北师大版九年级数学下册第三章圆周周测6(3.1~3.4).doc
- 格式:doc
- 大小:191.00 KB
- 文档页数:7
北师大版九年级数学下册第三章 圆综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )m .A .502B .1002C .503D .2002、如图,AB 是⊙O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =( )A .4πB .2πC .πD .23π 3、如图,AB 是O 的直径,O 的弦DC 的延长线与AB 的延长线相交于点P ,OD AC ⊥于点E ,15CAB ∠=︒,2OA =,则阴影部分的面积为( )A .53πB .56πC .512πD .524π 4、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°5、半径为10的⊙O ,圆心在直角坐标系的原点,则点(8,6)与⊙O 的位置关系是( )A .在⊙O 上B .在⊙O 内C .在⊙O 外D .不能确定6、在平面直角坐标系xOy 中,已知点A (﹣4,﹣3),以点A 为圆心,4为半径画⊙A ,则坐标原点O 与⊙A 的位置关系是( )A.点O在⊙A内B.点O在⊙A外C.点O在⊙A上D.以上都有可能7、如图,在圆中半径OC∥弦AB,且弦AB=CO=2,则图中阴影部分面积为()A.16πB.13πC.23πD.π8、如图,点A,B,C在⊙O上,若∠ACB=40°,则∠AOB的度数为()A.40°B.45°C.50°D.80°9、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且AB∥CD,BO=3,CO=4,则OF的长为()A.5 B.95C.165D.12510、如图,点A,B,C在⊙O上,∠ACB=37°,则∠AOB的度数是()A.73°B.74°C.64°D.37°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为______.2、如图,在⊙O中,AC=BD,若∠AOC=120°,则∠BOD=_____.3、如图,在Rt△ABC中,∠C=90°,AC=2,BC=A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为______.4、在半径为3的圆中,60°的圆心角所对的劣弧长等于_____.5、一个扇形的半径为4,圆心角为135°,则此扇形的弧长为 _____.三、解答题(5小题,每小题10分,共计50分)⊥于点D,过点C作O 1、如图,AB为O的直径,点C在O上,连接AC,BC,过点O作OD BC的切线交OD的延长线于点E.(1)求证:E B∠=∠;BC=,求AD的长.(2)连接AD.若CE=82、如图,已知正方形ABCD的边长为4,以点A为圆心,1为半径作圆,点E是⊙A上的一动点,点E绕点D按逆时针方向转转90°,得到点F,接AF.(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3)AF的最大值是__________.3、如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BC=BF,⊙O是△BEF的外接圆,连接BD.(1)证明:△CAB≌△FEB;(2)试判断BD与⊙O的位置关系,并说明理由;(3)当AB=BE=2时,求⊙O的面积.4、如图,四边形ABCD 内接⊙O ,∠C =∠B .(1)如图1,求证:AB =CD ;(2)如图2,连接BO 并延长分别交⊙O 和CD 于点F 、E ,若CD =EB ,CD ⊥EB ,求tan∠CBF ;(3)如图3,在(2)的条件下,在BF 上取点G ,连接CG 并延长交⊙O 于点I ,交AB 于H ,EF ∶BG =1∶3,EG =2,求GH 的长.5、如图,AB BC =,ABC BCE α∠=∠=,点D 是BC 上一点,AD 与BE 相交于点F ,且BFD α∠=.(1)求证:BFD ABD ∽△△; (2)求证:AD BE =;(3)若点D 是BC 中点,连接FC ,求证:FC 平分DFE ∠.-参考答案-一、单选题1、B【分析】连接BD ,利用同弧所对圆周角相等以及直径所对的角为直角,求证ADB ∆为等腰直角三角形,最后利用勾股定理,求出AD 即可.【详解】解:连接BD ,如下图所示:ACB ∠与ADB ∠所对的弧都是AB .45ADB ACB ∴∠=∠=︒.ABD ∠所对的弦为直径AD ,90ABD ∴∠=︒.又45ADB ∠=︒,ADB ∴∆为等腰直角三角形,在ADB ∆中,100AB DB ==,∴由勾股定理可得:AD ===故选:B .【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.2、D【分析】根据垂径定理求得CE =ED COE =60°.然后通过解直角三角形求得线段OC ,然后证明△OCE ≌△BDE ,得到=DEB CEO S S △△求出扇形COB 面积,即可得出答案.【详解】解:设AB 与CD 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD∴CE =12CD CEO =∠DEB =90°,∵∠CDB =30°,∴∠COB =2∠CDB =60°,∴∠OCE =30°,∴12OE OC =, ∴1122BE OE OB OC ===, 又∵222OC CE OE =+,即22134OC OC =+ ∴2OC =,在△OCE 和△BDE 中,OCE BDE CEO DEB OE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△BDE (AAS ),∴=DEB CEO S S △△∴阴影部分的面积S =S 扇形COB =260223603ππ⨯=, 故选D .【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.3、B【分析】由垂径定理可知,AE =CE ,则阴影部分的面积等于扇形AOD 的面积,求出75AOD ∠=︒,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB 是O 的直径,OD 是半径,OD AC ⊥,∴AE =CE ,∴阴影CED 的面积等于AED 的面积,∴ΔCED AOE AOD S S S +=扇,∵90AEO ∠=︒,15CAB ∠=︒,∴901575AOE ∠=︒-︒=︒, ∴275253606AOD S ππ︒⨯⨯==︒扇; 故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.4、B【分析】连接OA ,如图,根据切线的性质得∠PAO =90°,再利用互余计算出∠AOP =50°,然后根据等腰三角形的性质和三角形外角性质计算∠B 的度数.【详解】解:连接OA ,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=12∠AOP=12×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.【详解】解:由两点距离公式可得点(8,610,又O的半径为10,∴点(8,6)到圆心的距离等于半径,∴点(8,6)在O上,故选A.【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.6、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d ,再根据点与圆心的距离与半径的大小关系,即当d >r 时,点在圆外;当d =r 时,点在圆上;点在圆外;当d <r 时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A (﹣4,﹣3),∴5OA =,∵⊙A 的半径为4,∴54>,∴点O 在⊙A 外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.7、C【分析】连接OA ,OB ,根据平行线的性质确定OAB CAB S S =△△,再根据AB =CO 和圆的性质确定OAB 是等边三角形,进而得出60AOB ∠=︒,最后根据扇形面积公式即可求解.【详解】解:如下图所示,连接OA ,OB .∵OC AB ∥,∴OAB CAB S S =△△.∴S 阴=S 扇形AOB .∵AO ,BO ,CO 都是O 的半径,∴AO =BO =CO .∵AB =CO =2,∴AO =BO =AB =2.∴OAB 是等边三角形.∴60AOB ∠=︒.∴S 阴=S 扇形AOB =260223603ππ⨯=. 故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键.8、D【分析】由∠ACB =40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOB 的度数.【详解】解:∵∠ACB =40°,∴∠AOB =2∠ACB =80°.故选:D .【点睛】本题考查了圆周角定理.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.9、D【分析】连接OF ,OE ,OG ,根据切线的性质及角平分线的判定可得OB 平分ABC ∠,OC 平分BCD ∠,利用平行线的性质及角之间的关系得出90BOC ∠=︒,利用勾股定理得出5BC =,再由三角形的等面积法即可得.【详解】解:连接OF ,OE ,OG ,∵AB 、BC 、CD 分别与O 相切,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,且OE OF OG ==,∴OB 平分ABC ∠,OC 平分BCD ∠, ∴12OBC ABC ∠=∠,12BCO BCD ∠=∠,∵AB CD ∥,∴180ABC BCD ∠+∠=︒, ∴119022OBC BCO ABC BCD ∠+∠=∠+∠=︒,∴90BOC ∠=︒,5BC =,∴S SSSS =12SS ·SS =12SS ·SS , ∴341255OF ⨯==, 故选:D .【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.10、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知∠AOB =2∠ACB =74°,即可得出答案.【详解】解:由图可知,∠AOB 在⊙O 中为AB 对应的圆周角,∠ACB 在⊙O 中为AB 对应的圆心角,故:∠AOB =2∠ACB =74°.故答案为:B .【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键.二、填空题1、1【分析】先求出扇形的弧长,然后根据扇形的弧长等于圆锥底面圆的周长,设圆锥的底面圆的半径为r,列出方程求解即可得.【详解】解:∵半径为2的半圆的弧长为:12222ππ⨯⨯=,∴围成的圆锥的底面圆的周长为2π设圆锥的底面圆的半径为r,则:22rππ=,解得:1r=,故答案为:1.【点睛】题目主要考查圆锥与扇形之间的关系,一元一次方程的应用,熟练掌握圆锥与扇形之间的关系是解题关键.2、120︒【分析】根据圆的性质,可得OA=OB,OC=OD,证明△AOC≌△BOD,即可得答案.【详解】解:由题意可知:OA=OB,OC=OD,∵AC=BD,∴△AOC≌△BOD,∵∠AOC =120°,∴∠BOD =120°,故答案为:120°.【点睛】本题考查了圆的性质、三角形全等的判定和性质,做题的关键是证明△AOC ≌△BOD .3、π【分析】根据特殊角的三角函数值,求出∠B 和∠A 的度数,再根据三角形的面积公式和扇形的面积公式分别求出△ACB 和扇形ACD 、扇形BDE 的面积,最后求出答案即可.【详解】解:∵∠ACB =90°,AC =2,BC =∴由勾股定理得:AB =4,∴tanAC B BC === ∴∠B =30°,∠A =60°,由题意,AC =AD =2,则BD =AB -AD =2,∴阴影部分的面积S =S △ABC ﹣S 扇形ACD ﹣S 扇形BDE22160230222360360ππ⨯⨯=⨯⨯-π=,故答案为:π.【点睛】本题考查根据特殊角的三角函数值求角度,以及扇形面积相关计算问题,掌握特殊角的三角函数值,以及扇形的面积计算公式是解题关键.4、π【分析】弧长公式为l=n180rπ,把半径和圆心角代入公式计算就可以求出弧长.【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π,故答案为:π.【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式.5、3π【分析】根据弧长的计算公式计算即可.【详解】解:扇形弧长为:1354180π︒⋅⋅︒=3π.故填:3π.【点睛】本题主要考查了扇形的弧长计算,牢记扇形的弧长公式成为解答本题的关键.三、解答题1、(1)证明见解析;(2)AD=4【分析】(1)连接OC通过垂径定理和等腰三角形性质证明∠E=∠B(2)连接AD通过计算发现BC=EC,再通过证明△CED≌△ABC得到AC=DC=4.【详解】(1)证明:连接OC如图:OD⊥CB∴OB=OC,∠B=OCD又CE为圆O的切线∴OC⊥CE∴∠ECD+∠DCO=∠ECD+∠E=90°∴∠E=∠DCO=∠B∴∠E=∠B(2)连接AD如图∵△EDC 为R t△∴DE由(1)得∠E =∠B又AB 为直径∴∠BCA =90°在△CED 和△ABC 中∵B E EDC BCA ED BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△CED ≌△ABC (AAS )∴AC =DC =12BC =4【点睛】本题考查垂径定理和全等三角形的判定与性质,掌握这些是本题解题关键.2、(1)1;(211;(3)1【分析】(1)连接AE ,根据同角的余角相等可得:EDA FDC ∠=∠,利用全等三角形的判定定理可得:EDA FDC ∆≅∆,再由其性质即可得解; (2)分两种情况讨论:①当点E 在正方形内部时,点A 、E 、F 三点共线时,AF 与圆C 相切;②当点E 在正方形外部时,点A 、1E 、1F 三点共线时,1AF 与圆C 相切;两种情况分别利用勾股定理进行求解即可得;(3)根据题意判断出AF 最大时,点C 在AF 上,根据正方形的性质求出AC ,从而得出AF 的最大值.【详解】解:(1)连接AE ,如图所示:∵90EDF ADC ∠=∠=︒,即:90EDA ADF ADF FDC ∠+∠=∠+∠=︒,∴EDA FDC ∠=∠,在EDA ∆与FDC ∆中,ED FD EDA FDC AD DC =⎧⎪∠=∠⎨⎪=⎩, ∴EDA FDC ∆≅∆,∴1CF AE ==;(2)①如图所示:当点A 、E 、F 三点共线时,AF 与圆C 相切,则90AFC ∠=︒,AC ==1CF =,∴AF =,∴1EF AF AE =-=;②如图所示:当点A 、1E 、1F 三点共线时,1AF 与圆C 相切,则190AFC ∠=︒,AC =11CF =,∴1AF =∴111EF AF AE =+;综合可得:当点A 、E 、F 三点共线时,EF 11;(3)如图所示,点C 在线段AF 上,AF 取得最大值,=+,AF AC CF∵AC=∴1AF=,即:AF的最大值是1,故答案为:1.【点睛】题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键.3、(1)见解析;(2)相切,理由见解析;(3)(4+)π【分析】(1)利用等角的余角相等可得∠C=∠F,利用角边角公理即可判定结论成立;(2)连接OB,通过计算得到∠OBD=90°,利用切线的判定定理即可得出结论;(3)连接AE,利用勾股定理可求得线段AE的长,进而可求线段BC的长,则线段BF可得,利用勾股定理可求EF2,利用圆的面积公式即可求得结论.【详解】证明:(1)∵∠ABC=90°,∴∠EBF=∠ABC=90°.∴∠F +∠BEF =90°.∵DF ⊥AC ,∴∠ADF =∠CDF =90°.∴∠C +∠DEC =90°.∵∠DEC =∠BEF ,∴∠C =∠F .在△CAB 和△FEB 中,ABC EBF BC BFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CAB ≌△FEB (ASA ).解:(2)直线BD 与⊙O 相切,理由:连接OB ,如图,∵D 为AC 的中点,AB ⊥BC ,∴DB =12AC =DC . ∴∠DCB =∠DBC .∵OB =OE ,∴∠OBE =∠OEB .∵∠DEC=∠BEF,∴∠DEC=∠OBE.∵∠DEC+∠C=90°,∴∠OBE+∠C=90°,∴∠OBE+∠DBE=90°.即∠OBD=90°.∴OB⊥BD.