八年级数学正方形2
- 格式:pdf
- 大小:888.20 KB
- 文档页数:8
5.3正方形(2)A练就好基础基础达标1.正方形具有而菱形不一定具有的特征是(D)A.对边互相平行B.对角线互相垂直平分C.是中心对称图形D.有4条对称轴2.如图所示,在正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有(C) A.4个B.6个C.8个D.10个第2题图第3题图3.如图所示,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为(C)A.14B.15C.16D.174.如图所示,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.若∠BEC=80°,则∠EFD的度数为(C)A.20°B.25°C.35°4题图第5题图5.如图所示,正方形ABCD的对角线相交于点O,E是BC上任意一点,EG⊥BD于点G,EF⊥AC于点F.若AC=10,则EG+EF的值为(C)A.10 B.8 C.5 D.46.如图所示,正方形ABCD=FC=1 cm,那么EF的长是__10_cm__.6题图第7题图7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(2,3).8.如图所示,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF.(2)若∠ABE=55°,求∠EGC的大小.解:(1)证明:∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC . ∵BE ⊥BF ,∴∠FBE =90°.∵∠ABE +∠EBC =90°,∠CBF +∠EBC =90°, ∴∠ABE =∠CBF .在△AEB 和△CFB 中,∵AB =BC ,∠ABE =∠CBF ,BE =BF , ∴△AEB ≌△CFB (SAS ),∴AE =CF .(2)∠EGC =∠EBG +∠BEF =35°+45°=80°.9.如图所示,在正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于点E ,DF ⊥AG 于点F ,连结DE .(1)求证:△ABE ≌△DAF .(2)若AF =1,四边形ABED 的面积为解:(1)证明:∵四边形ABCD 是正方形, ∴AB =AD .∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF =90°,∠DAF +∠ADF =90°, ∴∠BAE =∠ADF .在△ABE 和△DAF 中, ∵⎩⎪⎨⎪⎧∠BAE =∠ADF ,∠AEB =∠DF A ,AB =AD ,∴△ABE ≌△DAF (AAS ).(2)设EF =x ,则AE =DF =x +1,由题意得2×12×(x +1)×1+12×x ×(x +1)=6,解得x =2或-5(舍去),∴EF =2.B 更上一层楼 能力提升10.·嘉兴将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( A )A B C D11.如图所示,E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为( D )A.22B.12C.32D.2 12.·青岛已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为__1234__.13.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连结BE ,DF ,DF 交对角线AC 于点G ,且DE =DG . 求证:(1)AE =CG ; (2)BE ∥DF .证明:(1)∵DE =DG , ∴∠DEG =∠DGE , ∴∠AED =∠CGD .∵四边形ABCD 是正方形,∴AD =CD =BC ,∠DAC =∠BCE =∠DCA =45°. 在△ADE 和△CDG 中, ∵⎩⎪⎨⎪⎧∠AED =∠CGD ,∠DAC =∠DCA ,AD =CD ,∴△ADE ≌△CDG (AAS ), ∴AE =CG ;(2)在△BCE 和△DCE 中, ∵⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCE ,CE =CE ,∴△BCE ≌△DCE (SAS ),∴∠BEC =∠DEG ,又∵∠DGE =∠DEG , ∴∠BEC =∠DGE , ∴BE ∥DF .C 开拓新思路 拓展创新14.如图,在正方形ABCD 中,P 是对角线BD 上的一点,过点P 作PE ⊥BC 于点E, PF ⊥CD 于点F .(1)猜想线段P A ,PE ,PF 之间的数量关系,并给出证明; (2)猜想线段P A ,EF 之间的位置关系,并给出证明. 解:(1)P A 2=PE 2+PF 2 证明:连结AC ,PC ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,∠BCD =90°, ∴AP =CP .