最新新奥数小升初模拟试题及答案(一)
- 格式:pdf
- 大小:136.41 KB
- 文档页数:5
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。
⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。
2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。
为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。
3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。
40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。
4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。
答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。
那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。
如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。
2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。
小学生奥数小升初入学的模拟试题以及答案小学生奥数小升初入学的模拟试题以及答案1 计算:(5 分×5=25分)1、99+99×99+99×99×99=5、若3.5×[6.4-(1.6+□)0.9]8.4=1.5,则□=________2 填空:(5分×5=25分)1、一个数除以7所得的余数和商相同,并且各个数位上的数字和最小,这个数是_______.2、一项工程,预计15个工人每天做4个小时,18天可以完成。
为了赶工期,增加3人并且每天工作时间增加1小时,可以提前_______天完工。
3、甲、乙两人背诵英语单词,甲比乙每天多背8个,乙因生病,中途停止10天。
40天后,乙背的.单词正好是甲的一半,甲背单词________个。
4、在一个两位数的两个数字之间加上一个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元一张的一共150张,用去1140元,其中5元和8元的张数相等,5元的电影票有。
3 填空题(6分×5=30分)1、一课外活动小组,男生人数是女生人数的1.5倍,又来了6名女生后,男生人数是女生人数的1.2倍,这个小组原来有。
2、四位数中,原数与反序数(例如:1543的反序数是3451)相等的共有。
3、王老师到商店去买5个篮球和3个足球,需要348元,如果买3个篮球和2个足球,需要216元,一个篮球。
4、一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是。
5、要砌一段围墙,第一天砌了总长的1/3又2米,第二天砌了剩下的1/2少1米,第三天砌了剩下的3/4多1米,还剩下3米没有砌完。
这段围墙长。
4 填空(8分×4=32分)1、三角形ABC中,C是直角,已知AC=2,CD=2,CB=3,AM=BM,那么三角形AMN(阴影部分)的面积是。
2、现在是12点整,时针、分针再次重合至少过分钟。
3、有两堆棋子,甲堆有210个,其中白子占3/10,乙堆有120个,其中白子占9/10,为使甲堆中白子、黑子一样多,并使乙堆中白子占8/10,应从乙堆中拿个白子和黑子到甲堆中。
模拟训练题(一)一、填空题1. 计算:8+98+998+9998+99998=________.2. 在947后面添上三个不同的数字,组成一个被2、3、5同时整除的最小的六位数,这个数是_____.3. 请给出5个质数,把它们按从小到大的顺序排列起来,使每相邻的两个数都相差6.______________.4. 有两张同样大小的长方形纸片,长10厘米,宽3厘米,把它们按图所示 的方法叠合贴在一起,贴好后所成的“十”字图形,它的周长是是_____.5. 100个3连乘的积减去5,所得的差的个位数字是______.6. 图中共有______个三角形.7. 用一个小数减去末位数字不为零的整数,如果给整数添上一 个小数点,使它变成小数,差就增加154.44, 这个整数是______.8. 根据下边竖式中给出的数,在各个小方框内填上合适的数,使这个多位数乘法竖式完整.那么,乘积为______. □ □ 5 × 3 □ □ □ □ 0 2 □ □ 5 □ 0 □□ □ 5 □ 09. 某公园的门票是每人10元,30人以上(含30人)可以买团体票,按7折优惠,即每人7元.最少____人时买团体票比买普通票便宜.10. 两个自然数X 、Y 的最大公约数是14,最小公倍 数是280,它们的和X +Y 是______. 二、解答题11. 已知图中三角形ABC 的面积为1998平方厘米, 是平行四边形DEFC 面积的3倍.那么,图中阴影部 分的面积是多少?12. 小明上学期期末考试,数学、语文、英语三科的平均成绩是92分.如果不算数学成绩两科平均成绩比三科的平均成绩低2分,而英语成绩比语文成绩高3分,小明这三科考试成绩各是多少?13. 若自然数14,12,++P P P 都是素数,那么,?5585=+P14. A 、B 、C 、D 、E 五位同学各自从不同的途径打听到中南地区小学五年级通讯赛获得,而五位同学所打听到的情况,每人都仅有一项是正确的. 请你据此推断这位获第一名的同学?———————————————答 案—————————————————————— 答 案:1. 111100.8+98+998+9998+99998=(98+2)+(998+2)+(9998+2)+(99998+2) =100+1000+10000+100000 =111100.2. 947130.要想使组成的这个六位数能被5整除,尾数只能是0或5,又这个六位数能被2整除.因此尾部应为偶数,故个位为0,要使这个六位数最小,那么它的百位只能是1,(如果是0,0会和末位的0重复),同理,满足题目要求的十位是3,这个数是947130.3. 5,11,17,23,29.4. 40厘米,51平方厘米.“十”字图形的周长为2个纸片,周长的和减去重叠部分正方形的周长,为 (2×10+2×3)×2-4×3=40(厘米)“十”字图形的面积为2个纸片,面积的和减去重叠部分正方形的面积,为 10×3×2-3×3=51(平方厘米)5. 6.先考虑4个3的情况:3×3×3×3=81,末尾为1,100÷4=25,即100个3连乘的积就相当于25个81连乘的积.