∵OB是圆O的半径,∴直线BD与⊙O相切.(3)连接AE,如图,∵DF是线段AC的垂直平分线,∴AE=CE,∵AB=BE=2,∠ABC=90°,.∴AE∴CE=AE=∴BC=BE+CE=2+.∵BC=BF,∴BF=2+.在Rt △BEF 中,EF 2=BE 2+BF 2=222(2++=16+∴⊙O 的面积=π•(12EF )2=14π•EF 2=(4+【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.4、(1)见解析;(2)12;(3【分析】(1)过点D 作DE ∥AB 交BC 于E ,由圆内接四边形对角互补可以推出∠B +∠A =180°,证得AD ∥BC ,则四边形ABED 是平行四边形,即可得到AB =DE ,∠DEC =∠B =∠C ,这DE =CD =AB ;(2)连接OC ,FC ,设BE =CD =2x ,OB =OC =OF =r ,则OE =BE -BO =2x -r ,EF =BF -BE =2r -2x ,由垂径定理可得1=2CE DE CD x ==,∠CEB =∠CEF =∠FCB =90°,则∠FBC +∠F =∠FCE +∠F =90°,可得∠FBC =∠FCE ;由勾股定理得222OC OE CE =+,则()2222r x r x =-+, 解得54r x =,则522212tan =tan ==2x x EF r x CBF FCE CE x x --==∠∠; (3)EF :BG =1:3,即()13EF BE GE -=::则()()222213r x x --=:: 解得4x =,则=5r ,8BE CD AB ===,6BG =,如图所示,以B 为圆心,以BC 所在的直线为x 轴建立平面直角坐标系,分别过点A 作AM ⊥BC 与M ,过点G 作GN ⊥BC 与N ,连接FC ,分别求出G点坐标为⎝⎭,C 点坐标为();A点坐标为⎝⎭ 然后求出直线CG的解析式为34y x =-+AB 的解析式为2y x =,即可得到H 的坐标为),则GH==.【详解】解:(1)如图所示,过点D作DE∥AB交BC于E,∵四边形ABCD是圆O的圆内接四边形,∴∠A+∠C=180°,∵∠B=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABED是平行四边形,∴AB=DE,∠DEC=∠B=∠C,∴DE=CD=AB;(2)如图所示,连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x∵CD⊥EB,BF是圆O的直径,∴1=2CE DE CD x==,∠CEB=∠CEF=∠FCB=90°,∴∠FBC+∠F=∠FCE+∠F=90°,∴∠FBC =∠FCE ;∵222OC OE CE =+,∴()2222r x r x =-+,∴222244r x r r x =-++, 解得54r x =, ∴522212tan =tan ==2x x EF r x CBF FCE CE x x --==∠∠;(3)∵EF :BG =1:3,即()13EF BE GE -=:: ∴()()222213r x x --=:: ,即()122132x x -=:: ∴3222x x =-, 解得4x =,∴=5r ,∴8BE CD AB ===,6BG =,如图所示,以B 为圆心,以BC 所在的直线为x 轴建立平面直角坐标系,分别过点A 作AM ⊥BC 与M ,过点G 作GN ⊥BC 与N ,连接FC , ∴1tan ===2GN FC CBF BN BC ∠,∴2BN GN =,2BC FC =,∵222BG GN BN =+,222BF BC FC =+∴225GN BG =,225FC BF =,∴GN ==,FC ==∴BN =BC =∴G ,C 点坐标为(0); ∵1tan ==2CE CBF BE ∠, ∴tan 2BE BCE CE ∠==, ∵∠ABC =∠ECB , ∴tan 2AM ABM BM∠==, ∴2AM BM =,∵222AB AM BM =+,∴225BM AB =,∴BM AB ==∴AM =,∴A 设直线CG 的解析式为y kx b =+,直线AB 的解析式为1y k x =,∴0b b ⎧+=+=1=∴34k b ⎧=-⎪⎨⎪=⎩,12k =, ∴直线CG的解析式为34y x =-+AB 的解析式为2y x =,联立342y x y x⎧=-+⎪⎨⎪=⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴H,∴GH ==.【点睛】本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.5、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在BDF 和ABD 中,=BFD ABD α∠=∠,BDF ADB ∠=∠,故可证明三角形相似.(2)由ABD BCE ≌得出AD BE =.(3)法一:由题意知BD CD =,由BFD ABD ∽得BD FD AD BD=,有22BD DF DA CD =⋅=,所以可得CD DF AD CD=,又因为ADC CDF ∠=∠可得CDF ADC ∽,DFC DCA ∠=∠;由于1802BAC BCA DCA DFC α︒-∠=∠==∠=∠,180180EFC 18022ααα︒-︒-∠=︒--=,进而说明DFC EFC ∠=∠,得出FC 平分DFE ∠.法二:通过BFD BCE α∠=∠=得出F 、D 、C 、E 四点共圆,由CD BD CE ==得DFC EFC ∠=∠,从而得出FC 平分DFE ∠.【详解】解:(1)证明在BDF 和ABD 中BFD ABD BDF ADB DBF DAB ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴ BDF ABD ∽.(2)证明:在ABD 和BCE 中DAB EBC AB BCABD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD BCE ∴≌ ()ASAAD BE ∴=.(3)证明:BFD ABD ∽2BD DF DA ∴=⋅ 又D 是BC 中点BD CD ∴=2CD DF DA ∴=⋅CDF ADC ∴∠=∠CDF ADC ∴∽DFC DCA ∴∠=∠AB AC =,ABC α∠=1802BAC BCA α︒-∴∠=∠= 1802DFC DCA BCA α︒-∴∠=∠=∠= 180180EFC 18022ααα︒-︒-∴∠=︒--= DFC EFC ∴∠=∠FC ∴平分DFE ∠.法二:BFD BCE α∠=∠=∴F 、D 、C 、E 四点共圆 又D 是BC 点,CD BD CE ∴==DFC EFC ∴∠=∠FC ∴平分DFE ∠.【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.。
、选择题1. 已知O O的直径为10,点P到点0的距离大于8,那么点P的位置()A. —定在O 0的内部B. —定在O 0的外部C. 一定在O 0上D. 不能确定2. 乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m ,则桥拱半径0C为()A. 4mB. 5mC. 6mD. 8m3. 给出下列说法:① 直径是弦;②优弧是半圆;③ 半径是圆的组成部分;④ 两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的有()5. 如图,点A,B,C均在坐标轴上,A0=B0=C0=1,过A,0,C作O D, E是O D上任意一点,连结CE, BE则6. 如图,在O0中,弦AC与半径0B平行,若/ B0C=5O°则/ B的大小为()第三章圆A. 1个B. 个C.个D. 个4. 一个扇形的圆心角是120 °面积为3 Mm2那么这个扇形的半径是(A. cmB. 3cmC. 6cmD. 9cmB. 5C. 6D.A. 4A. 25 °B. 30C. 50 °D. 60 °7. 在研究圆的有关性质时, 我们曾做过这样的一个操作 将一张圆形纸片沿着它的任意一条直径翻折, 可以 看到直径两侧的两个半圆互相重合 ”.由此说明()A. 圆的直径互相平分B. 垂直弦的直径平分弦及弦所对的弧C. 圆是中心对称图形,圆心是它的对称中心D. 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴8. 如图,AB 为O O 的直径,点E 、C 都在圆上,连接 AE , CE BC ,过点A 作O O 的切线交BC 的延长线于 点D ,若/ AEC=25,则/ D 的度数为()9.如图,四边形 ABCD 内接于圆O , E 为CD 延长线上一点,若 / B=110:则/ADE 的度数为()10.已知:O O 是厶ABC 的外接圆,/ OAB=40°,则/ ACB 的大小为()A. 75B. 65C. 55D. 74B. 110C. 90D. 80A. 115A. 20B. 50 °"C 20 或160 M D. 50 或13011•如图,O O 内切于四边形 ABCD, AB=10, BC=7, CD=8,贝U AD 的长度为()12. 如图,在圆心角为 45的扇形内有一正方形 CDEF 其中点C 、D 在半径0A 上,点F 在半径0B 上,点E 在匚-上,则扇形与正方形的面积比是(、填空题13. P A , PB 分别切O O 于A , B 两点,点C 为O O 上不同于AB 的任意一点,已知 / P=40°则/ ACB 的度数14. 如图,AB 为O O 的直径,直线I 与O O 相切于点C, AD 丄I ,垂足为D , AD 交O O 于点E ,连接OC BE 若B. 9C. 10D. 11A. n 8" B. 5 n :8A. 8515. ________________________________________________________________________________ 如图,AB 是O O 的直径,点 C 在O O 上,/ AOC=40, D 是BC 弧的中点,贝U / ACD= ___________________16. ___________ 如图所示,O I 是Rt A ABC 的内切圆,点 D 、E 、F 分别是且点,若 / ACB=90°, AB=5cm , BC=4cm,则O I 的周长为 __ cm .17•如图,PA, PB 是O O 的切线,CD 切O O 于E , PA=6,则△ PDC 的周长为18.如图,O O 的半径为6cm , B 为O O 外一点,OB 交O O 于点A , AB=OA,动点P 从点A 出发,以n cm/s的速度在O O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为________ 时,BP 与O O 相ABCD 中,点E 在DC 的延长线上.若 / A=50 °则/BCE= ___________21.如图,在△ ABC 中,AB=AC=3, / BAC=120:以点A 为圆心,1为半径作圆弧,分别交 AB , AC 于点D , E, 以点C 为圆心,3为半径作圆弧,分别交AC , BC 于点A , F .若图中阴影部分的面积分别为在弧PA i 和弧PB 1上分别取中点 A 2和B 2 ,若一直这样取中点,求 / A n PBn=三、解答题23. 如图,AB 为O O 的直径,C 是O O 上一点,D 在AB 的延长线上,且 / DCB=Z A .求证:CD 是O O 的切P 为弧AB 的中点,分别在弧 AP 和弧PB 上取中点A i 和B i ,再则S i - S 2的值为/ BAC=32°, D 是弧AC 的中点,求/ DAC 的度数. DP// AC ,交BA 的延长线于 P,求证:AD?DC=PA?BC26. (2017?通辽)如图,AB 为O O 的直径,D 为 的中点,连接 OD 交弦AC 于点F ,过点D 作DE// AC ,交BA 的延长线于点E.(1) 求证:DE 是O O 的切线;(2) 连接CD,若OA=AE=4,求四边形 ACDE 的面积.参考答案一、 选择题 BBABCADBBDDB 二、 填空题 13. 70 或 110 ° 14.4O 的直径,15. 125 °16. 2 n17. 1218. 2秒或5秒19. 50 °20. 1221. - n122. 180 °—X 180 °三、解答题••• / ACB=90 ,°••• / A+Z ABC=90 °又•/ OB=OC, • Z OBC=Z OCB, 又•/ Z DCB=Z A°••• / A+Z ABC=/ DCB+/ OCB=90 ,••• OC X DC,• CD是O O的切线.24. 解:连接BC,••• AB是半圆O的直径,Z BAC=32 ,°•Z ACB=90 ,°Z B=90 - 32 =58 ,•Z D=180 - Z B=122。
)含有答案北师大版九年级数学下学期第三章( 单元考试测试卷圆单元测试卷圆北师大版九年级(下学期)数学第三章120分钟时间:满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()1A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD 2第2题图第3题图第5题图3.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.54.下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交5.如图,已知AC是⊙O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交⊙O于点E.若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB6.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm7.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.123mm C.6mm D.63mm8.如图,直线AB,AD与⊙O分别相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A 的度数是()9/ 1)含有答案单元考试测试卷圆(北师大版九年级数学下学期第三章.110° D B.105°C.100°A.70°10题图第第9题图第8题图的O为⊙C,BDAO,AO与⊙O交于点9.如图,AB为⊙O的切线,切点为B,连接)O的半径为2,则图中阴影部分的面积为(直径,连接CD.若∠A=30°,⊙2π4π4π3 - D.3 B.-23 C.π-A.-3 333ADC△ABC和P和⊙Q分别是△4,BC=3,连接AC,⊙ABCD10.如图,矩形中,AB=)PQ的长是(的内切圆,则552 .2 D C. B.5 A. 22)24分(每小题3分,共二、填空题,=120°BC,若∠AOBACO的半径,点C在⊙O上,连接,11.如图,OA,OB是⊙.=________°则∠ACB13题图第第12题图第11题图=若∠DAB的延长线于点D.C.如图,过⊙O上一点作⊙O的切线,交⊙O的直径12_______. A的度数为40°,则∠与小圆相AB5cm,小圆半径长为3cm,大圆的弦13.如图,两同心圆的大圆半径长为_________.的长是切,切点为C,则弦AB_______.则AC的长为=∠4,∠ABCDAC,的外接圆,14.如图,⊙O是△ABC直径AD=第16题图题图15 题图第14 第则该圆锥形漏斗的.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,15_________.侧面积为_为半径的ABAABCDEF3如图,16.将边长为的正六边形铁丝框变形为以点为圆心,9/ 2圆单元考试测试卷(北师大版九年级数学下学期第三章含有答案)扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__________. ]。
(完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改)的全部内容。
