且(3)0f =,(1)(4)4f f ==,如图:设()()()f a f b f c t ===,则04t <<,0134a b c <<<<<<,故选项A 错误; 又()()()()f x t x a x b x b −=−−−,所以()23()()()x x t x a x b x c −−=−−−,即323269()()x x x t x a b c x ab ac bc x abc −+−=−+++++−,对照系数得6a b c ++=,故选项B 正确;(0,4)abc t =∈,故选项D 正确;因为34c <<,所以36()4a b <−+<,解得23a b <+<,故选项C 正确,综上,正确的选项为BCD.故选:BCD习题2.已知函数()313f x x tx t =++. (1)讨论函数()f x 的单调区间;(2)若函数()f x 有三个不同的零点1x 、2x 、3x ,求t 的取值范围,并证明:123x x x ++<解析:(1)2()f x x t =+'①当0t 时,()0f x ',则()f x 在R 上单调递增,无递减区间;②当0t <时, ()f x 在(上单调递减,在(,)∞∞−+上单调递增(2)由(1)知函数f (x )有三个零点,则0t <∵()f x 在(上单调递减,在(,)∞∞−+上单调递增∴()f x 的极大值为2(3f t =−且极大值大于0,极小值为23f t =+∵()f x 有三个不同的零点123,,x x x ,∴203f t =+< 解得94t <−,故t 的取值范围为9,4⎛⎫−∞− ⎪⎝⎭. 又∵(0)0f t =<,当x →+∞时,有()f x →+∞,当x →−∞时,有()f x →−∞.∴设123x x x <<,由零点存在性定理知1230x x x <<<. ∴12x x +<又∵31233f t t t =++=−(0f => 3x <<因此123x x x ++习题3已知函数()3134f x x ax =−+,()lng x x =−. (1)讨论函数()f x 的单调性;(2)用{}min ,m n 表示,m n 中较小者,记函数()()(){}min ,h x f x g x =,(0x >).若函数()h x 在0,上恰有3个零点,求实数a 的取值范围.解析:(1)()3134f x x ax =−+,x ∈R ,()233f x x a '=−当0a ≤时,0f x ,()f x 在R 上为单调递增,当0a >时,()(3f x x x '=,令0f x ,得x <x ()f x 单调递增令0f x ,得x <()f x 单调递减,综上:当0a ≤时,()f x 在(),−∞+∞为增函数当0a >时,()f x 在(,−∞和)+∞为增函数,在(为减函数 (2)当(1,)x ∈+∞时,()ln 0g x x =−<,从而()min{(),()}()0h x f x g x g x =≤<,∴()h x 在(1,+∞)无零点.当x =1时,若512a ≤,则5(1)304f a =−≥,(1)min{(1),(1)}(1)0h f g g ===,故x =1是()h x 的零点;若512a >,则5(1)304f a =−<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =−>,所以只需考虑()f x 在)1,0(的零点个数.(ⅰ)若0a ≤或1a ≥,则()2()3f x x a '=−在)1,0(无零点,故()f x 在)1,0(单调,而1(0)4f =,5(1)34f a =−,所以当1a ≥时,()f x 在)1,0(有一个零点;当0a ≤时,()f x 在)1,0(无零点.(ⅱ)若01a <<,则()f x 在)单调递减,在单调递增,故当x ,()f x 取的最小值,最小值为124f =−.①若f >0,即0<a <14,()f x 在)1,0(无零点.②若f =0,即14a =,则()f x 在)1,0(有唯一零点;③若f <0,即114a <<,由于1(0)4f =,5(1)34f a =−,所以当15412a <<时,()f x 在)1,0(有两个零点;当5112a <<时,()f x 在)1,0(有一个零点. 综上,当14a <或512a >时,()h x 由一个零点;当14a =或512a =时,()h x 有两个零点;当15412a <<时,()h x 有三个零点. 所以a 的取值范围是15,412⎛⎫ ⎪⎝⎭习题4.