因为1乘以1等于1,所以,100个3连乘的积的个位数字一定是1,减去5,不够减,向十位借1,11-5=6.所以,所求答案为6.6. 8.单个小块的三角形有3个,两小块拼成的三角形有3个,三小块拼成的三角形有1个,六小块拼成的三角形有1个,故图中共有3+3+1+1=8(个)三角形.7. 156.因为差增加154.44, 可知这个整数一定比原数缩小了100-1=99(倍). 154.44÷99=1.56,所求原数为156.8. 92590.首先考虑被乘数5ab 的百位数字,由5ab ×3是十位数字为0的三位数知3≤a .若a =3,由5ab ×3的十位数字为0知b =3,此时5ab ×3=1005不是三位数,故3≠a ;若a =1,则5ab ×□<200×9=1800,不会是千位为2的四位数,故1≠a ,因此a =2. 易知乘法算式为 235×394=92590.9. 22.30人的团体票为7×30=210(元),可以买普通票210÷10=21(张),所以最少22人时买团体票要比买普通票便宜.10. 126或294.设a x 14=,b y 14=,由14ab =280,推知20=⨯b a .因为b a ,互质,所以,1=a 20=b 或4=a ,5=b .推知)(14b a y x +=+=126或294.11. 在平行四边形D E F C 中,DE 与BF 平行,因此阴影部分(DBE ∆)的面积为: 3332)31998(2)32=÷÷=÷÷=÷∆ABC DEFC S (平方厘米).12. 小明的数学成绩是92×3-(92-2)×2=96(分);小明的英语成绩是[(92-2)×2+3]÷2=91.5(分);小明的语文成绩是(92-2)×2-91.5=88.5(分).13. 设素数p 除以3的余数为r ,令r k p +=3,(k 为整数,r =0,1,2). 若r =1,则k ≥1,此时2p +1=2(3k +1)+1=3(2k +1)与2p +1为素数产生矛盾. 若r =2,则k ≥0,此时4p +1=4(3k +2)+1=3(4k +3)与4p +1为素数产生矛盾. 故r =0,p =3k ,由p 为素数知k =1,p =3.因此,1999553854855=+⨯=+P .14. 由于五位同学打听到的情况,每人仅有一项是正确的,所以,这位获第一名的同学不可能姓李或陈,这是因为C A ,打听到的情况除了姓什么不一样外其他都一样,如姓李是正确的,那么就不是女同学,不是13岁,不是广东人,这样C 打听到的姓陈又是正确的,互相矛盾.如果姓张,E B ,打听到的姓什么是正确的,其他是不正确的,即不是男同学,不是11,12岁,不是湖南人,广东人.那么,只能是女同学,13岁,广西人.这样,A 打听到的就有两项是正确的,显然矛盾,那么,最后剩下D ,D 打听到的姓黄应是正确的.又由D 知不是男同学,是女同学;再看A 和D 可知年龄不是11岁,13岁,不是广东人也不是广西人,而是12岁,湖南人. 综上所述,获第一名的同学:姓黄,女,12岁,湖南人.模拟训练题(二)一、填空题1. 计算:211×555+445×789+555×789+211×445=______.2. 纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话.3. 3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人____人.4. 大于100的整数中,被13除后商与余数相同的数有____个.5. 移动循环小数 5.085836 的前一个循环点后,使新的循环小数尽可能大.这个新的循环小数是______.6. 在1998的约数(或因数)中有两位数,其中最大的数是______.7. 狗追狐狸,狗跳一次前进1.8米,狐狸跳一次前进1.1米.狗每跳两次时狐狸恰好跳3次,如果开始时狗离狐狸有30米,那么狗跑_____米才能追上狐狸.8. 在下面(1)、(2)两排数字之间的“□”内,选择四则运算中的符号填入,使(1)、(2)两式的运算结果之差尽可能大.那么差最大是_____.(1)1□2□3□4□5□6□7=(2)7□6□5□4□3□2□1=9. 下图中共有____个长方形(包括正方形).10. 有一个号码是六位数,前四位是2857,后两位记不清,即2857□□.但是我记得,它能被11和13整除,那么这个号码是_____.二、解答题11. 有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?12. 如图,ABCD是长方形,其中AB=8,AE=6,ED=3.并且F是线段BE的中点,G是线段FC的中点.求三角形DFG(阴影部分)的面积.13. 从7开始,把7的倍数依次写下去,一直写到994,成为一个很大的数: 71421……987994.这个数是几位数?如果从这个数的末位数字开始,往前截去160个数字,剩下部分的最末一位数字是多少?14. 两人做一种游戏:轮流报数,报出的数只能是1,2,3,4,5,6,7,8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你就第一个数报几?———————————————答 案—————————————————————— 答 案:1. 1000000.211×555+445×789+555×789+211×445 =211×(555+445)+789×(445+555) =211×1000+789×1000 =(211+789)×1000 =1000×1000 =10000002. 4月2日上午9时.3. 9.9)5390(105=÷÷÷÷(人). 4. 5.13×7+7=98<100,商数从8开始,但余数小于13,最大是12,有13×8+8=112,13×9+9=126,13×10+10=140, 13×11+11=154, 13×12+12=168,共5个数.5. 5.085863 . 6. 74.因为1998=2×3×3×3×37,易知最大的两位约数是74. 7. 360.狗跳2次前进1.8×2=3.6(米),狐狸跳3次前进1.1×3=3.3(米),它们相差3.6-3.3=0.3(米),也就是狗每跳3.6米时追上0.3米.30÷0.3=100即狗跳100×2=200(次)后能追上狐狸.所求结果为1.8×200=360(米). 8. 5041.(1)式最大为1+2×3×4×5×6×7=5041, (2)式最小为7+6-5-4-3-2+1=0. 9. 87.首先考虑水平放置的长方形,共有(1+2+3)×(1+2+3)=36(个);再考虑边与大正方形的对角线垂直的长方形,在4×2的长方形中共有长方形(1+2+3+4)×(1+2)=30(个);两个4×2的长方形的重叠部分2×2的正方形中有长方形(1+2)×(1+2)=9(个).因此斜着的长方形共有30×2-9=51(个). 