北师大版九年级下册数学第三章圆练习题(带解析) 考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、已知两个半径不相等的圆外切,圆心距为,大圆半径是小圆半径的倍,则小圆半径为A.或B.C.D.2、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB的度数为【】A.400B.500C.650D.7503、已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是A.相离B.外切C.相交D.内切4、如图所示,在⊙O中,,∠A=30°,则∠B=A.150°B.75°C.60°D.15°5、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3B.C.2D.6、在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=A.5B.C.D.67、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA8、如图所示是某公园为迎接“中国﹣﹣南亚博览会"设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是A.米2B.米2C.米2D.米2更多功能介绍www.ykw18。
北师大版九年级数学下册第三章圆专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P.A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是()A.20 m B.mC.( - 20)m D.(m⊥于点E,2、如图,AB是O的直径,O的弦DC的延长线与AB的延长线相交于点P,OD ACOA=,则阴影部分的面积为()∠=︒,215CABA .53πB .56πC .512πD .524π 3、如图,ABCD 是O 的内接四边形,130B ∠=︒,则AOC ∠的度数是( )A .50°B .100°C .130°D .120°4、一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )m .A .502B .1002C .503D .2005、到三角形三个顶点距离相等的点是此三角形( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点6、如图,AB为O的直径,C为D外一点,过C作O的切线,切点为B,连接AC交O于D,∠=︒,点E在AB右侧的半圆周上运动(不与A,B重合),则AEDC38∠的大小是()A.19°B.38°C.52°D.76°7、如图,△ABC内接于圆,弦BD交AC于点P,连接AD.下列角中,AB所对圆周角的是()A.∠APB B.∠ABD C.∠ACB D.∠BAC8、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于()A.10 B.C.D.129、如图,在O中,AB BC CD==,连接AC,CD,则AC与CD的关系是().A .2AC CD =B .2AC CD < C .2AC CD > D .无法比较10、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA ,PB 分别切⊙O 于点A ,B ,Q 是优弧AB 上一点,若∠P =40°,则∠Q 的度数是________.2、如图,AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O 于点C ,点E 是AB 上一点,延长CE 交⊙O 于点D ,则∠CDB =___.∥,3、AB是O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP OA的度数为_______.AP与OB交于点C,则OCP4、如图,将半径为4,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是_____.5、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接AC、AD.若∠BAC=30°,CD=2,则AD的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,M 是CD 的中点,EM ⊥CD ,若CD =4,EM =6,求CED 所在圆的半径.2、如图,以点O 为圆心,AB 长为直径作圆,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.3、如图,A 是O 上一点,过点A 作O 的切线.(1)①连接OA 并延长,使AB=OA ;②作线段OB 的垂直平分线;使用直尺和圆规,在图中作OB 的垂直平分线l (保留作图痕迹).(2)直线l 即为所求作的切线,完成如下证明.证明:在O中,∵直线l垂直平分OB∴直线l经过半径OA的外端,且__________,∴直线l是O的切线(____________)(填推理的依据).4、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.5、如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.-参考答案-一、单选题1、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC⊥l,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC =∠PBC =∠BOC =∠BPC =45°,∴OC =CB =CP =20,∴OP =40,OB∴最小的距离PE =PO -OE m ),故选D .【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.2、B【分析】由垂径定理可知,AE =CE ,则阴影部分的面积等于扇形AOD 的面积,求出75AOD ∠=︒,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB 是O 的直径,OD 是半径,OD AC ⊥,∴AE =CE ,∴阴影CED 的面积等于AED 的面积,∴ΔCED AOE AOD S S S +=扇,∵90AEO ∠=︒,15CAB ∠=︒,∴901575AOE ∠=︒-︒=︒, ∴275253606AOD S ππ︒⨯⨯==︒扇; 故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.3、B【分析】根据圆的内接四边形对角互补求得D ∠,进而根据圆周角定理求得AOC ∠【详解】 解:ABCD 是O 的内接四边形,130B ∠=︒,50D ∴∠=︒AC AC =2AOC D ∴∠=∠100=︒故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得D ∠是解题的关键.4、B【分析】连接BD ,利用同弧所对圆周角相等以及直径所对的角为直角,求证ADB ∆为等腰直角三角形,最后利用勾股定理,求出AD 即可.【详解】解:连接BD ,如下图所示:ACB ∠与ADB ∠所对的弧都是AB .45ADB ACB ∴∠=∠=︒.ABD ∠所对的弦为直径AD ,90ABD ∴∠=︒.又45ADB ∠=︒,ADB ∴∆为等腰直角三角形,在ADB ∆中,100AB DB ==,∴由勾股定理可得:AD ===故选:B .【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.5、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D .【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.6、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒38,C ∠=︒903852,CBD ∴∠=︒-︒=︒ CB 为O 的切线,90,905238,ABC ABD ABC DBC ∴∠=︒∠=∠-∠=︒-︒=︒38,AED ABD ∴∠=∠=︒故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.7、C【分析】根据题意可直接进行求解.【详解】解:由图可知:AB 所对圆周角的是∠ACB 或∠ADB ,故选C .【点睛】本题主要考查圆周角的定义,熟练掌握圆周角是解题的关键.8、D【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=6,∴△OBC是等边三角形,∴OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9、B【分析】==,再根据三角形三边关系可得结论.连接AB,BC,根据AB BC CD==得AB BC CD【详解】解:连接AB,BC,如图,∵AB BC CD====∴AB BC CD+>又AB BC AC∴2AC CD故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键.10、B【分析】连接OA ,如图,根据切线的性质得∠PAO =90°,再利用互余计算出∠AOP =50°,然后根据等腰三角形的性质和三角形外角性质计算∠B 的度数.【详解】解:连接OA ,如图,∵PA 是⊙O 的切线,∴OA ⊥AP ,∴∠PAO =90°,∵∠P =40°,∴∠AOP =50°,∵OA =OB ,∴∠B =∠OAB ,∵∠AOP =∠B +∠OAB ,∴∠B =12∠AOP=12×50°=25°.故选:B .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.二、填空题1、70°度【分析】连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OA、OB,∵PA,PB分别切⊙O于点A,B,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∠AOB=70°,∴∠Q=12故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.2、40°【分析】由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数.解:连接AC ,∵由AB 是⊙O 的直径,得∠ACB =90°,∴∠CAB =90°−∠ABT =40°,∴∠CDB =∠CAB =40°,故答案为:40°【点睛】本题考查了圆周角定理,熟练掌握运用同弧所对的圆周角相等解答是关键.3、90°【分析】先根据AB 是O 的内接正六边形一边得60AOB ∠=︒,再根据圆周角性质得30APB ∠=︒,再根据平行线的性质得30OAP ∠=︒,最后由三角形外角性质可得结论.【详解】解:∵AB 是O 的内接正六边形一边∴60AOB ∠=︒∴30APB ∠=︒∵BP OA ∥∴=30OAP APB ∠∠=︒∴603090OCP AOC OAC ∠=∠+∠=︒+︒=︒故答案为90°本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键4、83π【分析】连接OO ',O B ',证明OBB '△是含30°的Rt ,根据BB O OO B S S S ''=-阴影部分△扇形即可求解【详解】解:如图,连接OO ',O B '将半径为4,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴60OAO '∠=︒,OA O A '=,120AOB AO B ''∠=∠=︒,AOO '∴△是等边三角形60AOO '∴∠=︒AO O '=∠1206060O OB AOB AOO ''∴∠=∠-=︒-︒=︒,60120180AO O AO B '''∠+∠=︒+︒=︒,,O O B ''∴三点共线60,120AOO AOB '∠=︒∠=︒,OO OB '=OBO '∴是等边三角形O B O B '''=O B B O BB ''''∴∠=∠又60O B B O BB OO B '''''∠+∠=∠=︒90B BO '∴∠=︒BB '∴==216048423603BB O OO B S S S ππ''⨯=-=⨯⨯=阴影部分△扇形 【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键.5、23π 【分析】连接OA ,由切线的性质得出AO ⊥AB ,得出△OAC 是等边三角形,求出∠AOD =120°,由弧长公式可得出答案.【详解】解:连接OA ,∵AB 是⊙O 的切线,∴AO ⊥AB ,∴∠OAB =90°,∵∠BAC =30°,∴∠OAC =60°,∵OA =OC ,∴△OAC 是等边三角形,∴∠C =∠AOC =60°,∴∠AOD =120°,∵CD =2,∴AD 的长为1201180⋅⨯π=23π.故答案为23π. 【点睛】 本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:180n R l π=(n ︒为圆心角的度数,R 表示圆的半径). 三、解答题1、103【分析】根据垂径定理的推论,可得EM 过⊙O 的圆心点O , CM =12CD =2 ,然后设半径为x ,可得OM =6-x ,再由勾股定理,即可求解.【详解】解:连接OC ,∵M 是CD 的中点,EM ⊥CD ,∴EM 过⊙O 的圆心点O , CM =12CD =2 ,设半径为x ,∵EM =6,∴OM =EM -OE =6-x ,在Rt △OCM 中,OM 2+CM 2=OC 2, 即(6-x )2+22=x 2,解得:x =103. ∴CED 所在圆的半径为103. 【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理及其推论,勾股定理是解题的关键.2、(1)证明见解析;(2)6AE =.【分析】(1)连接OC ,先根据圆周角定理可得90ACB ∠=︒,再根据等腰三角形的性质可得OCA DAC ∠=∠,从而可得OCA DCB ∠=∠,然后根据角的和差可得90DCB OCB ∠+∠=︒,最后根据圆的切线的判定定理即可得证;(2)设O 的半径为r ,先在Rt OCD △中,利用勾股定理可求出r 的值,从而可得,OC AD 的长,再根据相似三角形的判定证出ADE CDO ,然后根据相似三角形的性质即可得.【详解】证明:(1)如图,连接OC ,AB 是O 的直径,90ACB ∴∠=︒,90OCA OCB ∴∠+∠=︒,OA OC =,OCA DAC ∠=∠∴,DCB DAC ∠=∠,OCA DCB ∴∠=∠,90DCB OCB ∴∠+∠=︒,即90OCD ∠=︒,又OC 是O 的半径,CD ∴是O 的切线;(2)设O 的半径为r ,则OA OB OC r ===,2BD =,2,22OD OB BD r AD OA OD r ∴=+=+=+=+,在Rt OCD △中,222CD OC OD +=,即2224(2)r r +=+,解得3r =,3,8OC AD ∴==,在ADE 和CDO 中,90DAE DCO D D∠=∠=︒⎧⎨∠=∠⎩, ADECDO ∴, AE AD OC CD ∴=,即834AE =, 解得6AE =.【点睛】本题考查了圆周角定理、圆的切线的判定定理、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定定理和相似三角形的判定是解题关键.3、(1)见解析;(2)l ⊥OA ,经过半径的外端并且垂直于半径的直线是圆的切线.【分析】(1)根据题中给出的作图步骤完成作图即可;(2)根据切线的判定定理证明即可【详解】(1)使用直尺和圆规,依作法补全图形如图所示;(2)完成下面的证明证明:在O 中,∵直线l 垂直平分OB∴直线l 经过半径OA 的外端,且l ⊥OA ,∴直线l是O的切线(经过半径的外端并且垂直于半径的直线是圆的切线) .【点睛】本题考查了做垂线,切线的判定,掌握切线的判定定理是解题的关键.4、(1)见解析;(2)【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sin D=OBOD=ACAD,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE =BE ,∴AC =AB ,在△AOB 和△AOC 中,AB AC AO AO BO CO =⎧⎪=⎨⎪=⎩, ∴△AOB ≌△AOC (SSS ),∴∠ACO =∠ABO =90°,即AC ⊥OC ,∴AC 是⊙O 的切线;(2)在Rt△BOD 中,由勾股定理得,BD∵sin D =OB OD =AC AD ,⊙O 半径为2,OD =4. ∴24解得AC =∴AD =BD +AB =【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.5、(1)证明见解析;(2)O 的半径为6.【分析】∥,然后根据等腰三角形的等边对等角以及等角对等边可得出结(1)根据圆切线的性质可得OD AC论;(2)根据圆周角定理以及等腰三角形的判定与性质可得结果.【详解】解:(1)证明:如图,连接OD.DF是O的切线,OD DF∴⊥.