∵PE ⊥BC ,PF ⊥CD , ∴∠PEC =∠PFC =90°, ∴四边形PECF 是矩形, ∴PC =EF ,∠EPF =90°, ∴AP =EF .∵EF 2=PE 2+PF 2, ∴P A 2=PE 2+PF 2. (2)AP ⊥EF .证明:过点P 作PN ⊥AB ,垂足为点N ,延长AP ,交EF 于点M , ∵四边形ABCD 是正方形,∴∠ABP =∠CBD =45°, ∴△DFP 为等腰直角三角形, ∴DF =PF ,又AN =DF , ∴AN =FP .又∵NP ⊥AB ,PE ⊥BC ,∴四边形BNPE 是正方形,∴NP =EP . ∵AP =PC ,四边形PECF 为矩形, ∴EF =PC ,∴AP =EF . 在△ANP 与△FPE 中, ∵⎩⎪⎨⎪⎧AN =FP ,NP =EP ,AP =EF ,∴△ANP ≌△FPE (SSS ), ∴∠NAP =∠PFE .∵在△APN 与△FPM 中,∠APN =∠FPM ,∠NAP =∠PFM , ∴∠PMF =∠ANP =90°,∴AP ⊥EF .15.如图所示,在△ABC 中,∠ACB =90°,AC =6,BC =8,以斜边AB 为边向外作正方形ABDE ,求CE 的长.第15题图第15题答图解:过点E作EF⊥CA于点F,易证△ABC≌△EAF,∴EF=AC=6,AF=BC=8,∴CF=14.∴CE=62+142=258.。
18.2.3正方形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线互相垂直的矩形是正方形;(4)对角线相等的菱形是正方形.2.判定一个四边形是正方形,一般有两种思路:一种是先证四边形是菱形,再证明它有一个角是直角或对角线相等;另一种是先证明四边形是矩形,再证它有一组邻边相等或对角线互相垂直.基础知识和能力拓展训练一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.810.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 时,四边形MENF是正方形.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个(填代号).16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?答案与试题解析一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.解:A、正确,一组邻边相等的平行四边形是菱形;B、正确,对角线互相垂直的平行四边形是菱形;C、正确,有一个角为90°的平行四边形是矩形;D、不正确,对角线相等的平行四边形是矩形而不是正方形;故选D.2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个【分析】根据中心对称的概念以及平行四边形、正方形、菱形的判定定理进行判断即可.解:(1)因为正奇边形不是中心对称图形,故等边三角形不是中心对称图形,此选项错误;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,因为等腰梯形也符合此条件,此选项错误;(3)两条对角线互相垂直的矩形是正方形,此选项正确;(4)两条对角线互相垂直平分的四边形是菱形,此选项错误.故选:A.3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A、不能,只能判定为矩形;B、不能,只能判定为平行四边形;C、能;D、不能,只能判定为菱形.故选:C.4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定【分析】利用矩形的性质与判定方法得出四边形EMFN是矩形,进而利用等腰直角三角形的性质得出AM=ME,BM=MF=AM,则ME=MF,进而求出即可.解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∠EAB=∠ABF=∠BCD=∠CDA=90°,又∵E,F分别为AD,BC中点,AD=2AB,∴AE∥BF,ED∥CF,AE=BF=DE=CF=AB=DC,∴∠ABE=∠AEB=∠DEC=∠DCE=∠DFC=45°,∴∠BEN=90°,又∵DE BF,AE FC,∴四边形EMFN是矩形,∴AM⊥BE,BM⊥AF,∴AM=ME,BM=MF=AM,∴ME=MF,∴四边形EMFN是正方形.故选:A.6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:A、正确.∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形.故正确.B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.故选B.7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④【分析】根据正方形的判定定理即可得到结论.