故图中共有长方形36+51=87(个). 10. 285714.285700÷(11×13)=1997余129.余数129再加14就能被143整除,故后两位数是14.11. 设每部抽水机每小时抽水量为1个单位,则泉水每小时涌出(8×10-12×6)÷(10-6)=2个单位,一池泉水有8×10-2×10=60个单位.用14部抽水机抽水时,有2部抽水机专门抽泉底涌出的泉水,因此要把全池泉水抽干需60÷(14-2)=5(小时). 12. BCDES 梯形=[3+(3+6)]×8÷2=48.BDE S ∆=3×8÷2=12 (CD 是它的高).F 是BE 中点,21=∆DEF S BDE S ∆=6.=∆BFC S BEC S ∆÷2=(ABCD S ÷2)÷2=(6+3)×8÷2÷2=18.DCF S ∆=BCDES梯形-DEF S ∆-BFC S ∆=48-6-18=24.DFG S ∆=FDC S ∆÷2=12.13. 通过分析可知:一位数中能被7整除的数9÷7=1……2只有一个;二位数中能被7整除的数99÷7=14……1,14-1=13,有13个;三位数中被7整除的数999÷7=142……,142-13-1=128,有128个.显然,这个数的位数可求,位数为1+13×2+128×3=411(位).因为128×3=384,384>160,所以截去的160个数字全是三位数中能被7整除的数,160÷3=53……1,又知三位数中能被7整除的数为142个,那么142-53=89,89×7=623,因为被截去的160个数字是53个能被7整除的三位数多一个数字,而多的这个数字就是3,那么剩下的最末一位数字就是2,2即为所求.14. 对方至少要报数1,至多报数8,不论对方报什么数,你总是可以做到两人所报数之和为9.123÷9=13……6.你第一次报数6.以后,对方报数后,你再报数,使一轮中两人报的数和为9,你就能在13轮后达到123.模拟训练题(三)一、填空题 1. 按规律填数:(1)2、7、12、17____、____. (2)2、8、32、128____、____.2. 一家工厂的水表显示的用水量是71111立方米,要使水表显示的用水量的五位数中有四个数码相同,工厂至少再用水_____立方米.3. 一座楼高6层,每层有16个台阶,上到第四层,共有台阶____个.4. 芸芸做加法时,把一个加数的个位上的9看作8,十位上的6看作9,把另一个加数的百位上的5看作4,个位上的5看作9,结果和是1997,正确的结果应该是_____.5. 三个正方形的位置如图所示,那么 1=_____度.6. 计算:7. 数一数,图中有____个直角三角形.8. 三个同学到少年宫参加课外活动,但活动时间不相同,甲每隔3天去一次,乙每隔5天去一次,丙每隔9天去一次,上次他们三人在少年宫同时见面时间是星期五,那么下次三人同时在少年宫见面是星期____.9. 一辆卡车运矿石,晴天每天可运20次,雨天每天能运12次,它一连几天运了112次,平均每天运14次,那么这几天中有____天有雨.10. 将1,2,3,4,5,6,7,8这八个数字填入下面算式的八个“□”内(每个数字只能用一次),使得数最小,其最小得数是____. □□.□□-□□.□□二、解答题:11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两地对开.甲车每小时36千米,乙车每小时行44千米.乙车因事,在甲车开出32千米后才出发.两车从各自出发起到相遇时,哪辆汽车走的路程多?多多少千米?12. 在边长为96厘米的正方形ABCD 中(如图),G F E ,,为BC 上的四等分点,P N M ,,为AC 上的四等分点,求阴影部分的面积是多少?D13. 有甲、乙、丙、丁4位同学,甲比乙重7千克,甲与乙的平均体重比甲、乙、丁3人的平均体重多1千克,乙、丙、丁3人平均体重是40.5千克,乙与丙平均体重是41千克,问这4人中,最重的同学体重是多少千克?14. 从F E D C B A ,,,,,六位同学中选出四位参加数学竞赛有下列六条线索: (1)B A ,两人中至少有一个人选上; (2)D A ,不可能一起选上;(3)F E A ,,三人中有两人选上;(4)C B ,两人要么都选上,要么都选不上; (5)D C ,两人中有一人选上;(6)如果D 没有选上,那么E 也选不上.你能分析出是哪四位同学获选吗?请写出他们的字母代号.———————————————答 案——————————————————————答 案:1. (1)22,27. (2)512,2048.(1)可以看成由2,12,…及7,17,…两列数组成的,每列数的后一项都比前一项多10,12的后一项是22,17的后一项是27.(2)从第二项起,每一项都是前一项的4倍. 2. 666.至少再用水71777-71111=666(立方米). 3. 48.相邻两层之间有16个台阶,上到第四层有16×3=48(个)台阶. 4. 2064.个位上的9看作8,少看了1,十位上的6看作9,多看了30,… 因此,正确的结果是1997+1-30+100-4=2064. 5. 15.1=(900-450)+(900-300)-900=150. 6. 3998. 91999999个× 91999999个+191999999个 = 91999999个× 91999999个+ 91999999个+11999000个 = 91999999个×( 91999999个+1)+11999000个 = 91999999个×1 01999000个+11999000个 =1 01999000个×(91999999个+1)=1 01999000个×11999000个 =13998000个 7. 16.记最小的三角形的面积为1个单位,则面积为1的直角三角形有8个,面积为4的直角三角形有6个,面积为16的直角三角形有2个,故图中共有直角三角形8+6+2=16(个). 8. 二.甲每4天去一次,乙每6天去一次,丙每10天去一次.又4,6,10的最小公倍数为60,即下次三人同时在少年宫见面应是60天后,而60=7×8+4,故在星期五之后4天,即星期二. 9. 6.共运了112÷14=8(天),如果每天都是晴天一共应该运8×20=160(次),现在只运了112次,少运了160-112=48(次),有雨天48÷(20-12)=6(天). 10. 2.47要使差尽可能小,被减数的十位数字比减数的十位数字大1即可,此时被减数应尽可能小,减数应尽可能大,因此被减数为□1.23,减数为□8.76,故最小得数为51.23-48.76=2.47. 11. 首先求出相遇时间:(352-32)÷(36+44)=4(小时), 甲车所行距离36×4+32=176(千米), 乙车所行距离44×4=176(千米).所以,甲、乙两车所行距离相等,即两辆汽车走的路程一样多.12. 