⊥,DF AC∥,∴OD AC∴∠=∠.ODB C=,OB OD∴∠=∠,ODB BB C∴∠=∠,∴=.AB AC(2)如图,连接DE,则E B∠=∠.∠=∠,由(1)知B C∴∠=∠,E CDE DC∴=.⊥,DF CE∴=.CF FECF AF=,2∴=.AE AFAE=,43312∴===,AC AF AEAB AC∴==,12∴的半径为6.O【点睛】本题考查了圆切线的性质,圆周角定理,等腰三角形的性质与判定,平行线的判定与性质,熟练掌握相关性质定理是解本题的关键.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】3.1圆一、选择题1.圆是()图形.A. 中心对称B. 轴对称C. 中心对称和轴对称D. 以上都不对2.以已知点O为圆心,已知线段a为半径作圆,可以作()A. 1个B. 2个C. 3个D. 无数个3.圆内最大的弦长为10cm,则圆的半径()A. 小于5cmB. 大于5cmC. 等于5cmD. 不能确定4.下列说法中,结论错误的是()A. 直径相等的两个圆是等圆B. 长度相等的两条弧是等弧C. 圆中最长的弦是直径D. 一条弦把圆分成两条弧,这两条弧可能是等弧5.若⊙O的半径为5,OP=5,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 点P在⊙O上或⊙O外6.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC 等于()A. 15°B. 30°C. 45°D. 6 0°7.若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P 与⊙O的位置关系为()A. 点P在⊙O外B. 点P在⊙O上C. 点P在⊙O 内D. 无法确定8.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在()A. 小圆内B. 大圆内C. 小圆外大圆内D. 大圆外9.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB1路线爬行,则下列结论正确的是()A. 甲先到B点B. 乙先到B点C. 甲、乙同时到B D. 无法确定10.如图,△ABC中,∠A=50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E,连接OD,OE,测量∠DOE的度数是()A. 50°B. 60°C. 70°D. 80°二、填空题11.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为________.12.圆是轴对称图形,它有________ 条对称轴,其对称轴是________ .13.圆的周长公式C=________;圆的面积公式S=________.14.一个圆的直径是10cm,另一个圆的面积比这个圆的面积少16πcm2,则另一个圆的半径长为 ________m.15. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是________ 。
北师大版九年级数学下册第三章 圆专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC 中,50ABC ∠=︒,74ACB ∠=︒,点O 是ABC 的内心.则BOC ∠等于( )A .124°B .118°C .112°D .62°2、如图,点A ,B ,C 都在⊙O 上,连接CA ,CB ,OA ,OB .若∠AOB =140°,则∠ACB 为( )A .40°B .50°C .70°D .80°3、如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A.6 B.3 C.9 D.124、如图,等边△ABC内接于⊙O,D是BC上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC CF=83π.正确的个数为()A.1个B.2个C.3个D.4个5、如图,BD是⊙O的切线,∠BCE=30°,则∠D=()A.40°B.50°C.60°D.30°6、如图,O的半径为10cm,AB是O的弦,OC AB⊥于D,交O于点C,且CD=4cm,弦AB的长为()A .16cmB .12cmC .10cmD .8cm7、如图,PA ,PB 是⊙O 的切线,A ,B 是切点,点C 为⊙O 上一点,若∠ACB =70°,则∠P 的度数为( )A .70°B .50°C .20°D .40°8、如图,四边形ABCD 内接于O ,若130C ∠=︒,则BOD ∠的度数为( )A .50°B .100°C .130°D .150°9、如图,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中点C ,D ,E 在AB 上,点F ,N 在半圆上.若10AB =,则正方形CDMN 的面积与正方形DEFG 的面积之和是( )A .25B .50C .30π-D .502π-10、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是()A.4 B.5 C.6 D.7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正五边形ABCDE内接于⊙O,作OF⊥BC交⊙O于点F,连接FA,则∠OFA=_____°.2、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .3、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=AC的长为_____.4、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).5、AB 是O 的内接正六边形一边,点P 是优弧AB 上的一点(点P 不与点A ,B 重合)且BP OA ∥,AP 与OB 交于点C ,则OCP ∠的度数为_______.三、解答题(5小题,每小题10分,共计50分)1、.如图,ABC 内接于O ,AD BC ⊥交O 于点D ,垂足为点H ,连接BD ,CD ,105AOC ∠=︒,7.5CAD ∠=︒(1)求BAC ∠的度数;(2)过点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F ,连接OA ,OC ,OB ,EH ,FH ,若O 的半径为1,求EH FH +的值.2、如图,AB是⊙O的直径,点C是圆上一点,弦CD⊥AB于点E,且DC=AD,过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G.(1)求证:FG是⊙O的切线;(2)求证:四边形AFCD是菱形.3、在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB 是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标y M的取值范围为12≤y M136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,0MN=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.4、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=O的半径.5、如图,在半⊙O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)若OE=CE,求图中阴影部分的面积(结果保留根号和π).-参考答案-一、单选题1、B【分析】根据三角形内心的性质得到∠OBC=12∠ABC=25°,∠OCB=12∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.【详解】解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=12∠ABC=12×50°=25°,∠OCB=12∠ACB=12×74°=37°,∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.故选B.【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2、C【分析】根据圆周角的性质求解即可.【详解】解:∵∠AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,∠ACB=70°,故选:C.【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半.3、A【分析】连接AC,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC.∵AB 是直径, ∴∠ACB =90°,∵∠CAB =∠CDB =30°,∴AB =2BC =6,故选:A .【点睛】本题考查圆周角定理,含30°角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、C【分析】如图1,△ABC 是等边三角形,则∠ABC =60°,根据同弧所对的圆周角相等∠ADC =∠ABC =60°,所以判断①正确;如图1,可证明△DBE ∽△DAC ,则DB DE DA DC=,所以DB •DC =DE •DA ,而DB 与DC 不一定相等,所以判断②错误;如图2,作AH ⊥BD 于点H ,延长DB 到点K ,使BK =CD ,连接AK ,先证明△ABK ≌△ACD ,可证明S 四边形ABDC =S △ADK ,可以求得S △ADK 3,连接OA 、OG 、OC 、GC ,由CF 切⊙O 于点C 得CF ⊥OC ,而AF ⊥CF ,所以AF ∥OC ,由圆周角定理可得∠AOC =120°,则∠OAC =∠OCA =30°,于是∠CAG =∠OCA =30°,则∠COG =2∠CAG =60°,可证明△AOG 和△COG 都是等边三角形,则四边形OABC 是菱形,因此OA ∥CG ,推导出S 阴影=S 扇形COG ,在Rt △CFG 中根据勾股定理求出CG 的长为4,则⊙O 的半径为4,可求得S 阴影=S扇形COG =2604360⨯π=83π,所以判断④正确,所以①③④这3个结论正确.【详解】解:如图1,∵△ABC 是等边三角形,∴∠ABC =60°,∵等边△ABC内接于⊙O,∴∠ADC=∠ABC=60°,故①正确;∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,∴∠BDE=∠ADC,又∠DBE=∠DAC,∴△DBE∽△DAC,∴DB DE DA DC,∴DB•DC=DE•DA,∵D是BC上任一点,∴DB与DC不一定相等,∴DB•DC与DB2也不一定相等,∴DB2与DE•DA也不一定相等,故②错误;如图2,作AH ⊥BD 于点H ,延长DB 到点K ,使BK =CD ,连接AK ,∵∠ABK +∠ABD =180°,∠ACD +∠ABD =180°,∴∠ABK =∠ACD ,∴AB =AC ,∴△ABK ≌△ACD (SAS ),∴AK =AD ,S △ABK =S △ACD ,∴DH =KH =12DK ,∵∠AHD =90°,∠ADH =60°,∴∠DAH =30°,∵AD =2,∴DH =12AD =1,∴DK =2DH =2,AH =∴S △ADK =12AH DK ⋅=∴S 四边形ABDC =S △ABD +S △ACD =S △ABD +S △ABK =S △ADK故③正确;如图3,连接OA、OG、OC、GC,则OA=OG=OC,∵CF切⊙O于点C,∴CF⊥OC,∵AF⊥CF,∴AF∥OC,∵∠AOC=2∠ABC=120°,∴∠OAC=∠OCA=1×(180°﹣120°)=30°,2∴∠CAG=∠OCA=30°,∴∠COG=2∠CAG=60°,∴∠AOG=60°,∴△AOG和△COG都是等边三角形,∴OA=OC=AG=CG=OG,∴四边形OABC是菱形,∴OA∥CG,∴S△CAG=S△COG,∴S阴影=S扇形COG,∵∠OCF=90°,∠OCG=60°,∴∠FCG=30°,∵∠F=90°,CG,∴FG=12∵FG 2+CF 2=CG 2,CF =∴(12CG )2+(2=CG 2,∴CG =4,∴OC =CG =4,∴S 阴影=S 扇形COG =2604360⨯π=83π, 故④正确,∴①③④这3个结论正确,故选C .【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.5、D【分析】连接OB ,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得60BOD ∠=︒,根据切线的性质可得90OBD ∠=︒,根据直角三角形的两个锐角互余即可求得D ∠.【详解】解:连接OBBE BE =30BAE BCE ∴∠=∠=︒OB OA =30OBA OAB ∴∠=∠=︒60BOD OBA OAB ∴∠=∠+∠=︒BD 是⊙O 的切线90OBD ∴∠=︒30D ∴∠=︒故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.6、A【分析】如图所示,连接OA ,由垂径定理得到AB =2AD ,先求出6cm OD OC CD =-=,即可利用勾股定理求出AD,即可得到答案.8cm【详解】解:如图所示,连接OA,∵半径OC⊥AB,∴AB=2AD,∠ODA=90°,CD=,∵4cm∴6cmOD OC CD=-=,∴8cmAD==,∴216cm==,AB AD故选:A.【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.7、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.8、B【分析】根据圆内接四边形的性质求出∠A的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB=130°,∴∠A=50°,=2∠A=100°,由圆周角定理得,BOD故选:B.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9、A【分析】连接ON,OF,根据题意可得:ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25①,y2+(y-DO)2=25②,然后①-②化简得:(x+y)(x+DO-y)=0,从而得到y-DO=x,再代入②,即可求解.【详解】解:如图,连接ON,OF,AB ,∵直径10∴ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25①,y2+(y-DO)2=25②,①-②化简得:(x+y)(x+DO-y)=0,因为x+y>0,所以x+DO-y=0,即y-DO=x,代入②,得x2+y2=25,即正方形CDMN的面积与正方形DEFG的面积之和是25.故选:A【点睛】本题主要考查了圆的基本性质,勾股定理等知识,熟练掌握圆的基本性质,勾股定理等知识是解题的关键.10、A【分析】根据点与圆的位置关系可得5OP <,由此即可得出答案.【详解】解:O 的半径为5,点P 在O 内,5OP ∴<,观察四个选项可知,只有选项A 符合,故选:A .【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.二、填空题1、36【分析】连接OA ,OB ,OB 交AF 于J .由正多边形中心角、垂径定理、圆周角定理得出∠AOB =72°,∠BOF =36°,再由等腰三角形的性质得出答案.【详解】解:连接OA ,OB ,OB 交AF 于J .∵五边形ABCDE 是正五边形,OF ⊥BC , ∴1122BF CF BC AB ===, ∴∠AOB =3605︒=72°,∠BOF =12∠AOB =36°, ∴∠AOF =∠AOB +∠BOF =108°,∵OA =OF ,∴∠OAF =∠OFA =()()11118018010872222AOF ︒-∠=︒-︒=⨯︒=36°故答案为:36.【点睛】本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n 边形的每个中心角都等于360n ︒. 2、3cm【分析】根据点与圆的位置关系得出:点P 在⊙O 上,则PO r =即可得出答案.【详解】∵⊙O 的直径为6cm ,∴⊙O 的半径为3cm ,∵点P 在⊙O 上,∴3cm =PO .故答案为:3cm .