解:与左边图形拼成一个正方形,正确的选择为③,故选C.8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°【分析】由题意可得四边形AECF为一矩形,要使四边形AECF是正方形,只需添加一条件,使其邻边相等即可.解:过点E,F作EH⊥BD,FG⊥BD,∵CE,CF为∠ACB,∠ACD的角平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECH,∵∠ECH=∠ECO,∴∠FEC=∠ECO,∴OE=OC.同理OC=OF,∴OE=OF,∵点O运动到AC的中点,∴OA=OC,∴四边形AECF为一矩形,若∠ACB=90°,则CE=CF,∴四边形AECF为正方形.故选:D.9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.8【分析】如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.10.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为8,AE=BF=CG=DH=5,可得AH=3,由勾股定理得EH,得正方形EFGH的面积.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选B.二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 1:2 时,四边形MENF是正方形.【分析】首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是①②③.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当①BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项①正确;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项②正确;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项③正确;当AC=BF时,无法得出菱形BECF是正方形,故选项④错误.故答案为:①②③.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个①②或①④(填代号).【分析】因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.解:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,若AB=AD,则四边形ABCD为正方形;若AC⊥BD,则四边形ABCD是正方形.故填:①②或①④.16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为2.【分析】作辅助线,构建正方形AHGF,则AF=GH=GF,设GC=x,则FG=AF=HG=x+2,DG=x﹣1,在Rt△DGC中,利用勾股定理列方程可求得x的值,最后利用勾股定理计算AC的长即可.解:过A作AE⊥DC于E,将△AEC沿AC翻折得△AFC,将△ADE沿AD翻折得△ADH,延长FC、HD交于G,则∠EAC=∠CAF,∠EAD=∠HAD,∠H=∠F=90°,∴∠EAC+∠EAD=∠CAF+∠HAD,∵∠DAC=45°,即∠EAC+∠EAD=45°,∴∠HAF=90°,∴四边形AHGF是矩形,∵AH=AE,AE=AF,∴AH=AF,∴四边形AHGF是正方形,∴AF=GH=GF,∵AB=AC,AE⊥BC,∴BE=EC=2,由折叠得:FC=EC=2,HD=DE=3,设GC=x,则FG=AF=HG=x+2,∴DG=x﹣1,在Rt△DGC中,DC2=DG2+GC2,52=(x﹣1)2+x2,解得:x1=4,x2=﹣3(舍),∴AF=x+2=4+2=6,Rt△ACF中,AC==2.故答案为:2.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是57.75 .【分析】运用拼图的方法,构造一个正方形,用大正方形的面积﹣小正方形的面积,即可得出所求多边形的面积.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:57.75.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBA=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)【分析】过D作DG垂直AB于点G,由三个角为直角的四边形为矩形得到四边形CEDF为矩形,由AD为角平分线,利用角平分线定理得到DG=DF,同理得到DE=DG,等量代换得到DE=DF,利用邻边相等的矩形为正方形即可得证.