因为BC GC 41=, 所以,)(115296962141412cm S S ABC ACG =⨯⨯⨯==∆∆.又AC MN 41=,所以阴影部分面积为11524141⨯==∆∆ACG GMN S S =288(2cm )13. 从乙、丙、丁三人平均体重40.5千克,与乙、丙平均体重41千克,求出丁的体重是41-(41-40.5)×3=39.5(千克).再从甲、乙平均体重比甲、乙、丁三人平均体重多1千克,算出甲、乙平均体重是39.5+1×3=42.5(千克).甲比乙重7千克,甲是42.5+7÷2=46(千克),乙是39千克,丙的体重是41×2-39=43(千克). 故最重是甲,体重是46千克.14. 假设D 选上,由(2)知A 没有选上,由(1)知B 选上,由(4)知C 也选上,这与(5)产生矛盾.因此D 没选上,由(6)知E 没有选上,因此,选上的四位同学是F C B A ,,,.模拟训练题(四)一填空题:1. 计算102÷[(350+60÷15)÷59×17]=______.2. 甲、乙、丙三位同学讨论关于两个质数之和的问题.甲说:“两个质数之和一定是质数.”乙说:“两个质数之和一定不是质数.”丙说:“两个质数之和不一定是质数.”他们当中,谁说得对?答:_____.3. a 是一个四位小数,四舍五入取近似值为4.68,a 的最大值是_____.4. 有数组:(1,1,1),(2,4,8),(3,9,27),……,那么第1998组的三个数之和的末两位数字之和是_____.5. 某个大于1的自然数分别除442,297,210得到相同的余数,则该自然数是_____.6. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买_____千克这种混合糖果.7. 某自然数是3和4的倍数,包括1和本身在内共有10个约数,那么这自然数是_____. 8. 一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月. 9. 某钟表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表所指时间是正确的时刻在___月___日___时. 10. 王刚、李强和张军各讲了三句话.王刚: 我22岁;我比李强小2岁;我比张军大1岁. 李强: 我不是最年轻的;张军和我相差3岁;张军25岁. 张军: 我比王刚年轻;王刚23岁;李强比王刚大3岁.如果每个人的三句话中又有两句是真话.则王刚的年龄是_____.二、解答题:11. 幼儿园的老师把一些画片分给C B A ,,三个班,每人都能分到6张.如果只分给B 班,每人能得15张,如果只分给C 班,每人能得14张,问只分给A 班,每人能得几张?12. 如图,在一个平行四边形中,两对平行于边的直线将这个平行四边分为九个小平行四边形,如果原来这个平行四边形的面积为992cm ,而中间那个小平行四边形(阴影部分)的面积为192cm ,求四边形ABCD 的面积.13. 甲、乙两货车同时从相距300千米的B A ,两地相对开出,甲车以每小时60千米的速度开往B 地,乙车以每小时40千米的速度开往A 地.甲车到达B 地停留2小时后以原速返回,乙车到达A 地停留半小时后以原速返回.那么,返回时两车相遇地点与A 地相距多少千米?14. 有15位同学,每位同学都有编号,它们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去.每位同学都说,这个数能被他的编号数整除.1号作了一一验证,只有编号连续的两位同学说得不对,其余同学都对,如果告诉你,1号写的数是六位数,那么这个数至少是多少?答 案:1. 1. 102÷[(350+60÷15)÷59×17]=102÷[354÷59×17] =102÷[6×17] =12. 丙.因为3+5=8不是质数,所以甲说得不对;又因为2+3=5是质数,所以,乙说得不对.因此,两个质数之和不一定是质数,丙说得对.3.4.68494. 13.观察每组数的规律知,第1998组为(1998,19982,19983).又19982,19983的末两位数为04,92,而98+04+92=194,因此,第1998组的三个数之和的末两位数为94,其数字之和为9+4=13.5. 29.设该自然数为n ,则n 为442-297=145和297-210=87的公约数,又145和87的最大公约数为29,故n 为29的约数,又n >1,29为质数,∴n =29.6. 1.25混合糖果的总价值为9×5+7.5×4+7×3=96(元),平均价格为96÷(5+4+3)=8(元).用10元钱买这种混合糖果10÷8=1.25(千克).7. 48.因为10=2×5,这个自然数至少含质因数2和3,且至少含2个2,由约数个数定理知,这个自然数为24×31=48.8. 5.若1月1日是星期日,全年就有53个星期日.每月至少有4个星期日,53-4×12=5,多出5个星期日,分布在5个月中,故有5个星期日的月份最多有5个月.9. 8月2日上午9时.从7月29日零点到8月5日上午7时,经过175小时,共快了7.5分钟.175×5.75.4=105(小时), 105÷24=4(天)……9(小时).所求时刻为8月2日上午9时. 10. 23.假设王刚是22岁,那么张军的第一句和第三句应该是真的,但此时李强只有一句是真的,与已知矛盾,所以王刚不是22岁.这样,王刚的其他两句是真的.然后李强的第一句和第二句是真的,张军的第一句和第二句也是真的,因此王刚是23岁. 11. 设三班总人数是1,则B 班人数是156,C 班人数是146,因此A 班人数是1-156-146=356. A 班每人能分到6÷356=35(张). 12. 除阴影部分外的8个小平行四边形面积的和为99-19=80(2cm ).四边形ABCD 的面积为80÷2+19=59(2cm ).13. 甲车从A 到B 需300÷60=5(小时),乙车从B 到A 需300÷40=7.5(小时),乙车到达A 地返回时是在出发后7.5+0.5=8(小时).此时,甲车已经从B 到A 行了8-(5+2)=1(小时),两车相遇还需(300-60×1)÷(60+40)=2.4(小时).因此,相遇地点与A 地相距 2.4×40=96(千米).14. 首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说得不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号连续的两位同学说得不对”不符合.因此,这个数能被2,3,4,5,6,7都整除.其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说得也对.从而可以断定编号11,13,15的同学说得也对,不然,说得不对的编号不是连续的两个自然数.