【点睛】本题考查点与圆的位置关系:点P 在⊙O 外,则PO r >,点P 在⊙O 上,则PO r =,点P 在⊙O 内,则PO r <.3、4π3【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r 或2r =-(舍去), ∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.4、①②③【分析】根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【详解】 解:如图, ,PA PB 是O 的两条切线,,,PA PB APO BPO ∴=∠=∠ 故①正确,,,PA PB APO BPO =∠=∠,PO AB ∴⊥ 故②正确,,PA PB 是O 的两条切线,90,OAP OBP ∴∠=∠=︒取OP 的中点Q ,连接,AQ BQ ,则1,2AQ OP BQ == ∴以Q 为圆心,QA 为半径作圆,则,,,B O P A 共圆,故③正确,M 是AOP 外接圆的圆心,,MO MA MP AO ∴===60,AOM ∴∠=︒ 与题干提供的条件不符,故④错误,综上:正确的说法是①②③.故填①②③.【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.5、90°【分析】先根据AB 是O 的内接正六边形一边得60AOB ∠=︒,再根据圆周角性质得30APB ∠=︒,再根据平行线的性质得30OAP ∠=︒,最后由三角形外角性质可得结论.【详解】解:∵AB 是O 的内接正六边形一边∴60AOB ∠=︒∴30APB ∠=︒∵BP OA ∥∴=30OAP APB ∠∠=︒∴603090OCP AOC OAC ∠=∠+∠=︒+︒=︒故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键三、解答题1、(1)45︒;(2)EH FH +=【分析】(1)根据圆周角定理,计算∠ABC 的大小,利用互余原理计算∠BAD ,最后,利用两个角的和,计算∠BAC ;(2)证明CDB FDE ∽,再求EH FH +的值.【详解】(1)∵105AOC ∠=︒ ∴152.52ABC AOC ∠=∠=︒∵AH BC ⊥于点H∴90AHB ∠=︒∴18037.5BAH AHB ABC ∠=︒-∠-∠=︒∵7.5CAD ∠=︒∴45BAC CAD BAH ∠=∠+∠=︒(2)如图过点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F∵90∠=∠=︒,DHB DEB∴D、H、E、B四点共圆,∴EHB EDB∠=∠,同理可得,∠=∠,D、H、C、F四点共圆,CHF CDF∵90CHF CDF DCF∠=∠=︒-∠,∠=︒-∠=∠,DCF ACD ABD180∴9090∠=∠=︒-∠=︒-∠=∠=∠CHF CDF DCF ABD EDB EHB 即CHF EHB∠=∠,∴E、H、F三点共线,∴EH FH EF+=,∵HED HBD∠=∠,∠=∠,DCH DFH∴在CDB△与FDE中FED HED HBD CBD ∠=∠=∠=∠,EFD HFD HCD BCD ∠=∠=∠=∠,∴CDB FDE ∽△△, ∴EF DE BC DB=, ∵52.5ABC ∠=︒,7.5DBC ∠=︒,∴60ABD ABC DBC ∠=∠+∠=︒,∴sin DE ABD BD =∠=, ∵1OB OC ==,290BOC BAC ∠=∠=︒,∴BC ==∴EF BC ==,即EH FH +=【点睛】本题考查了圆周角定理,四点共圆,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,勾股定理,熟练掌握圆周角定理,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,是解题的关键.2、(1)见解析;(2)见解析【分析】(1)连接OC 、AC ,证明△ACD 为等边三角形,得出∠ADC =∠DCA =∠DAC =60°,∠OCD =30°,由FG ∥DA ,得出∠DCF =180°-∠ADC =120°,则∠OCF =∠DCF -∠OCD =90°,即FG ⊥OC ,即可得出结论;(2)证明AF ∥DC ,由FG ∥DA ,得出四边形AFCD 是菱形.【详解】(1)证明:连接OC、AC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,AD=AC,∵DC=AD,∴DC=AD=AC,∴△ACD为等边三角形,∴∠ADC=∠DCA=∠DAC=60°,∠DAB=∠BAC=30°,∴∠BOC=2∠BAC=60°,∴∠OCD=90°-60°=30°,∵FG∥DA,∴∠D=∠DCG=60°,∴∠OCG=∠DCG+∠OCD=60°+30°=90°,∴FG⊥OC,∵OC为⊙O的半径,∴FG是⊙O的切线;(2)证明:∵AF与⊙O相切,∴AF ⊥AG ,∵DC ⊥AG ,∴AF ∥DC ,∵FG ∥DA ,∴四边形AFCD 为平行四边形.∵DC =AD ,∴四边形AFCD 是菱形.【点睛】本题考查了切线的判定与性质,菱形的判定与性质,等边三角形的性质,证明FG 是⊙O 的切线是解题的关键.3、(1)2;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO PO MOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可;(4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围【详解】(1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有2条;故答案为:2(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴ ②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =, (0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴ 12≤y M 136≤,136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO += 即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形,根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.4、(1)见详解;(2)4.【分析】(1)连接OB ,根据平行四边形的性质得到∠ABC =∠D =60°,求得∠BAC =30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO =∠OAB =30°,于是得到结论;(2)根据平行四边形的性质得到BC =AD,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,解直角三角形即可得到结论.【详解】(1)证明:连接OB ,∵四边形ABCD 是平行四边形,∴∠ABC =∠D =60°,∵AC ⊥BC ,∴∠ACB =90°,∴∠BAC =30°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =23 ,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.5、(1)见解析;(234π-【分析】(1)根据等角的余角相等证明即可;(2)根据S阴=S△AOD﹣S扇形﹣S△AOC计算即可.【详解】(1)证明:∵AB是直径,∴∠ACB=90°∴∠A+∠ABC=90°∵DO⊥AB,∴∠A+∠D=90°∴∠D=∠ABC;(2)解:设∠B=α,则∠BCO=α,∵OE=CE,∴∠EOC=∠BCO=α,在△BCO中,α+α+90°+α=180°,∴α=30°∴∠A=60°,D ABC∠=∠,∵OA=12AB=3,∴OC =OA =3,又ACB AOD ∠=∠ACB AOD ∴≌ABC ADO S S ∴=AO BO = 12AOC ABC S S ∴=∴OD=∴S 阴=S △AOD ﹣S 扇形﹣S △AOC =12⨯2303360π⋅⋅﹣11322⨯⨯⨯34π. 【点睛】本题考查了直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理,三角形全等的性质与判定,求扇形面积公式,根据S 阴=S △AOD ﹣S 扇形﹣S △AOC 求解是解题的关键.。
北师大版九年级数学下册第三章 圆章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O 中的半径为1,ABC 内接于O .若50A ∠=︒,70B ∠=︒,则AB 的长是( )A .32 B C D 2、如图,O 的半径为10cm ,AB 是O 的弦,OC AB ⊥于D ,交O 于点C ,且CD =4cm ,弦AB 的长为( )A .16cmB .12cmC .10cmD .8cm3、下列说法正确的是()A.相等的圆心角所对的弧相等,所对的弦相等B.平分弦的直径垂直于弦,并且平分弦所对的弧C.等弧所对的圆心角相等,所对的弦相等D.圆是轴对称图形,其对称轴是任意一条直径4、如图,点A,B,C在⊙O上,∠ACB=37°,则∠AOB的度数是()A.73°B.74°C.64°D.37°5、如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°6、如图,边长为)A .B .23π C . D .7、下列说法正确的是( )A .弧长相等的弧是等弧B .直径是最长的弦C .三点确定一个圆D .相等的圆心角所对的弦相等8、如图,PA ,PB 是⊙O 的切线,A ,B 是切点,点C 为⊙O 上一点,若∠ACB =70°,则∠P 的度数为( )A .70°B .50°C .20°D .40°9、下列叙述正确的有( )个.(1)y y =随着x 的增大而增大; (2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;(3)斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以2211(1)22m m m m -+>、、为三边长度的三角形,不是直角三角形. A .0 B .1 C .2 D .310、在半径为6cm 的圆中,120︒的圆心角所对弧的弧长是( )A .12πcmB .3πcmC .4πcmD .6πcm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将Rt△ABC 的斜边AB 与量角器的直径恰好重合,B 点与零刻度线的一端重合,∠ABC =38°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是 ___.2、如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.则∠APB =________度;3、如图,O 为ABP △的外接圆,2AB =,30APB ∠=︒,则O 直径长为______.4、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,分别以点A 、C 为圆心,AO 长为半径画弧,分别交AB 、CD 于点E 、F .若6AC =,35CAB ∠=︒,则图中阴影部分的面积为_______.(结果保留π)5、如图,在ABC 中,90ACB ∠=︒,BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,4AC =cm ,3BC =cm ,5AB =cm ,则CPB △的面积为_______cm 2.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,点A (0,-1),以O 为圆心,OA 长为半径画圆,P 为平面上一点,若存在⊙O 上一点B ,使得点P 关于直线AB 的对称点在⊙O 上,则称点P 是⊙O 的以A 为中心的“关联点”.(1)如图,点1(1,0)-P ,211,2()2P ,36(0,)5P 中,⊙O 的以点A 为中心的“关联点”是________; (2)已知点P (m ,0)为x 轴上一点,若点P 是⊙O 的以A 为中心的“关联点”,直接写出m 的取值范围;(3)C 为坐标轴上一点,以OC 为一边作等边△OCD ,若CD 边上至少有一个点是⊙O 的以点A 为中心的“关联点”,求CD 长的最大值.2、如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB 上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.3、如图,AB是⊙O的直径,DB DE=,连接DE、DB,延长AE交BD的延长线于点M,过点D作⊙O 的切线交AB的延长线于点C.(1)求证:DE=DM;(2)若OA=CD=4、阅读下列材料,完成相应任务:如图①,ABC是⊙O的内接三角形,AB是⊙O的直径,AD平分BAC∠交⊙O于点D,连接BD,过点D作⊙O的切线,交AB的延长线于点E.则CAD BDE∠=∠.下面是证明CAD BDE∠=∠的部分过程:证明:如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+①________90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,②________________. AD 平分,BAC CAD OAD ∠∴∠=∠.,OA OD OAD ODA =∴∠=∠,CAD ∴∠=③________,CAD BDE ∴∠=∠.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若5,2OA BE ==,求DE 的长.5、如图,AB 为O 的直径,点C ,D 在O 上,==AC CD DB ,DE AC ⊥.求证:DE 是O 的切线.-参考答案-一、单选题1、B【分析】连接OA 、OB ,过点O 作⊥OD AB ,由三角形内角和求出C ∠,由圆周角定理可得2AOB C ∠=∠,由OA OB =得AOB 是等腰三角形,即可知12AOD AOB ∠=∠,12AD BD AB ==,根据三角函数已可求出AD ,进而得出答案.【详解】如图,连接OA 、OB ,过点O 作⊥OD AB ,∵50A ∠=︒,70B ∠=︒,∴180507060C ∠=︒-︒-︒=︒,∴2120AOB C ∠=∠=︒,∵OA OB =,∴AOB 是等腰三角形, ∴1602∠=∠=︒AOD AOB ,12AD BD AB ==, ∴30DAO ∠=︒,∴12OD =,AD ==∴2AB AD ==故选:B .【点睛】本题主要考查了圆周角定理,解题的关键在于能够熟练掌握圆周角定理.2、A【分析】如图所示,连接OA ,由垂径定理得到AB =2AD ,先求出6cm OD OC CD =-=,即可利用勾股定理求出8cm AD ,即可得到答案.【详解】解:如图所示,连接OA ,∵半径OC ⊥AB ,∴AB =2AD ,∠ODA =90°,∵4cm CD =,∴6cm OD OC CD =-=,∴8cm AD ==,∴216cm AB AD ==,故选:A .【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.3、C【分析】根据圆心角、弧、弦的关系对AC进行判断;根据垂径定理的推论对B进行判断;根据对称轴的定义对D进行判断.【详解】解:A、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.4、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知∠AOB=2∠ACB=74°,即可得出答案.【详解】解:由图可知,∠AOB在⊙O中为AB对应的圆周角,∠ACB在⊙O中为AB对应的圆心角,故:∠AOB=2∠ACB=74°.故答案为:B.【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键.5、A【分析】根据圆周角定理得到∠ADB =90°,∠A =∠BCD =36°,然后利用互余计算∠ABD 的度数.【详解】∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠DAB =∠BCD =36°,∴∠ABD =∠ADB ﹣∠DAB ,即∠ABD =90°﹣∠DAB =90°﹣36°=54°.故选:A .