证明:如图,过D作DG⊥AB,交AB于点G,∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形,∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG;∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG,∴DE=DF,∴四边形CEDF为正方形.20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是正方形;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)【分析】(1)根据正方形性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,求出AH=DG=CF=BE=5,证△AEH≌△DHG≌△CGF≌△BFE,推出EH=EF=FG=HG,∠AHE=∠DGH,证出∠EHG=90°,即可得出答案.(2)在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可.(3)四边形EFGH的周长是×4,求出即可.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.【分析】(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=AE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?【分析】(1)已知AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC;(2)要使得平行四边形ACEF为菱形,则AC=CE,又∵CE=AB,∴使得AB=2AC即可,根据AB、AC即可求得∠B的值;(3)通过已知在△ABC中,∠ACB=90°,推出∠ACE<90°,不能为直角,进行说明.解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;(3)四边形ACEF不可能是正方形,∵∠ACB=90°,∴∠ACE<∠ACB,即∠ACE<90°,不能为直角,所以四边形ACEF不可能是正方形.。
学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
初二数学特殊的平行四边形——正方形人教实验版【本讲教育信息】一、教学内容:特殊的平行四边形——正方形1. 掌握正方形的定义,弄清楚正方形和平行四边形、矩形、菱形的关系.2. 掌握正方形的性质和判定方法.二、知识要点: 1. 正方形(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. (2)正方形的性质:正方形具有平行四边形、矩形和菱形的所有性质. ①正方形各边的性质:四条边相等,对边平行. ②正方形各角的性质:四个角都是直角.③正方形对角线的性质:正方形的对角线互相平分、互相垂直、相等,且每一条对角线平分一组对角.④正方形的对称性:正方形是轴对称图形,对边中点所在直线和对角线所在直线都是正方形的对称轴.B(3)正方形的识别:①有一组邻边相等的矩形是正方形; ②对角线互相垂直的矩形是正方形; ③一个内角是直角的菱形是正方形; ④对角线相等的菱形是正方形;⑤有一组邻边相等且互相垂直的平行四边形是正方形; ⑥对角线相等且互相垂直的平行四边形是正方形. 2. 平行四边形、矩形、菱形、正方形之间的关系平行四边形三、重点难点:本讲重点是正方形的性质,难点是平行四边形、矩形、菱形、正方形之间的共性,特性及从属关系.【典型例题】例1. 如图所示,已知正方形ABCD ,点E 是AB 延长线上一点,连结EC ,作AG ⊥EC 于G ,AG 交BC 于F ,求证:AF =CE.ABC DEFG分析:AF 、CE 分别在R t △ABF 与R t △CBE 中,可考虑证明它们全等,而四边形ABCD 为正方形,有相等的直角和相等的边,为证全等提供了条件.证明:因为四边形ABCD 是正方形, 所以AB =BC ,∠ABC =∠CBE =90°. 因为AG ⊥CE ,所以∠CGF =90°,所以∠BCE +∠CFG =90°,∠BCE +∠E =90°, 所以∠CFG =∠E ,又因为∠CFG =∠AFB , 所以∠E =∠AFB.所以△ABF ≌△CBE (SAS ). 所以AF =CE.例2. 把一X 矩形纸片像图中那样折一下,再沿CD 剪下,则纸片ABCD 是什么样的四边形?说明理由.分析:根据矩形的性质和图形折叠前后的变化规律判断四边形ABCD 的形状. 解:正方形. 理由如下:因为这是一X 矩形纸片,所以∠BAD =∠B =90°. △ADC 是△ABC 折叠得到的,即△ABC ≌△ADC. 所以∠ADC =∠B =90°, 所以四边形ABCD 是矩形. 又AB =AD ,所以纸片ABCD 是正方形.例3. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G. 试说明AE =FG .A BC DEFG分析:由EF ⊥BC ,EG ⊥CD 可得矩形EFCG ,则FG =EC ,再证△ABE ≌△CBE ,得AE =EC ,即可得到AE =FG .解:连结EC ,因为四边形ABCD 是正方形, EF ⊥BC ,EG ⊥CD ,所以四边形EFCG 为矩形. 所以FG =CE.因为BD 是正方形ABCD 的对角线. 所以∠ABE =∠CBE. 