现在我们可以断定说得不对的两个同学的编号只能是8和9.这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是 [2,3,4,5,6,7,10,11,12,13,14,15] =22×3×5×7×11×13 =60060设1号写的数为60060k (k 为整数),这个数是六位数,所以k ≥2.若k =2,则8|60060k ,不合题意,所以k ≠2.同理k ≠3,k ≠4.因为k 的最小值为5,这个数至少是60060×5=300300.模拟训练题(五)一、填空题:1. 算式(762367762367+)×123123的得数的尾数是_____.2. 添上适当的运算符号与括号,使下列等式成立? 1 13 11 6 = 24.3. 甲乙两个数的和是888888,甲数万位与十位上的数字都是2,乙数万位与十位上的数字都是6.如果甲数与乙数万位上的数字与十位上的数字都换成零,那么甲数是乙数的3倍.则甲数是_____,乙数是_____.4. 铁路旁每隔50米有一棵树,晶晶在火车上从第一棵树数起,数到第55棵为止,恰好过了3分钟,火车每小时的速度是_____千米.5. 有一列数,第一个数是100,第二个数是90,从第三个数开始,每个数都是它前面两个数的平均数.第三十个数的整数部分是_____.6. 有10箱桔子,最少的一箱装了50个,如果每两箱中放的桔子都不一样多,那么这10只箱子一共至少装了____个桔子.7. 两个数6666666与66666666的乘积中有____个奇数数字.8. 由数字0,1,2,3,4,5,6可以组成____个各位数字互不相同的能被5整除的五位数.9. 一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站.已知前6个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有____人.10. 有六个自然数排成一列,它们的平均数是4.5,前4个数的平均数是4,后三个数的平均数是319,这六个数的连乘积最小是_____.二、解答题:11. 某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队?12. 如图,ABCD 是直角梯形.其中AD =12厘米,AB =8厘米,BC =15厘米,且ADE ∆、四边形DEBF 、CDF ∆的面积相等.EDF ∆(阴影部分)的面积是多少平方厘米?13. 甲、乙、丙、丁四人体重各不相同.其中有两人的平均体重与另外两人的平均体重相等.甲与乙的平均体重比甲与丙的平均体重少8千克,乙与丁的平均体重比甲与丙的平均体重重,乙与丙的平均体重是49千克.求:(1)甲、乙、丙、丁四人的平均体重;(2)乙的体重.14. 甲、乙、丙三个同学中有一人在同学们都不在时把教室扫净,事后教师问他们是谁做的好事,甲说:“是乙干的”;乙说:“不是我干的”;丙说:“不是我干的”.如果他们中有两人说了假话,一人说的是真话,你能断定是谁干的吗?答 案: 1. 9.因为367367的尾数按7,9,3,1循环出现,367÷4=91…3,所以,367367的尾数为3;又因为,762762的尾数按2,4,8,6循环出现,762÷4=190…2,所以,762762的尾数为4,同理可知,123123的尾数按3,9,7,1循环出现,123÷4=30…3,所以,123123的尾数为7,(367367+762762)×123123的尾数为(3+4)×7=49的尾数,所求答案是9. 2. (1+13×11)÷6=24. 3. 626626,262262.万位上的数字与十位上的数字都换成零后,甲乙两数的和是808808,又甲数是乙数的3倍,所以乙数为808808÷(3+1)=202202,甲数为3×202202=606606.故原来甲数为626626,乙数为262262. 4. 54.火车共行了50×(55-1)=2700(米),即 2.7千米,故火车的速度为 2.7÷(3÷60)=54(千米/时). 5. 93.提示:从第5个数起,每个数的整数部分总是93. 6. 545.由于每两箱中放的桔子都不一样多,因此,这10只箱子一共至少装了50+51+52+…+59=545(个)桔子. 7. 8.6666666×66666666=(2×3×1111111)×(2×3×11111111) =(4×1111111)×(9×11111111) =4444444×99999999=444444400000000-4444444 =444444395555556因此,乘积中有8个奇数数字. 8. 660个.当个位数是0时,符合条件的五位数有6×5×4×3=360个; 当个位数是5时,符合条件的五位数有5×5×4×3=300个. 所以,符合条件的五位数有:360+300=660个. 9. 20.设第1站到第7站上车的乘客依次为7654321,,,,,,a a a a a a a .第2站到第8站下车的乘客依次为8765432,,,,,,b b b b b b b .显然应有7654321a a a a a a a ++++++=8765432b b b b b b b ++++++. 已知654321a a a a a a +++++=100, 765432b b b b b b +++++=80.所以,100+7a =80+8b ,即8b -7a =100-80=20,这表明从前6站上车而在终点站下车的乘客共20人.10. 480.六个数的和为6×4.5=27,前4个数的和为4×4=16,后三个数的和为3×319=19.第4个数为16+19-27=8,前三个数的和为16-8=8,这三个自然数的连乘积最小为1×1×6=6;后两个数的和为19-8=11,其乘积的最小值为1×10=10,因此,这六个数的连乘积的最小值为6×8×10=480.11. 开门后,20分钟来的人数为4×20×10-400=400.因此,每分钟有400÷20=20(人)来.相当于有20÷10=2(个)入口专门用于新来的人进入游乐场,因此,开放6个入口,开门后400÷(6-2)÷10=10(分钟)就没有人排队了.12. 梯形ABCD 的面积为10828)1512(=⨯+(平方厘米),ADE ∆、四边形DEBF 、CDF ∆的面积均为108÷3=36(平方厘米).又2÷⨯=∆AB CF S CD F ,所以,98362=÷⨯=CF (厘米),BF =15-9=6(厘米).同理,AE =2×36÷12=6(厘米), BE =8-6=2(厘米). 所以,BEF S ∆=6×2÷2=6(平方厘米). 故, DEF S ∆=36-6=30(平方厘米).13. 甲、乙平均体重比甲、丙平均体重少8千克,那么丙比乙重8×2=16(千克).