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6、A【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正三角形的面积为:162⨯=三个小半圆的面积为:(213182ππ⨯⨯⨯=,中间大圆的面积为:2416ππ⋅=,所以阴影部分的面积为:18162πππ-=,故选:A【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.7、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项.【详解】解:A、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;B、直径是圆中最长的弦,正确,是真命题,符合题意;C、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;D、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定义、确定圆的条件及圆心角定理,难度不大.8、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA ,OB ,∵PA ,PB 为⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠ACB =70°,∴∠AOB =2∠P =140°,∴∠P =360°-∠OAP -∠OBP -∠AOB =40°.故选:D .【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.9、D【分析】根据反比例函数的性质,得当0x <或者0x >时,y 随着x 的增大而增大;根据直径所对圆周角为直角的性质,得斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】y =当0x <或者0x >时,y 随着x 的增大而增大,故(1)不正确; 如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆,故(3)正确; 三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;∵224212124m m m⎛⎫--+=⎪⎝⎭∴2 42422221211442m m m m mm⎛⎫-+++++== ⎪⎝⎭∴以2211(1)22m mm m-+>、、为三边长度的三角形,是直角三角形,故(5)错误;故选:D.【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.10、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:120︒的圆心角所对弧的弧长是12064 180180n rπππ⨯==;故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.二、填空题1、76°或142°【分析】设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.【详解】解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,∵Rt△ABC的斜边AB与量角器的直径恰好重合,∴A、C、B、D四点共圆,圆心为点O,∴∠BOD=2∠BCD,①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,连接OD1,则∠BOD1=2∠BCD1=76°;②若BC为等腰三角形的腰时,当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,连接OD2,则∠BOD2=2∠BCD2=142°,当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,综上,点D在量角器上对应的度数是76°或142°,故答案为:76°或142°.【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.2、60【分析】先根据圆的切线的性质可得90OAP ∠=︒,从而可得60PAB ∠=︒,再根据切线长定理可得PA PB =,然后根据等边三角形的判定与性质即可得.【详解】解:,PA PB 是O 的切线,,PA PB OA AP ∴=⊥,90OAP ∴∠=︒,30OAB ∠=︒,60PAB OAP OAB ∴∠∠=∠-=︒,PAB ∴是等边三角形,60APB ∴∠=︒,故答案为:60.【点睛】本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键. 3、4【分析】连接OA 、OB ,根据圆周角定理得出∠AOB =60°,证明△AOB 为等边三角形,进而求出直径.【详解】解:连接OA 、OB ,∵30APB ∠=︒,∴∠AOB =60°,∵OA =OB ,∴△AOB 为等边三角形,∵2AB =,∴OA =OB =2,则O 直径长为4;故答案为4.【点睛】本题考查了圆周角的性质和等边三角形的性质与判定,解题关键是连接半径,证明三角形是等边三角形.4、74π##【分析】由图可知,阴影部分的面积是扇形AEO 和扇形CFO 的面积之和.【详解】解:∵四边形ABCD 是矩形,∴6AC BD ==,OA OC OB OD ===,AB CD ∥,∴3OA OC ==,35ACD CAB ∠=∠=︒, ∴图中阴影部分的面积为:2353723604ππ⨯⨯=. 故答案为:74π.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 5、1.5【分析】根据BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,得出点P 是ABC ∆的内心,并画出ABC ∆的内切圆,再根据切线长定理列出方程组,求出BCP ∆的边BC 上的高,进而求出其面积.【详解】解:BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,∴点P 是ABC ∆的内心.如图,画出ABC ∆的内切圆,与BC 、AC 、AB 分别相切于点G 、M 、N ,且连接PG ,设CG x =,BG y =,AF z =,得方程组:354x y y z z x +=⎧⎪+=⎨⎪+=⎩解得:123x y z =⎧⎪=⎨⎪=⎩, 1PG x ∴==,CPB ∴∆的面积21131 1.5()22BC PG cm =⨯⨯=⨯⨯=. 故答案为:1.5.【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.三、解答题CD.1、(1)P1,P2;(2)m≤(3)1【分析】(1)根据题意,点P的对称点的轨迹是以A为圆心2为半径的圆,则平面上满足条件的点P在以A 为圆心2为半径的圆上或圆内,据此即可判断;(2)根据(1)的结论求得A与x轴的交点即可求解;(3)根据题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,根据题意求CD的最大值,即求得OC的最大值,故当C点位于y轴负半轴时,画出满足条件的等边三角形△OCD,进而根据切线的性质以及解直角三角形求解即可【详解】(1)根据题意,点P的对称点的轨迹是以A为圆心2为半径的圆,则平面上满足条件的点P在以A 为圆心2为半径的圆上或圆内,,P P符合条件,由图可知12故答案为:P1,P2;M N,(2)如图,设A与坐标轴交于点,2,1AM AQ AO ===,AO MN ⊥MO ∴=则OM NO ==∴m ≤(3)如图,由题意可知,平面上满足条件的点P 在以A 为圆心2为半径的圆上或圆内 因此满足条件的等边三角形△OCD 如图所示放置时,CD 长度最大,设切点为G ,连接AG∵∠AGC =90°,∠OCD =60°,AG =2∴sin 60AG AC ==︒∴1CD OC ==【点睛】本题考查了轴对称的性质,解直角三角形,切线的性质,等边三角形的性质,从题意分析得出“点P 的对称点的轨迹是以A 为圆心2为半径的圆”是解题的关键.2、(1)45°;(2)AE +CE ,理由见解析;(3【分析】(1)连接AC ,证A 、B 、E 、C 四点共圆,由圆周角定理得出∠AEB =∠ACB ,证出△ABC 是等腰直角三角形,则∠ACB =45°,进而得出结论;(2)在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,证△ABF ≌△CBE (SAS ),得出∠ABF =∠CBE ,BF =BE ,由等腰三角形的性质得出FH =EH ,由三角函数定义得出FH =EH ,进而得出结论;(3)分两种情况,由(2)得FH =EH ,由三角函数定义得出AH =3BH =32BE ,分别表示出CE ,进而得出答案.【详解】解:(1)连接AC ,如图①所示:∵α=90°,∠ABC =α,∠AEC =α,∴∠ABC =∠AEC =90°,∴A 、B 、E 、C 四点共圆,∴∠AEB =∠ACB ,∵∠ABC =90°,AB =CB ,∴△ABC 是等腰直角三角形,∴∠ACB =45°,∴∠AEB =45°;(2)AE+CE ,理由如下:在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示:∵∠ABC =∠AEC ,∠ADB =∠CDE ,∴180°﹣∠ABC ﹣∠ADB =180°﹣∠AEC ﹣∠CDE ,∴∠A =∠C ,在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△CBE (SAS ),∴∠ABF =∠CBE ,BF =BE ,∴∠ABF +∠FBD =∠CBE +∠FBD ,∴∠ABD =∠FBE ,∵∠ABC =120°,∴∠FBE =120°,∵BF =BE ,∴∠BFE =∠BEF =11(180)(180120)3022FBE ︒︒︒︒⨯-∠=⨯-=, ∵BH ⊥EF ,∴∠BHE =90°,FH =EH ,在Rt△BHE 中,1,2BH BE FH EH ====,∴22EF EH ===, ∵AE =EF +AF ,AF =CE ,∴.AE CE =+;(3)分两种情况:①当点D 在线段CB 上时,在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示,由(2)得:FH =EH , ∵tan∠DAB =13BH AH =, ∴332AH BH BE ==,∴32CE AF AH FH BE ==-==,∴CE BE =; ②当点D 在线段CB 的延长线上时,在射线AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图③所示,同①得:3,32FH EH AH BH BE ====,∴32CE AF AH FH BE ==+==,∴CE BE综上所述,当α=120°,1tan 3DAB ∠=时,CE BE 【点睛】 本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.3、(1)见详解;(2)4π-【分析】(1)连接AD ,根据弦、弧之间的关系证明DB =DE ,证明△AMD ≌△ABD ,得到DM =BD ,得到答案.(2)连接OD ,根据已知和切线的性质证明△OCD 为等腰直角三角形,得到∠DOC =45°,根据S 阴影=S △OCD -S 扇OBD 计算即可;【详解】解:(1)如图,连接AD ,∵AB 是⊙O 直径,∴∠ADB =∠ADM =90°,又∵DB DE =,∴ED =BD ,∠MAD =∠BAD ,在△AMD 和△ABD 中,ADM ADB AD AD MAD BAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMD ≌△ABD ,∴DM =BD ,∴DE =DM ;(2)如上图,连接OD ,∵CD 是⊙O 切线,∴OD ⊥CD ,∵OA =CD=OA =OD ,∴OD =CD=∴△OCD 为等腰直角三角形,∴∠DOC =∠C =45°,∴S 阴影=S △OCD -S 扇OBD =142π⨯=-; 【点睛】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.4、(1)ODB ∠,ODA BDE ∠=∠,ODA ∠;(2)DE =【分析】(1)由AB 是⊙O 的直径,得到ODA ∠+∠ODB 90=︒.再由DE 为⊙O 的切线,得到90ODB BDE ∠+∠=︒,即可推出∠ODA =∠BDE ,由角平分线的定义可得CAD OAD ∠=∠,由OA OD =,得到OAD ODA ∠=∠,即可证明CAD BDE ∠=∠;(2)在直角△ODE 中利用勾股定理求解即可.【详解】解:(1)如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+∠ODB 90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,∠ODA =∠BDE . AD 平分BAC ∠,∴CAD OAD ∠=∠.OA OD =,OAD ODA ∠=∠∴CAD ∴∠=∠ODA ,CAD BDE ∴∠=∠.故答案为:① ODB ∠,② ODA BDE ∠=∠,③ ODA ∠;(2)DE 为O 的切线,90ODE ∴∠=︒.5OA =,5OD OB OA ∴===,2BE =,7OE OB BE ∴=+=.在Rt ODE △中,DE =【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.5、见解析【分析】连接OD ,根据已知条件得到1180603BOD ∠=⨯︒=︒,根据等腰三角形的性质得到∠ADO =∠DAB =30°,得到∠EDA =60°,求得OD ⊥DE ,于是得到结论.【详解】证明:连接OD ,∵==AC CD DB , ∴1180603BOD ∠=⨯︒=︒. ∵CD DB =, ∴1302EAD DAB BOD ∠=∠=∠=︒.∵OA OD =,∴30ADO DAB ∠=∠=︒.∵DE AC ⊥,∴90E ∠=︒.∴90EAD EDA ∠+∠=︒.∴60EDA ∠=︒.∴90EDO EDA ADO ∠=∠+∠=︒.∴OD DE ⊥.∴DE 是O 的切线.【点睛】本题考查了切线的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.。