又BE =BE ,AB =CB , 所以△ABE ≌△CBE. 所以AE =EC , 所以AE =FG .评析:用CE 沟通AE 和FG 之间的联系.例4. (1)下列命题中正确的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且平分的四边形是正方形(2)如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__________(只填一个条件即可).A DC BO第(2)题 (3)如图所示,在四边形ABCD 中,AD ∥BC ,∠D =90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________. (写出一种情况即可)AB CD分析:(1)这个问题可以这样考虑:对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相垂直平分的四边形是菱形;对角线互相垂直平分且相等的四边形是正方形. 故选A. (2)这个问题实际上是问什么样的菱形是正方形?有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,考虑角可补充的条件是∠BAD =90°或AD ⊥AB ;考虑对角线补充:AC =BD. (3)本题应考虑和角相关的矩形的识别方法,有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形. 可添加的条件是∠A =90°或∠B =90°,AD =BC ,AB ∥CD 等.解:(1)A (2)∠BAD =90°(或AD ⊥AB ,AC =BD 等)(3)∠A =90°或AD =BC 或AB ∥CD例5. 如图所示,正方形ABCD ,对角线AC 、BD 相交于点O ,菱形AEFC ,EH ⊥AC ,垂足为H ,求证:EH =12FC.ABC E FHDO分析:要证EH =12FC ,EH 在矩形OBEH 中,得EH =OB =12BD ,而FC 是菱形AEFC的边,CF =AC =BD ,所以EH =12FC ,问题的关键是要证四边形OBEH 是矩形.证明:由正方形ABCD 得AC =BD ,AC ⊥BD ,∠BOC =90°. 又因为EH ⊥AC ,所以EH ∥OB.又因为四边形AEFC 是菱形,得AC =CF ,AC ∥EF ,所以OH ∥BE. 因此四边形OBEH 是矩形,因此EH =OB =12BD =12AC =12FC.评析:综合考查了正方形、菱形的性质和矩形的判定方法.【方法总结】正方形是特殊的平行四边形,是特殊的矩形,是特殊的菱形. 它具有平行四边形、矩形、菱形的所有性质. 分清楚这几种图形的从属关系,从关系图中确定它们性质的相同点和不同点.平行四边形矩形菱形正方形【模拟试题】(答题时间:60分钟)一. 选择题1. 下列选项中,正方形具有而矩形不一定具有的性质是( )A. 四边都相等B. 四角都相等C. 对角线相等D. 对角线互相平分 2. 正方形的对角线长为a ,则它的对角线的交点到各边的距离是( )A. 22aB. 24aC. a 2D. 22a3. 正方形是轴对称图形,那么它的对称轴的条数为( )A. 2B. 3C. 4D. 54. 在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A. AC =BD ,AB ∥CD B. AD ∥BC ,∠A =∠CC. AO =BO =CO =DO ,AC ⊥BDD. AO =CO ,BO =DO ,AB =BC 5. 下列命题中,真命题是( ) A. 两条对角线相等的四边形是矩形 B. 两条对角线互相垂直的四边形是菱形C. 两条对角线互相垂直且相等的四边形是正方形D. 两条对角线互相平分的四边形是平行四边形6. 已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. ∠D =90°B. AB =CDC. AD =BCD. BC =CD*7. 如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( )A. 34cm 2B. 36cm 2C. 38cm 2D. 40cm 2图1二. 填空题1. 具有平行四边形、矩形和菱形性质的四边形是__________.2. 已知正方形ABCD 的对角线AC 、BD 相交于点O ,且AC =12cm ,•则BO =__________cm ,•∠OAB =__________度.3. 任意一个平行四边形,当它的一个锐角增大到_______度时,就变成了矩形;•当它的一组邻边变到_______时,就变成了菱形;当它的两条对角线变到______时,就变成了正方形.4. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:__________(填一条即可).5. 正方形的面积为49,则它的边长为__________,对角线长为__________.*6. 如图所示,在正方形ABCD 中,E 是BD 上一点,过E 作EF ⊥BC 于F ,EG ⊥CD 于G ,若正方形ABCD 的周长是a ,则四边形EFCG 的周长为__________.ABCDEF G**7. 