又乙与丁的平均体重比甲与丙的平均体重重,因此,乙与丁的平均体重比甲与乙的平均体重重,所以,丁比甲重,故丙与丁的平均体重比甲与乙的平均体重重,由于有两人的平均体重与另外两人的平均体重相等,因此只能是甲与丁的平均体重同乙与丙的平均体重相等.题目告诉乙、丙平均体重是49千克,因此,甲、丁平均体重也是49千克.故4人平均体重也是49千克.丙与乙体重之和是49×2=98(千克),丙与乙体重之差是16千克,故乙的体重是(98-16)÷2=41(千克).14. 假设甲说的是真话,那么是乙干的,这时丙说的话是真话,与只有一人说真话产生矛盾.因此甲说的是假话,即不是乙干的,所以,乙说的是真话,从而丙说的是假话,故是丙干的.模拟训练题(六)一、填空题1. 计算:53.3÷0.23÷0.91×16.1÷0.82=______.2. 有三个自然数,它们相加或相乘都得到相同的结果,这三个自然数中最大的是_____.3. 两个同样大小的正方体形状的积木.每个正方体上相对的两个面上写的数之和都等于9.现将两个正方体并列放置.看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于_____.4. 2,4,6,8,…,98,100,这50个偶数的各位数字之和是_____.5. 一个箱子里放着几顶帽子,除两顶以外都是红的,除两顶以外都是蓝的,除两顶以外都是黄的,箱子中一共有_____顶帽子.6. 359999是质数还是合数?答:_____.7. 一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车也从甲地开往乙地,这列火车的速度是汽车的3倍,在甲地到乙地距离二分之一的地方追上了汽车.甲乙两地相距_____千米.8. 连续1999个自然数之和恰是一个完全平方数.则这1999个连续自然数中最大的那个数的最小值是______.9. 某小学四、五、六年级学生是星期六下午参加劳动,其中一个班学生留下来打扫环境卫生,一部分学生到建筑工地搬砖,其余的学生到校办工厂劳动,到建筑工地搬砖是到校办工厂劳10.总共要带_____个.(硬币只有5元,2元,1元三种.)二、解答题11. 小明从家到学校上课,开始时每分钟走50米的速度,走了2分钟,这时它想:若根据以往上学的经验,再按这个速度走下去,将要迟到2分钟,于是他立即加快速度,每分钟多走10米,结果小明早到5分钟,小明家到学校的路程有多远?12. 在长方形ABCD中,AB=30cm,=PR⊥,求BC40cm,如图P为BC上一点,ACPQ⊥,BDPQ+的值.PR13.车库里有8间车房,顺序编号为1,2,3,4,5,6,7,8.这车房里所停的8辆汽车的车号恰好依次是8个三位连续整数.已知每辆车的车号都能被自己的车房号整除,求车号尾数是3的汽车车号.14. 赵、钱、孙、李、周、吴、陈、王8位同学,参加一次数字竞赛,8个人的平均得分是64分.2倍.问孙和吴各得多少分?———————————————答案——————————————————————1. 5000.。
小学生奥数小升初入学模拟试题以及答案(一)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.小编小学奥数频道为大家整理的小学生奥数小升初入学模拟试题以及答案(一),供大家学习参考。
(说明:1-_题,每小题8分,_,_题每题_分,共1_分;请写出每题解答过程)1.计算:39_ +_8_ +48_ =____________________.解答:_8原式=(39+86)_ + 48_=_5_ +48_ =250_ +48_=298_ =_82.计算: =_______________________.解答:原式==2_=拓展:老师可以给学生总结一下裂项的基本类型。
3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有___________个.解:6个设原来的两位数是,则交换后的两位数是,有-=27,解得所以有4,1;5,2;6,3;7,4;8,5;9,6。
共六个4.已知:S= ,则S的整数部分是_______________________.解:74如果全是,那么结果是,如果全是,那么结果是,所以<S<,于是S的整数部分是74。
5.一个最简分数满足:,当分母b最小时,a+b=_______________________.解:8 。
根据中间数的知识,得到,所以存在符合条件。
而分母b不可能更小,因为如果为4不存在相应的数符合条件。
所以a+b=86.设a@b=[a,b]+(a,b),其中[a,b]表示a与b的最小公倍数,(a,b)表示a与b 的公约数,已知_@_=42,求_解:_为_,由于题知:[_,_]+(_,_)=42把42分成两个数的和的形式,只有36+6=42满足条件,所以_=_7.有一个最简分数,把分子加上分母,分母也加上分母,所得到的新分数是原分数的9倍,这个最简分数是________________.解:不妨设原分数为,由题可得,所以为 =8.从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个的正方体,剩下的几何体的表面积是________________平方厘米.解:2_平方厘米, 292平方厘米,364平方厘米;9.能否找到正整数a,b,c,使得关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388 解:不可能找到。
小升初奥数培优模拟试题(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.小升初奥数培优模拟试题答案一、填空题:1.(1)3.(6个)设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99)5.(二分之一)把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图6.(60千米/时)两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).7.11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数.(1)当a=11时98+2a=120,120÷3=40(2)当a=14时98+2a=126,126÷3=42(3)当a=17时98+2a=132,132÷3=44相应的解见上图.8.(61)甲、乙的平均体重比丙的体重多3千克,即甲与乙的体重比两个丙的体重多3×2=6(千克),已知甲比丙重3千克,得乙比丙多6-3=3千克.又丙的体重+差的平均=三人的平均体重,所以丙的体重=60-(3×2)÷3=58(千克),乙的体重=58+3=61(千克).9.(5)满足条件的最小整数是5,然后,累加3与4的最小公倍数,就得所有满足这个条件的整数,5,17,29,41,…,这一列数中的任何两个的差都是12的倍数,所以它们除以12的余数都相等即都等于5.10.(不能)若使七枚硬币全部反面朝上,七枚硬币被翻动的次数总和应为七个奇数之和,但是又由每次翻动七枚中的六枚硬币,所以无论经过多少次翻动,次数总和仍为若干个偶数之和,所以题目中的要求无法实现。