北师大版九年级数学下册第三章 圆章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC 中,CA CB =,点O 为AB 中点.以点C 为圆心,CO 长为半径作⊙C ,则⊙C 与AB 的位置关系是( )A .相交B .相切C .相离D .不确定2、若O 是ABC 的内心,当80A ∠=︒时,BOC ∠=( )A .130°B .160°C .100°D .110°3、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为( )A.8πB.172πC.192πD.12π4、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为()A.4.8 B.5 C.D.5、如图,⊙O中,半径OC⊥AB于D,且CD=2,弦AB=8,则⊙O的半径的长等于()A.3 B.4 C.5 D.66、如图,点A,B,C在⊙O上,∠ACB=37°,则∠AOB的度数是()A.73°B.74°C.64°D.37°7、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为()A.22.5°B.45°C.90°D.67.5°8、如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,△ABC绕AC所在直线旋转一周,所形成的圆锥侧面积等于()A.4πcm2B.8πcm2C.12πcm2D.15πcm29、如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°10、如图,点A ,B ,C 在⊙O 上,若∠ACB =40°,则∠AOB 的度数为( )A .40°B .45°C .50°D .80°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、线段4OA =,绕点O 顺时针旋转45°,则点A 走过的路径长为______.2、Rt ABC 的两条直角边分别是一元二次方程27120x x -+=的两根,则ABC 的外接圆半径为_____.3、如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长为8π,则正六边形的边长为________.4、如图,AB 为O 的直径,弦CD AB ⊥于点H ,8CD =,5OA =,则AH 的长为________.5、在半径为3的圆中,60°的圆心角所对的劣弧长等于_____.三、解答题(5小题,每小题10分,共计50分)1、抛物线2y ax bx c =++的顶点P 的纵坐标为a b c ++.(1)求a ,b 应满足的数量关系;(2)若抛物线上任意不同两点()11,A x y ,()22,B x y 都满足:当的12c x x a <<时,()()12120x x y y --<;当12cx x a <<时,()()12120x x y y -->.直线y c =与抛物线交于M 、N 两点,且PMN 为等腰直角三角形.①求抛物线的解析式②若直线AB 恒过定点()1,1,且以AB 为直径的圆与直线y m =总有公共点,求m 的取值范围.2、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程.已知:如图,ABC .求作:直线BD ,使得BD AC ∥.作法:如图,①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ;②以点O为圆心,OA长为半径作圆;③以点A为圆心,BC长为半径作孤,交AB于点D;④作直线BD.所以直线BD就是所求作的直线.根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接AD,=,∵点A,B,C,D在O上,AD BC∴AD=______.∠=∠(______)(填推理的依据).∴DBA CAB∥.∴BD AC3、已知:如图,△ABC为锐角三角形,AB=AC求作:一点P,使得∠APC=∠BAC作法:①以点A为圆心,AB长为半径画圆;②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;③连接DA并延长交⊙A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠_________=∠_________∴∠BAC=1∠CAD2∵点D,P在⊙A上,∠CAD(______________________)(填推理的依据)∴∠CPD=12∴∠APC=∠BAC4、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;O的半径.(2)若AD=5、如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB 上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.-参考答案-一、单选题1、B【分析】根据等腰三角形的性质,三线合一即可得CO AB⊥,根据三角形切线的判定即可判断AB是C的切线,进而可得⊙C与AB的位置关系【详解】解:连接CO,CA CB=,点O为AB中点.CO AB∴⊥CO 为⊙C 的半径,AB ∴是C 的切线,∴⊙C 与AB 的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.2、A【分析】由三角形内角和以及内心定义计算即可【详解】∵180A ABC ACB ∠+∠+∠=︒∴100ABC ACB ∠+∠=︒又∵O 是ABC 的内心∴OB 、OC 为ABC ACB ∠∠、角平分线,∴OBC OCB ∠+∠1()502ABC ACB =∠+∠=︒ ∴BOC ∠=180°()OBC OCB -∠+∠=180°-50°=130°故选:A .【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.3、C【分析】如图(见解析),先分别求出扇形①、②、③、④和⑤的圆心角的度数,再利用弧长公式即可得.【详解】解:如图,扇形①、③和⑤的圆心角的度数均为360906060150︒-︒-︒-︒=︒,扇形②和④的圆心角的度数均为180606060︒-︒-︒=︒, 则图中扇形的弧长总和1503603151932218018022πππππ⨯⨯⨯+⨯=+=, 故选:C .【点睛】 本题考查了求弧长,熟记弧长公式(180n r l π=,其中l 为弧长,n ︒为圆心角的度数,r 为扇形的半径)是解题关键.4、B【分析】连接EO ,延长EO 交CD 于F ,连接DO ,设半径为x .构建方程即可解决问题.【详解】解:设⊙O 与AB 相切于点E .连接EO ,延长EO 交CD 于F ,连接DO ,再设⊙O 的半径为x .∵AB 切⊙O 于E ,∴EF ⊥AB ,∵AB ∥CD ,∴EF ⊥CD ,∴∠OFD =90°,在Rt △DOF 中,∵∠OFD =90°,OF 2+DF 2=OD 2,∴(8-x )2+42= x 2,∴x =5,∴⊙O 的半径为5.故选:B .【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.5、C【分析】根据垂径定理得出AD =BD =118422AB ,设⊙O 的半径的长为x ,根据勾股定理222OB OD BD =+,即()22224x x =-+,解方程即可.【详解】解:∵半径OC ⊥AB 于D ,弦AB =8,∴AD =BD =118422AB , 设⊙O 的半径的长为x ,∴OD =OC -CD =x -2,在Rt△ODB 中,根据勾股定理222OB OD BD =+,即()22224x x =-+,解得x =5,∴⊙O 的半径的长为5.故选择C .【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键.6、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知∠AOB =2∠ACB =74°,即可得出答案.【详解】解:由图可知,∠AOB 在⊙O 中为AB 对应的圆周角,∠ACB 在⊙O 中为AB 对应的圆心角,故:∠AOB =2∠ACB =74°.故答案为:B .【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键.7、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵OA OB ⊥,∴90AOB ∠=︒, ∴1452C AOB ∠=∠=︒,故选:B .【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.8、D【分析】圆锥的侧面积S rl π=侧,确定r l 、的值,进而求出圆锥侧面积.【详解】解:S rl π=侧,35r BC l AB ====、 23515cm S rl πππ∴==⨯⨯=侧故选D .【点睛】本题考察了圆锥侧面积.解题的关键与难点在于确定r l 、的值.9、A【分析】根据圆周角定理得到∠ADB=90°,∠A=∠BCD=36°,然后利用互余计算∠ABD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=∠BCD=36°,∴∠ABD=∠ADB﹣∠DAB,即∠ABD=90°﹣∠DAB=90°﹣36°=54°.故选:A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、D【分析】由∠ACB=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOB的度数.【详解】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°.故选:D.【点睛】本题考查了圆周角定理.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.二、填空题1、π【分析】直接根据题意及弧长计算公式可进行求解.【详解】解:由题意得:点A 走过的路径长为454180180n r πππ⨯==; 故答案为π.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.2、2.552【分析】根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.【详解】解:27120x x -+=, ()()340x x --=,解得123,4x x ==,∴Rt ABC 的两条直角边分别为3,4,∴,直角三角形的外接圆的圆心在斜边上,且为斜边的中点,∴ABC 的外接圆半径为52. 【点睛】本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键. 3、4【分析】由周长公式可得⊙O 半径为4,再由正多边形的中心角公式可得正六边形ABCDEF 中心角为60︒,即可知正六边形ABCDEF 为6个边长为4的正三角形组成的,则可求得六边形ABCDEF 边长.【详解】∵⊙O 的周长为8π∴⊙O 半径为4∵正六边形ABCDEF 内接于⊙O∴正六边形ABCDEF 中心角为360606︒=︒ ∴正六边形ABCDEF 为6个边长为4的正三角形组成的∴正六边形ABCDEF 边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n 边形的每个中心角都等于360n︒,由中心角为60︒得出正六边形ABCDEF 为6个边长为4的正三角形组成的是解题的关键.4、8【分析】如图所示,连接OC ,由垂径定理可得1=42CH DH CD ==,再由勾股定理求出OH ,即可得到答案.【详解】解:如图所示,连接OC ,∵AB为⊙O的直径,弦CD⊥AB于点H,CD=8,∴1=42CH DH CD==,∠OHC=90°,∵OC=OA=5,∴OH,∴AH=OA+OH=8,故答案为:8.【点睛】本题主要考查了勾股定理和垂径定理,解题的关键在于能够熟练掌握垂径定理.5、π【分析】弧长公式为l=n180rπ,把半径和圆心角代入公式计算就可以求出弧长.【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π,故答案为:π.【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式.三、解答题1、(1)2b a =-;(2)①221y x x =-+;②02m ≤≤【分析】(1)当x =1时,y =a +b +c ,确定P 的坐标为(1,a +b +c ),确定函数的对称轴为x =1即b -12a=,关系确定;(2)①由12c x x a <<时,得120x x -<,结合()()12120x x y y --<,得120y y ->, 得到x c a<时,y 随x 的增大而减小;由12c x x a <<时,得120x x -<,结合()()12120x x y y -->,得120y y -<,得到x c a>时,y 随x 的增大而增大,判定直线x c a =是抛物线的对称轴,且a >0;得到1c a=,从而确定P (1,0),线y c =与抛物线交于M 、N 两点,其中一点必是抛物线与y 轴的交点,设为M (0,c ),根据PMN 为等腰直角三角形,可证△OPM 是等腰直角三角形,从而得到PO =OM =1即M (0,1),故c =a =1,b =-2a =-2即确定函数解析式;②由直线AB 恒过定点()1,1,得到直线AB 为y =1;结合抛物线与y 轴的交点为(0,1),不妨设点A 是抛物线与y 轴的交点,根据对称轴为x =1,确定B 的坐标为(2,1),故AB =2,所以AB 为直径的圆的半径为1,圆心是AB 的中点,从而确定出圆,利用数形结合思想,可以确定圆与直线y m =总有公共点时m 的取值范围.【详解】(1)(1)当x =1时,y =a +b +c ,∴P 的坐标为(1,a +b +c ),∴函数的对称轴为x =1, ∴b -12a=, ∴b =-2a ;(2)①∵12c x x a<<时,∴120x x -<,∵()()12120x x y y --<,∴120y y ->, ∴x c a <时,y 随x 的增大而减小; ∵12cx x a <<时,∴120x x -<,∵()()12120x x y y -->,∴120y y -<, ∴x c a>时,y 随x 的增大而增大, ∴直线x ca=是抛物线的对称轴,且a >0;∵函数的对称轴为x =1, ∴1c a=, ∴a +b +c =2a -2a =0,∴P (1,0),PO =1,∵(0,c )是抛物线与y 轴的交点, ∴直线y =c 与抛物线交于M 、N 两点中一点必是抛物线与y 轴的交点, 设为M (0,c ),则OM =c ,∵PMN 为等腰直角三角形, ∴∠NMP =45°,∴∠OMP =45°,∴△OPM 是等腰直角三角形, ∴PO =OM =1,∴c =a =1,b =-2a =-2,∴函数解析式为221y x x =-+; ②∵直线AB 恒过定点()1,1, ∴直线AB 为y =1;∵抛物线与y 轴的交点为(0,1), ∴不妨设点A 是抛物线与y 轴的交点, ∵对称轴为x =1,∴B 的坐标为(2,1),∴AB =2,∴AB 为直径的圆的半径为1,圆心是AB 的中点(1,1), 作图如下,∵y =0时,直线与圆相切;y =2时,直线与圆相切;∴圆与直线y m =总有公共点时m 的取值范围为0≤m ≤2.【点睛】本题考查了抛物线的解析式,对称性,直线与圆的位置关系,等腰直角三角形的性质,熟练掌握抛物线的对称性,灵活判定直线与圆的位置关系是解题的关键.2、(1)作图见解析;(2),BC 在同圆中,等弧所对的圆周角相等【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得AD BC =,证明AD BC =,利用圆周角定理可得DBA CAB ∠=∠,从而可得答案.【详解】解:(1)如图,直线BD 就是所求作的直线(2)证明:连接AD,=,∵点A,B,C,D在O上,AD BC∴AD BC=.∠=∠(在同圆中,等弧所对的圆周角相等).∴DBA CAB∥.∴BD AC故答案为:,BC在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键.3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠BAC=∠BAD∠CAD∴∠BAC=12∵点D,P在⊙A上,∠CAD(圆周角定理)(填推理的依据)∴∠CPD=12∴∠APC=∠BAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.4、(1)见详解;(2)4.【分析】(1)连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角(2)根据平行四边形的性质得到BC=AD三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)解:∵四边形ABCD是平行四边形,∴BC=AD=23,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.5、(1)45°;(2)AE +CE ,理由见解析;(3【分析】(1)连接AC ,证A 、B 、E 、C 四点共圆,由圆周角定理得出∠AEB =∠ACB ,证出△ABC 是等腰直角三角形,则∠ACB =45°,进而得出结论;(2)在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,证△ABF ≌△CBE (SAS ),得出∠ABF =∠CBE ,BF =BE ,由等腰三角形的性质得出FH =EH ,由三角函数定义得出FH =EH ,进而得出结论;(3)分两种情况,由(2)得FH =EH ,由三角函数定义得出AH =3BH =32BE ,分别表示出CE ,进而得出答案.【详解】解:(1)连接AC ,如图①所示:∵α=90°,∠ABC =α,∠AEC =α,∴∠ABC =∠AEC =90°,∴A 、B 、E 、C 四点共圆,∴∠AEB =∠ACB ,∵∠ABC =90°,AB =CB ,∴△ABC 是等腰直角三角形,∴∠ACB =45°,∴∠AEB =45°;(2)AE+CE ,理由如下:在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示:∵∠ABC =∠AEC ,∠ADB =∠CDE ,∴180°﹣∠ABC ﹣∠ADB =180°﹣∠AEC ﹣∠CDE ,∴∠A =∠C ,在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△CBE (SAS ),∴∠ABF =∠CBE ,BF =BE ,∴∠ABF +∠FBD =∠CBE +∠FBD ,∴∠ABD =∠FBE ,∵∠ABC =120°,∴∠FBE =120°,∵BF =BE ,∴∠BFE =∠BEF =11(180)(180120)3022FBE ︒︒︒︒⨯-∠=⨯-=, ∵BH ⊥EF ,∴∠BHE =90°,FH =EH ,在Rt△BHE 中,1,2BH BE FH EH ====,∴22EF EH ===, ∵AE =EF +AF ,AF =CE ,∴.AE CE =+;(3)分两种情况:①当点D 在线段CB 上时,在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示,由(2)得:FH =EH , ∵tan∠DAB =13BH AH =, ∴332AH BH BE ==,∴32CE AF AH FH BE ==-==,∴CE BE =; ②当点D 在线段CB 的延长线上时,在射线AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图③所示,同①得:3,32FH EH AH BH BE ====,∴32CE AF AH FH BE ==+==,∴CE BE综上所述,当α=120°,1tan 3DAB ∠=时,CE BE 【点睛】 本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.。