如图所示,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上的一动点,则当PF +PE 为最小值时,PF +PE =__________.ABC DPEF三. 解答题 1. 如图,正方形ABCD 的对角线AC 、BD 相交于点O ,OE =OF ,求证:•∠OCF =∠OBE.ABCDE FO2. 如图所示,在△ABC 中,∠C =90°,CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F. 求证:四边形CFDE 是正方形.ABC DEF*3. 如图所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系; (2)MA 与DG 的大小关系.ABCDE F MG**4. 如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE =FC+EF.ABCDE FG【试题答案】一. 选择题1. A2. B3. C4. C5. D6. D7. B二. 填空题1. 正方形2. 6,453. 90,相等,垂直且相等4. 对边平行、对角线互相平分、对角相等等 5. 7,7 2 6. 12a 7. 17三. 解答题1. 提示:证明△OCF ≌△OBE 可得2. 先证四边形DECF 是矩形,又∵DE =DF ,∴四边形CFDE 是正方形3. (1)DF ⊥CE 提示:先证△EBC ≌△FCD ,得∠ECB =∠FDC ,根据互余的关系,•求出∠CMF =90°即可. (2)由△GAE ≌△CBE 得GA =CB ,再根据直角三角形斜边上中线的性质,得MA =12DG .4. (1)ΔAED ≌ΔDFC. 因为四边形ABCD 是正方形,所以 AD =DC ,∠ADC =90°. 又因为 AE ⊥DG ,CF ∥AE ,所以 ∠AED =∠DFC =90°,所以 ∠EAD +∠ADE =∠FDC +∠ADE =90°,所以 ∠EAD =∠FDC. 所以 ΔAED ≌ΔDFC (AAS ).(2)因为 ΔAED ≌ΔDFC ,所以 AE =DF ,ED =FC. 因为 DF =DE +EF ,所以 AE =FC +EF.。
5.3 正方形(二)(第1题)1.如图,以正方形ABCD 的边AB 为一边向内作等边三角形ABE ,连结EC ,则∠BEC 的度数为(D)A .45°B .60°C .67.5°D .75°2.已知正方形ABCD 的边长为2,E ,F 分别为BC 和CD 边上的中点,则S △AEF =(B)A.52B.32 C .2 D.3553.有下列图形:①平行四边形;②菱形;③矩形;④正方形;⑤三角形.其中一定能够找到一点,使该点到各边距离都相等的是(D)A. ①②B. ②③④⑤C. ②④D. ②④⑤4.在正方形ABCD 中,对角线长为2 cm ,E 是AB 边上任意一点,则点E 到两条对角线的距离之和是(B)A. 22cmB. 1 cmC. 2 cmD. 2cm5.已知正方形ABCD的对角线AC,BD交于点O,且AC=16 cm,则DO=__8__cm,BO=__8__cm,∠OCD=__45°__.(第6题)6.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是__1__,△BPD的面积是__3-1__.(第7题)7.如图,在正方形ABCD中,G为CD边上的一个动点(点G与点C,D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于点H.求证:(1)△BCG≌△DCE.(2)BH⊥DE.【解】(1)∵四边形ABCD,四边形GCEF都是正方形,∴BC=DC,GC=EC,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS).(2)由(1)知,△BCG≌△DCE,∴∠GBC=∠EDC.又∵∠BGC=∠DGH,∴∠DHG=∠BCG=90°,即BH ⊥DE.8.如图,已知正方形ABCD 的边长为1,连结AC ,BD 交于点O ,CE 平分∠ACD ,交BD 于点E ,求DE 的长.(第8题)【解】 过点E 作EF ⊥DC 于点F. ∵四边形ABCD 是正方形, ∴∠ODC =45°,AC ⊥BD. ∵CE 平分∠ACD ,EF ⊥DC ,∴CO =CF ,∠DEF =45°=∠ODC ,∴EF =DF. ∵正方形ABCD 的边长为1, ∴AC = 2.∴CO =12AC =22.∴CF =CO =22.∴EF =DF =DC -CF =1-22.∴DE =EF 2+DF 2=2-1.9.若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B)A. 6B. 8C. 10D. 12【解】 设正方形的边长为1,则矩形的长为12,该矩形的宽为x ,根据题意,得 x +12+x =1, 解得x =14.∴k =2+2+1÷14=8.(第9题) (第10题)10.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为(-3,1).