已知函数()()()32111032f x x a x ax a =+−−>. (1)求函数f (x )的极值;(2)当a >1时,记f (x )在区间[-1,2]的最大值为M ,最小值为m .已知12,33M m ⎛⎫ ⎪⎝+⎭∈.设f (x )的三个零点为x 1,x 2,x 3,求()122331f x x x x x x ++的取值范围. 解析:(1)()()()()211f x x a x a x x a '=+−−=−+,令0f x ,解得x a <−或1x >,令()0f x '<,解得1a x −<<,所以()f x 在(),a −∞−,()1,+∞上单调递增,在(),1a −上单调递减,当x a =−时取得极大值,()3322321111132262f f a a a a a a a =−=−+−+=+极大值, 当1x =时取得极小值,()11111132262f f a a a ==+−−=−−极小值,所以()f x 的极大值为321162a a +,极小值为1162a −−. (2)因为1a >,所以()f x 在()1,1−上单调递减,()1,2上单调递增,()11162m f a ==−−, 因为()3521263f a −=−>,()222233f a =−<,所以()35126M f a =−=−, 111352362263a a <−−+−<,解得4533a <<,设123x x x <<,令()()2111032f x x x a x a ⎡⎤=+−−=⎢⎥⎣⎦,所以20x =,313x x a =−,()()3212233193322f x x x x x x f a a a ++=−=−−, 329322y a a =−−在45,33⎛⎫ ⎪⎝⎭上单调递减,当32934025,223a a ⎛⎫−−∈−− ⎪⎝⎭,所以()122331f x x x x x x ++的取值范围为4025,3⎛⎫−− ⎪⎝⎭.。
三次函数的性质及简单应用
摘要:本文运用导数的知识来研究一般的三次函数的性质,为进一步探索高次
函数的性质提供了方法依据,为解决高考中三次函数单调性、最值等问题找到了
有效的方法。
关键词:三次函数;性质;最值;单调性;对称性
作者简介:徐树富,任教于浙江省衢州高级中学。
二次函数的有关性质及其应用是函数内容中的一个重点,而随着导数知识的
介入,三次函数在函数问题的研究中凸显出其重要性。
三次函数问题,可通过求导
转化为二次函数或二次方程问题,然后结合导数的基本知识及二次函数的性质来解决,在高考和一些重大考试中频繁出现有关它的单独命题。
笔者就教学及解题中
碰到的一些三次函数的性质进行一些初浅的探讨。
一、一般的三次函数的图象与性质:
1.函数的定义域与值域均为R。
2.极值:
3.单调性:
(1)证明:三次函数关于点(m,n)对称的充要条件是,即
(4)过对称中心的曲线的切线有且只有一条;
(5)把函数的图象按向量平移后得到的图象关于原点中心对称。
6.图象有两种形状:
图二图三
二、与三次函数有关的问题
2.三次函数解析式的形式
三、应用举例
三次函数的导函数是二次函数,因此,熟练把握二次函数的图像与性质便是
研究三次函数图像与性质的起点。
函数是高中数学的核心内容,在新教材高三数学选修本中虽然利用了导数方
法重新研究了函数的若干性质,但是在离开导数背景的函数问题的学习与研究中,大多数学生仍然未能自觉地想到用导数方法来解决高中数学教学中遇到的用初等
方法较难解决的问题,为克服这一思维定势,在与二次函数比较的基础上,对三
次函数的性质进行系统的梳理,旨在使学生真正学会用导数作为工具研究函数的
性质、并能将该思想方法早日纳入到原有的知识结构之中,形成自觉的应用意识。
作者单位:浙江省衢州高级中学
邮政编码:324006
The Nature of Cubic Function and Its Simple Application
XU Shufu
Abstract: This paper studies the nature of cubic function with derivative knowledge, which supplies ways to probe into the nature of higher-order function and finds effective methods of solving monotony and maxima and minima of cubic function.
Key words: cubic function; nature; maxima and minima; monotony; symmetry。