【专题突破训练】北师大版九年级数学下册_第三章_圆单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知⊙O的直径AB=6cm,则圆上任意一点到圆心的距离等于()A.2 cmB.2.5 cmC.3 cmD.无法确定2. 已知AD是⊙O的直径,AD′⊥BC,AB、AC分别与圆相交于E、F,那么下列等式中一定成立的是()A.AE⋅BF=AF⋅CFB.AE⋅AB=AO⋅AD′C.AE⋅AB=AF⋅ACD.AE⋅AF=AO⋅AD3. 下列说法中正确的是()A.垂直于半径的直线是圆的切线B.圆的切线垂直于半径C.经过半径的外端的直线是圆的切线D.圆的切线垂直于过切点的半径4. 到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线5. 如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于()A.2B.3C.4D.56. 如图,⊙O中弦AB垂直于直径CD于点E,则下列结论:①AE=BE;②AC^=BC^;③AD^=BD^;④EO=ED,其中正确的有()A.①②③④B.①②③C.②③④D.①④7. 如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm8. 如图,已知PA,PB分别切⊙O于点A、B,∠P=60∘,PA=8,那么弦AB的长是()A.4B.8C.4√3D.8√39. 有一边长为2√3的正三角形,则它的外接圆的面积为()A.2√3πB.4√3πC.4πD.12π,BC=1,则⊙O的半径等于10. 如图,已知AB是⊙O的直径,C是⊙O上的点,sinA=14()A.4B.3C.2D.√15二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 一个扇形的弧长是38πcm,面积是190πcm2,这个扇形的半径是________cm.12. 如图,已知四边形ABCD内接于⊙O,∠ABC=60∘,则∠CDE的度数是________.第12题第13题第14题第15题13. 如图,在⊙O中,弦AB与CD相交于点P,已知PA=3cm,PB=4cm,PC=2cm,那么PD=________cm.14. 如图AB是⊙O的直径,∠BAC=42∘,点D是弦AC的中点,则∠DOC的度数是________度.15. 如图,AB是⊙O的直径,CD是垂直于AB的弦,垂足为E,已知AB=10,AE=9,则CD=________.16. 平面上的一点和⊙O的最近点距离为4cm,最远距离为10cm,则这圆的半径是________cm.17. 如图,在⊙O中,OB为半径,AB是⊙O的切线,OA与⊙O相交于点C,∠A=30°,OA=8,则阴影部分的面积是________.第17题图第18题第19题第20题18. 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为3,AC=2,sinB的2值是________.19. 如图,摩天轮⊙P的最高处A到地面l的距离是82米,最低处B到地面l的距离是2米.若游客从B处乘摩天轮绕一周需12分钟,则游客从B处乘摩天轮到地面l的距离是62米时最少需________分钟.20. 如图,点A、B、C在⊙O上,若∠BAC=24∘,则∠OBC=________∘.三、解答题(本题共计 9 小题,共计60分,)21.(6分) 如图,已知梯形ABCD中,AD // BC,∠C=90∘,AD+BC=AB,以AB为直径作⊙O.(1)求证:CD为⊙O的切线;(2)试探索以CD为直径的圆与AB有怎样的位置关系?证明你的结论.22.(6分) 一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E.(1)求CE的长;(2)将⊙O在射线CB上向左滚动,当⊙O与AB相切时,则圆心O经过的距离是多少(直接写出结论).23.(6分) 如图已知OB是半径,弦EF垂直OB于H,点A是HF上的一点,BA和⊙O相交于另一点C,过点C的切线和EF的延长线交于点D:(1)求证:DA=DC;(2)当DF:EF=1:8,DF=√2时,求AB⋅AC的值.24.(7分) 如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为6,∠BAC=60∘,延长ED交AB延长线于点F,求阴影部分的面积.25.(7分) 如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙于E,交AM于D,交BN于C.设AD=x,BC=y.(1)求证:AM // BN.(2)探究y与x的函数关系.26.(7分) 如图,⊙O是△ABC的外接圆,∠ABC=45∘,OC // AD,AD交BC的延长线于D,AB交OC于E.(1)求证:AD是⊙O的切线;(2)若AE=2√3,CE=2.求⊙O的半径和线段BE的长.27(7分) 如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.(1)求证:AE是∠BAC的平分线;(2)若∠ABD=60∘,则AB与EF是否平行?请说明理由.28.(7分) 已知,如图,在Rt△ABC中,∠C=90∘,以AC为直径作⊙O,交AB于D,过O 作OE // AB交BC于E.(1)求证:ED是⊙O的切线.,ED=2,求AB的长.(2)如果⊙O的半径为32答案1. C2. C3. D4. A5. C6. B7. C8. B9. C10. C11. 1012. 60∘13. 614. 4815. 616. 3或717. 518. 2319. 420. 6621. (1)证明:过点O作OE⊥CD于点E,∵在梯形ABCD中,AD // BC,∠C=90∘,∴AD⊥CD,BC⊥CD,∴AD // OE // BC,∵OA=OB,∴OE是梯形ABCD的中位线,∴OE=12(AD+BC),∵AD+BC=AB,∴OE=12AB,∵以AB为直径作⊙O.∴直线CD是⊙O的切线.(2)设圆心为O′.过点O′作O′F⊥AB于点F,过点O′作O′M // AD,∴O′M是梯形ABCD的中位线,∴O′M=12(AD+BC)=12AB=DM,∴∠O′DM=∠DO′M,∵AD // O′M,∴∠ADO′=∠DO′M=∠O′DM,在△AO′D和△FO′D中,{∠ADO′=∠FDO′∠A=∠O′FD=90∘O′D=O′D,∴△AO′D≅△FO′D(AAS),∴O′F=O′A=12AB,即CD与⊙O′相切.22. 解:(1)如图1,连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2√3cm,∴OC=√3cm,又∵∠ACB=60∘,∴∠OCF=30∘,在Rt△OFC中,可得FC=32cm,即CE=2FC=3cm;(2)如图2,设⊙O与AB相切于E,与BC相切于F,∴CF的长度即为圆心O经过的距离,∵∠OFC=90∘,∠C=30∘,∴CF=12OC,在△AOE与△COF中,{∠A=∠C=60∘∠AEO=∠CFO=90∘OE=OF,∴△AOE≅△COF,∴AO=OC=12AC=2,∴CF=1cm,∴圆心O经过的距离是1cm.23. 解:(1)连接OC,则有∠1=∠2,又CD是切线,∴OC⊥CD,而∠4与∠1互余,∠3与∠2互余,∴∠3=∠4,∴DA=DC(2)∵DF=√2,∴EF=8√2,又∵CD2=DF⋅DE=√2⋅9√2=18,∴CD=3√2=AD∴AF=3√2−√2=2√2,AE=6√2∴AB⋅AC=AE⋅AF=24.24. (1)直线DE与⊙O的位置关系是相切,证明:连接OD,∵AO=BO,BD=DC,∴OD // AC,∵DE⊥AC,∴DE⊥OD,∵OD为半径,直线DE是⊙O的切线,即直线DE与⊙O的位置关系是相切;(2)解:∵OD // AC,∠BAC=60∘,∴∠DOB=∠A=60∘,∵DE是⊙O切线,∴∠ODF=90∘,∴∠F=30∘,∴FO=2OD=12,由勾股定理得:DF=6√3,∴阴影部分的面积S=S△ODF−S扇形DOB =12×6×6√3−60π×62360=18√3−6π.25. (1)证明:∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,∴AM // BN.(2)解:作DF⊥BN交BC于F,∵AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90∘,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=2,∵BC=y,∴FC=BC−BF=y−x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=xCE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(x−y)2+22,整理为:y=1x,∴y与x的函数关系为:y=1x.26. (1)证明:连结OA,如图,∵∠ABC=45,(同弧所对圆心角是圆周角的两倍)∴∠AOC=90;∵OC∥AD,∴∠OAD=90,即OA⊥AD;∴AD是⊙O的切线.(2)解:设⊙O的半径为R,则OA=R,OE=R−2,AE=2√3,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R−2)2=(2√3)2,解得R=1+√5,(负值舍去),如图:延长CO交⊙O于F,连接AF,则△CEB∽△AEF,∴AE CE =FEBE,∵EF=2R−2=2√5,∴BE=2√153.27 (1)证明:连接BE;∵AB是⊙O的直径,∵CD 切圆于E ,∴∠AEC =∠ABE ,又AC ⊥CD .∴∠CAE =∠BAE .即AE 是∠BAC 的平分线.(2)解:AB // EF .理由如下:∵AC ⊥CD 于C ,BD ⊥CD 于D ,∴AC // BD .∴∠BAC =180∘−∠B =120∘.∵AE 是∠BAC 的平分线,∴∠BAE =60∘.∴∠DFE =∠BAE =60∘(圆内接四边形的任意一个外角等于它的内对角), ∴∠DFE =∠ABF .∴AB // EF .28. (1)证明:连接OD ,如图所示:∵OE // AB ,∴∠∠1=∠A ,∠2=∠3,∵OA =OD ,∴∠A =∠3,∴∠1=∠2,在△OCE 和△ODE 中,{OC =ODamp;∠1=∠2amp;OE =OEamp;, ∴△OCE ≅△ODE(SAS),∴∠ODE =∠C =90∘,∴ED是⊙O的切线.(2)解:∵△OCE≅△ODE,∴EC=ED=2,∴OE=√OC2+EC2=√(3)2+22=2.5,2∵OC=OA,OE // AB,∴OE是△ABC的中位线,∴AB=2OE=5.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】
第三章:圆(3.1-3.4)同步练习题
一、单选题
1.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,
则∠C的大小是()
A.30°B.45°C.60°D.40°
(第1题图)(第2题图)(第3题图)(第4题图)(第5题图)
2.如图,在△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30°,AB=AC,则∠BDE的度数为( )
A. 45°
B. 52.5°
C. 67.5°
D. 75°
3.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的圆除经过A,B,C三点外还能经过的格点最多有()个
A.2 B.3 C.4 D.5
4.如图,正方形ABCD的四个顶点分别在⊙O上,点P在CD上不同于点C的任意一点,则∠BPC的度数是()
A.45°B.60°C.75°D.90°
5.如图,OA、OB是⊙O的半径,点C在⊙O上,连接AC、BC,若∠A=20°,∠B=70°,
则∠ACB的度数为()
A.50°B.55°C.60°D.65°
6.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()
(第6题图)(第7题图)(第8题图)(第9题图)(第10题图)
A.10 B.8 C.5 D.3
7.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()
A.B.C.D.
8.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为() A.B.2C.2D.8
9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()
A.130°B.100°C.65°D.50°
10.如图,点是半圆上的一个三等分点,点为弧的中点,是直径上一动点,⊙O的半径是2,则的最小值为()A.2 B.C.D.
二、填空题
11.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于______度
(第11题图)(第12题图)(第13题图)(第14题图)
12.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O 于点E.若∠C=21°,则∠BOE的度数等于____°.
13.如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠ABD=62°,则∠BCD=_____.
14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若AB=12,CD=8,则BE=_________.15.如图,在平面直角坐标系中,、两点的坐标分别为、.以点为圆心,为半径作圆,⊙与轴相交于、两点,则的长是__________.
(第15题图)(第16题图)(第17题图)(第18题图)
16.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦
AB的长是______.
17.如图,⊙O是△ABC的外接圆,⊙O的半径是R=2,sinA=0.8,则弦BC的长为.
18.如图,在平面直角坐标系中,一段圆弧经过点A、B、C,其中点B的坐标为(4,3),则圆弧所在圆的半径为.
三、解答题
19.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.
20.如图,的平分线交的外接圆于点,的平分线交于点.(1)求证:;(2)若,,求外接圆的半径.
中考数学知识点代数式
一、重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,
叫做代数式。
单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因
数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴( —幂,乘方运算)
①a>0时,>0;②a0(n是偶数),⑵零指数:=1(a≠0)
负整指数:=1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质:= (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:①· = ;②÷ = ;③= ;④= ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分组分解法;e.求根公式法。
9.算术根的性质:= ; ; (a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:
a. ;
b. ;
c. .
11.科学记数法:(1≤a<10,n是整数。