【解】 过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E. ∵四边形OABC 是正方形,∴OA =OC ,∠AOC =90°, ∴∠COE +∠AOD =90°. 又∵∠OAD +∠AOD =90°, ∴∠OAD =∠COE. 在△AOD 和△OCE 中, ∵⎩⎪⎨⎪⎧∠OAD =∠COE ,∠ADO =∠OEC =90°,AO =OC ,∴△AOD ≌△OCE(AAS).∴OE =AD =3,CE =OD =1. ∵点C 在第二象限, ∴点C 的坐标为(-3,1).(第11题)11.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连结BE ,FE ,则∠EBF 的度数是45°.【解】 过点E 作HI ∥BC ,分别交AB ,CD 于点H ,I ,则∠BHE =∠EIF =90°.∵E 是BF 的垂直平分线EM 上的点, ∴BE =EF.∵E 是正方形对角线AC 上的点,即E 是∠BCD 的平分线上一点, ∴点E 到BC 和CD 的距离相等,∴BH =EI. 在Rt △BHE 和Rt △EIF 中,∵⎩⎪⎨⎪⎧BE =EF ,BH =EI ,∴Rt △BHE ≌Rt △EIF(HL). ∴∠HBE =∠IEF. ∵∠HBE +∠HEB =90°, ∴∠IEF +∠HEB =90°, ∴∠BEF =90°. 又∵BE =EF ,∴∠EBF =∠EFB =45°.12.如图,正方形ABCD 的边长为1,P 为BC 边上任意一点(可与点B ,C 重合),分别过点B ,C ,D 作射线AP 的垂线,垂足分别为B ′,C ′,D ′,求BB ′+CC ′+DD ′的最大值与最小值.(第12题) (第12题解) 【解】 如解图,连结AC ,DP. 由题意,得S △ACD =S △ADP =12AP ·DD ′.∵S △ABP +S △ACP +S △ACD =1,∴12AP ·BB ′+12AP ·CC ′+12AP ·DD ′=1, ∴BB ′+CC ′+DD ′=2AP.易知1≤AP ≤2(当点P 与点B 重合时,AP =1;当点P 与点C 重合时,AP =2),∴2≤BB ′+CC ′+DD ′≤2.即BB ′+CC ′+DD ′的最大值为2,最小值为 2.(第13题)13.如图,正方形ABCD的周长为40 m,甲、乙两人分别从A,B 同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55 m,乙按顺时针方向每分钟行30 m.(1)出发几分钟后,甲、乙两人第一次在正方形的顶点处相遇.(2)如果用记号(a,b)表示两人走a(min),并相遇b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号是多少?【解】(1)设出发x(min)后,甲、乙第y次相遇(y是正整数),则有:(55+30)x=40(y-1)+10,即85x=40y-30,17x=8y-6,∴y=17x+68=2x+x+68.∵当甲、乙都在顶点处时,甲、乙的路程都必须为10的倍数,即55x和30x都为10的倍数,∴x为2的倍数.又∵y是正整数,∴x最小为2.∴出发2 min后,甲、乙两人第一次在正方形的顶点处相遇.(2)∵当甲、乙处在正方形的两个相对顶点位置时,他们相差20 m,∴(55+30)a=40(b-1)+10+20,即85a=40b-10,17a=8b-2,∴b=17a+28=2a+a+28.由(1)知a为2的倍数,且b为整数,∴a最小为6.当a=6时,b=13,∴对应的记号为(6,13).。
正方形(第2课时)教学目标知识与技能:了解正方形的有关概念,理解并掌握正方形的性质、判定方法.过程与方法:经历探索正方形有关性质、判定条件的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法.情感态度与价值观:培养合情推理能力和探究习惯,体会平面几何的内在价值.重难点、关键重点:探索正方形的性质与判定.难点:掌握正方形的性质、判定的应用方法.关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容.教学准备教师准备:投影仪,制作投影片,补充本节课内容,矩形纸片,活动的菱形框架.学生准备:复习平行四边形、矩形、菱形性质、判定,预习本节课内容.学法解析1.认知起点:已积累了几何中平行四边形、矩形、菱形等知识,•在取得一定的经验的基础上,认知正方形.2.知识线索:3.学习方式:采用自导自主学习的方法解决重点,突破难点.教学过程一、合作探究,导入新课【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?•四个角呢? 2.正方形是矩形吗?是菱形吗?为什么?3.正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.