小升初模拟试卷(一)时间:80分钟姓名分数一填空题(6分×10=60分)1.。
2.。
3.计算,三个同学给出三个不同的答案分别为632254965、632244965、632234965其中有一个是正确的,则正确的是。
4.甲村与乙村间要开挖一条长580米的水渠,甲村比乙村每天可以多挖2米,于是乙村先开工5天,然后甲村再动工与乙村一起挖。
从开始到完成共用了35天,那么乙村每天挖米。
5.一辆汽车从A到B,每小时行40千米,当行到全程的2/3时,速度增加了1/2,因此比预定时间提早1小时到达B。
全程千米。
6.一个底面是正方形的容器里盛着水,从里面量边长是13厘米,水的高度是6厘米。
把一个15厘米高的铁质实心圆锥直立在容器里,水的高度上升到10厘米。
则圆锥的体积是立方厘米。
7.浓度为60%的酒精溶液200克,与浓度为30%的酒精溶液300克混合后所得到的酒精溶液的浓度是。
8.有2分、5分、1角的硬币共20枚,共计1.20元,其中5分的有枚,1角的有枚。
9.一个自然数可以分解为三个质因数的积,如果三个质因数的平方和是7950,这个自然数是。
10.22003与20032的和除以7的余数是。
二解答题(10分×4=40分)1. 操场上有很多人,一部分站着,另一部分坐着,如果站着的人中有25%坐下,而坐着的人中有25%站起,那么站着的人就占操场上人数的70%,求原站着的人占操场上人数的百分之几?2. 时速4千米的A追赶时速3千米的B,两人相距0.5千米时,有一只蜜蜂从A的帽子上开始回在两人中间飞,直飞到A追及B为止,若蜜蜂时速10千米.问:蜜蜂为了多少千米?3. 某书店出售一种挂历,每出售一本可获利18元,出售2/5后,每本减价10元,全部售完,共获利3000元.这个书店出售这种挂历多少本?4. 如图,一头羊被7米长的绳子拴在正五边形建筑物的一个顶点上,建筑物边长3米,周围都是草地,这头羊能吃到草的草地面积可达多少平方米?( =3)一填空题1. 1482.3. 63225496555779是3的倍数,所以乘积必然是3的倍数,只有632254965是3的倍数。
小升初奥数试卷及答案一(数学培优练习) 学校 座号 姓名 1、计算:.______31%1254119119225.1=⨯-⨯+⨯ 2、计算:._______2010200925120092008251=⨯+⨯ 3、在小数3.1415926的两个数字上方加2个循环点,得到循环小数,这样的循环小数中,最小的_______.4、一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是_______.5、20122的个位数字是________.(其中,n 2表示n 个2相乘)6、图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是_______.(填序号)7、一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多1/5,两车同时从甲乙两地相对开出2小时候,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距______千米.8、对任意两个数x ,y ,定义新的运算*为:yx m y x y x ⨯+⨯⨯=2* (其中m 是一个确定的数).如果522*1=,那么m=______,2*6=_______. 9、甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,______店的售价更便宜,便宜_____元。
10、图3中的三角形的个数是_______.11、若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是_______.12、认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是________.13、图5中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是_____平方厘米.14、如图6,正方形ABCD 和EFGH 分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD 和EFGH 中,面积较大的正方形_______.15、早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是_______点______分.16、从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资______种.17、从1,2,3,4,…,15,16这十六个自然数中,任取出n 个数,其中必有这样的两个数:一个是另一个的3倍,则n 最小是______.18、某工程队修建一条铁路隧道,当完成任务的1/3时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的4/5,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需______天.19、王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是9819,那么王老师在黑板上共写了______个数,擦去的两个质数的和最大是______.20、小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少6/19;如果小林给小强同样多的邮票,则小林的邮票就比小强的少6/17,那么,小强原有_______张邮票,小林原有______.小升初奥数试卷及答案二(数学培优练习)时间:80分钟姓名分数一、填空题(6分×10=60分)1.。
小升初模拟试卷(1)时间:80分钟姓名分数一、填空题(6分×10=60分)1.=。
2.已知2不大于A,A小于B,B不大于7,A和B都是自然数,那么的最小值是。
3.四个装药的瓶子都了标签,其中恰好有三个贴错了,那么错的情况共有种。
4.1000千克青菜,早晨测得它的含水率是97%,下午测得它的含水率是95%,那么这些菜重量减少了千克。
5.一桶油在用掉70%之后,又向桶内倒入10千克汽油。
这时桶内的邮量刚好是一整桶邮的一般,一整桶邮有_______千克。