•正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按课本P110图19.2~14左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的特殊矩形是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊矩形是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质,它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.二、实践应用,探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,•且分别与OA、OB相交于M、N.求证:(1)BM=CN,(2)BM⊥CN.思路点拨:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在△BOM与△CON 是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5+∠CMG=90°,•就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问题.证:(1)•∵四边形ABCD是正方形,∴∠COB=∠BOM=90°,OC=OB,∵MN∥AB,∴∠1=∠2,∠ABO=∠3,又∵∠1=•∠ABO=45°,∴∠2=∠3,∴OM=ON,∴△CON≌△BOM,∴BM=CN.(2)由(1)知△BOM•≌△CON,∴∠4=∠5,∵∠4+∠BMO=90°,∴∠5+∠BMC=90°,∴∠CGM=90°,∴BM⊥CN.演练题2:已知:如图,正方形ABCD中,点E在AD边上,且AE=AD,F为AB的中点,求证:△CEF是直角三角形.思路点拨:本题要证∠EFC=90°,从已知条件分析可以得到只要利用勾股逆定理,就可以解决问题.这里应用到正方形性质.【活动方略】教师活动:用投影仪显示演练题2,•组织学生应用正方形和勾股逆定理分析解析.并请同学上讲台分析思路,板演.学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题.证明:设AB=4a,在正方形ABCD中,DC=BC=4a,AF=FB=2a,AE=a,DE=3a.∵∠B=∠A=∠D=90°,由勾股定理得:EF2+CF2=(AE2+AF2)+(CB2+BF2)=(a2+4a2)+(16a2+4a2)=25a2,CE2=CD2+DE2=(4a)2+(3a)2=25a2,∴EF2+CF2=CE2.由勾股定理的逆定理可知△CEF是直角三角形.【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力.三、继续探究,学习新知【问题牵引】教师提问:怎样判定一个四边形是正方形呢?把你所想的判定方法写出来,并和同学们进行交流、证明.学生活动:分四人小组进行合作讨论,归纳总结出判定正方形的方法如下:判定方法:1.是矩形,并且有一组邻边相等.2.是菱形,并且有一个角是直角.【投影显示】例4 •求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.思路点拨:这是一道文字题,首先应该根据题意画出几何图形,然后依据图形写出已知求证,最后证明,本题可利用正方形性质:对角线互相垂直平分且相等,证出问题.【活动方略】教师活动:操作投影仪,画出图形,讲请怎样写出已知、求证.已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.【评析】这里教师可以让学生上台书写已知、求证.然后再纠正写法上的不足.学生活动:分析文字题后,举手上讲台“板演”.上述证明思路:因为四边形ABCD是正方形,所以AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO、△BCO、△CDO、•△DAO都是等腰直角三角形.且△ABO≌△BCO≌△CDO≌△DAO.四、随堂练习,巩固深化1.课本P112 练习1,2,3.2.【探研时空】如图,把边长为2cm的正方形剪成四个全等的直角三角形.请拼成尽可能多的四边形.要求:每次拼四边形全部用上这四个直角三角形,但这些三角形互不重叠且不留空隙.思路点拨:思路1:特殊四边形,包括(1)菱形,除正方形之外只有一个,其边长为,对角线为2和4.图形略.(2)矩形,除正方形之外只有一个,其长为4,•宽为1.图形略.(3)梯形,两个,一个是上底为1,下底为3,高为2的等腰梯形;•另一个是上底为2,下底为6,高为1的等腰梯形,图形略.(4)一般的平行四边形,共4个,其一,两组对边分别为2和,高为2和;其二,两组对边分别为1和2,高为4•和;其三,两组对边分别为2和2,高为2和;其四,两组对边分别为4和,高为1和,•图形略.思路2:一般凸四边形共两个,一个的四条边长分别为、2、2;•另一个的四条边长分别为1、3、、,图形略.【评析】这是一道江苏省徐州市2001年中考题,是很好的分类讨论题.五、课堂总结,发展潜能【问题提出】正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论、交流,并用列表和框图表示出来.1.课本P112 习题19.2 8,13,15,17 2.选用课时作业优化设计七、课后反思。