6.A、B两项工程分别由甲、乙两个队来完成。
在晴天,甲队完成A工程需12天,乙队完成B工程需15天;在雨天,甲队的工作效率要下降40%,乙队的工作效率要下降10%。
现在,两队同时开工,并同时完成这两项工程,那么在施工的日子里,雨天有________天。
7.我们知道,一个正整数的质因数是这样的质数,它大于1并且能整除该数。
那么2001的所有质因数之和是________。
8.有一个整数,用它去除70、110、160得到的三个余数之和是50。
这个整数是_______。
9.有2527块小立方体木块,搭成三个一样大的大立方体,至少还剩块小立方体木块。
10.一个质数的3倍与另一个质数的2倍之和等于2000,那么这两个质数的和是。
二、解答题(10分×4=40分)1.某书店出售一种挂历,每出售一本可获得利润18元。
出售2/5后,每本减价10元,全部售完,共获利润3000元。
这个书店出售这种挂历多少本?2.一艘轮船所带的柴油最多可以用6小时,驶出时顺风,每小时行30千米;驶回时逆风,每小时行24千米。
这艘轮船最多驶出多少千米就应返航?3.一件工作,甲乙合作需要4小时完成,乙丙合作需要5小时完成,现在由甲丙合作2小时后,余下的乙还需要6小时完成,乙单独做需要多少小时完成?4.龟、兔在甲、乙两地之间做往返跑,兔的速度是龟的3倍,它们分别在甲、乙两地同时相对起跑,当他们在途中相遇(处于同一地点即为相遇)了12次,龟跑了多少个单程?小升初模拟试卷(1)参考答案一、填空题1.2.所以A,B要尽可能的大,才能使得倒数和尽可能小,故A=6,B=7。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是®⽆忧考⽹整理的《⼩升初奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 1、⽤⼀只⽔桶装⽔,把⽔加到原来的2倍,连桶重10千克,如果把⽔加到原来的5倍,连桶重22千克。
桶⾥原有⽔多少千克? 想:由已知条件可知,桶⾥原有⽔的(5-2)倍正好是(22-10)千克,由此可求出桶⾥原有⽔的重量。
解:(22-10)÷(5-2)=12÷3=4(千克) 答:桶⾥原有⽔4千克。
2、⼩红和⼩华共有故事书36本。
如果⼩红给⼩华5本,两⼈故事书的本数就相等,原来⼩红和⼩华各有多少本? 想:从“⼩红给⼩华5本,两⼈故事书的本数就相等”这⼀条件,可知⼩红⽐⼩华多(5×2)本书,⽤共有的36本去掉⼩红⽐⼩华多的本数,剩下的本数正好是⼩华本数的2倍。
解:⼩华有书的本数:(36-5×2)÷2=13(本) ⼩红有书的本数:13+5×2=23(本) 答:原来⼩红有23本,⼩华有13本。
2.⼩升初奥数题及答案 1、已知⼀张桌⼦的价钱是⼀把椅⼦的10倍,⼜知⼀张桌⼦⽐⼀把椅⼦多288元,⼀张桌⼦和⼀把椅⼦各多少元? 想:由已知条件可知,⼀张桌⼦⽐⼀把椅⼦多的288元,正好是⼀把椅⼦价钱的(10-1)倍,由此可求得⼀把椅⼦的价钱。
再根据椅⼦的价钱,就可求得⼀张桌⼦的价钱。
解:⼀把椅⼦的价钱:288÷(10-1)=32(元) ⼀张桌⼦的价钱:32×10=320(元) 答:⼀张桌⼦320元,⼀把椅⼦32元。
2、3箱苹果重45千克。
⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 想:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
小升初数学分班模拟试卷(一)时间:80分钟姓名分数一填空题(6分×10=60分)1.。
2.。
3.计算,三个同学给出三个不同的答案分别为632254965、632244965、632234965其中有一个是正确的,则正确的是。
4.甲村与乙村间要开挖一条长580米的水渠,甲村比乙村每天可以多挖2米,于是乙村先开工5天,然后甲村再动工与乙村一起挖。
从开始到完成共用了35天,那么乙村每天挖米。
5.一辆汽车从A到B,每小时行40千米,当行到全程的2/3时,速度增加了1/2,因此比预定时间提早1小时到达B。
全程千米。
6.一个底面是正方形的容器里盛着水,从里面量边长是13厘米,水的高度是6厘米。
把一个15厘米高的铁质实心圆锥直立在容器里,水的高度上升到10厘米。
则圆锥的体积是立方厘米。
7.浓度为60%的酒精溶液200克,与浓度为30%的酒精溶液300克混合后所得到的酒精溶液的浓度是。
8.有2分、5分、1角的硬币共20枚,共计1.20元,其中5分的有枚,1角的有枚。
9.一个自然数可以分解为三个质因数的积,如果三个质因数的平方和是7950,这个自然数是。
10.22003与20032的和除以7的余数是。
二解答题(10分×4=40分)1. 操场上有很多人,一部分站着,另一部分坐着,如果站着的人中有25%坐下,而坐着的人中有25%站起来,那么站着的人就占操场上人数的70%,求原来站着的人占操场上人数的百分之几?2. 时速4千米的A追赶时速3千米的B,两人相距0.5千米时,有一只蜜蜂从A的帽子上开始来回在两人中间飞,直飞到A追及B为止,若蜜蜂时速10千米.问:蜜蜂为了多少千米?3. 某书店出售一种挂历,每出售一本可获利18元,出售2/5后,每本减价10元,全部售完,共获利3000元.这个书店出售这种挂历多少本?4. 如图,一头羊被7米长的绳子拴在正五边形建筑物的一个顶点上,建筑物边长3米,周围都是草地,这头羊能吃到草的草地面积可达多少平方米?( =3)小升初数学分班模拟试卷(一)参考答案一填空题1. 1482.3. 63225496555779是3的倍数,所以乘积必然是3的倍数,只有632254965是3的倍数。
精品文档
精品文档小升初模拟试卷(一)
时间:80分钟姓名分数
一填空题(6分×10=60分)
1.。
2.。
3.计算,三个同学给出三个不同的答案分别为632254965、632244965、632234965
其中有一个是正确的,则正确的是。
4.甲村与乙村间要开挖一条长580米的水渠,甲村比乙村每天可以多挖2米,于是乙村先开
工5天,然后甲村再动工与乙村一起挖。
从开始到完成共用了35天,那么乙村每天挖米。
5.一辆汽车从A到B,每小时行40千米,当行到全程的2/3时,速度增加了1/2,因此比预
定时间提早1小时到达B。
全程千米。
6.一个底面是正方形的容器里盛着水,从里面量边长是13厘米,水的高度是6厘米。
把一
个15厘米高的铁质实心圆锥直立在容器里,水的高度上升到10厘米。
则圆锥的体积是立方厘米。
7.浓度为60%的酒精溶液200克,与浓度为30%的酒精溶液300克混合后所得到的酒精溶液
的浓度是。
8.有2分、5分、1角的硬币共20枚,共计 1.20元,其中5分的有枚,1角的有枚。
9.一个自然数可以分解为三个质因数的积,如果三个质因数的平方和是7950,这个自然数。