《线性代数与概率统计》作业题(题目)~2014.03.doc
- 格式:doc
- 大小:442.50 KB
- 文档页数:11
工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。
二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。
华南理工网络教育线性代数与概率统计》作业题(题目)《线性代数与概率统计》作业题第一部分单项选择题xx,,12111(计算,( A) ,xx,,1222A( xx,12B( xx,12C( xx,21D( 2xx,21111(2行列式, B D,,,111,,111A(3B(4C(5D(6231123,,,,,,,,,AB3(设矩阵,求=,B AB,,111,112,,,,,,,,011011,,,,,A(-1B(0C(1D(2,xxx,,,0,123,,4(齐次线性方程组有非零解,则=,( C) xxx,,,0,,123,xxx,,,0123,A(-11B(0C(1D(200,,,,197636,,,,,,B,5(设,,求=,(D ) ABA,,,,,530905,,,,,,76,, 104110,,A( ,,6084,,104111,, B( ,,6280,,104111,, C( ,,6084,,104111,, D(,,6284,,0A,,Aa,Bb,C6(设为m阶方阵,为n阶方阵,且,,,则=,( D) ABC,,,B0,, mA( (1),abn B( (1),abnm, C( (1),abnmD( (1),ab123,,,,,1A,221,,A7(设,求=,( D),,343,,2132,,,,35,,A( ,,3,,22,,111,,,132,,,,,35,, B( ,3,,22,,111,,,132,,,,,35,, C( ,3,,22,,111,,,132,,,,,35,,D( ,,3,,22,,111,,,AB,8(设均为n阶可逆矩阵,则下列结论中不正确的是(B )TTT,,,111A( [()]()()ABAB,,,,111 B( ()ABAB,,,kk,,11 C((k为正整数) ()()AA,,1n,,1D( (k为正整数) ()(0)kAkAk,,9(设矩阵的秩为r,则下述结论正确的是( D) Amn,A(A中有一个r+1阶子式不等于零B(A中任意一个r阶子式不等于零C(A中任意一个r-1阶子式不等于零 D(A中有一个r阶子式不等于零3213,,,,,,10(初等变换下求下列矩阵的秩,的秩为,(C ) A,,2131,,,,7051,,,3A(0B(1C(2D(311(写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
《线性代数与概率论》作业(一)得分:一、填空题(每小题5分,共25分) 1.“A ,B ,C 三个事件中至少发生两个”的事件可以表示为 。
2.“A ,B ,C 三个事件中只有一个发生”的事件可以表示为 。
3.若事件A ,B 互斥,且已知P (A )=0.5,P(B)=0.3,则P(A+B)= 。
4.已知P(A)=0.8,P(B)=0.5,P(B ︱A)=0.5,则P (A+B )= 。
5.两人独立破译密码,他们能单独译出的概率分别为31,51,则此密码被译出的概率为 。
二、单选题(每小题5分,共30分)1.设A ,B 为两个事件,则下列等式成立的是( )。
(A )B A B A +=+ (B )B A AB ⋅= (C )A+B=B+A B (D )A+B=B+B A 2.设A ,B 为两个事件,则下列等式成立的是( )。
(A )A=(A -B )+B (B )A=(A+B )-B(C)B A B A +=+ (D )AB B A =+3.从一批产品中随机抽取两件,用A ,B 两个事件分别表示两件产品是合格品,则B A +表示为( )。
(A )两件都不合格 (B )至少一件合格(C )至少一件不合格 (D )两件都合格4.若等式( )成立,则随机事件A ,B 互为对立事件。
(A )AB=Φ或A+B=U (B )P (AB )=0或P (A+B )=1(C )AB=Φ且A+B=U (D )P (AB )=0且P (A+B )=1 5.设A ,B 为随机事件,则等式( )成立。
(A )P (A+B )=P (A )+P (B ) (B )P (AB )=P (A )P (B ) (C )P (A+B )=P (A )+P (B )—P (A )P (B ) (D )P (A+B )=P (A )+P (B )—P (AB )6.设P (A=0.8),P(B)=0.7,P(A ︱B)=0.8,则下列结论正确的是( ).(A)A 与B 互斥 (B)A 与B 独立 (C)B A ⊃ (D)P(A+B)=P(A)+P(B) 三、(本题10分)设事件A 与B 独立,两个事件只有A 发生的概率与只有B 发生的概率都是41,求P(A)与P(B)四、(本题13分)一个盒子中放有5个球,2个白球和3个黑球,甲乙两人依次从盒中取出一个球(均不在放回),求:(1)甲取出一个球是白球的概率;(2)乙取出是白球的概率。
线性代数部分第一章 行列式一、单项选择题1.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211.则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211.m a a a a =21231113.则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010 (00)02...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211.则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1.则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解.则k =.三、计算题2.y x yx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd .证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵.则下列各式中成立的是( )。
线性代数与概率统计1、设二维随机变量,则()A. B. 3 C. 18 D. 36答案:【B】2、下列矩阵是正定矩阵的是()A. B.C. D.答案:【C】3、某人射击3次,以表示事件“第次击中目标”,则事件“至多击中目标1次”的正确表示为()A. B.C. D.答案:【B】4、设A与B互为对立事件,且,,则下列各式中错误的是()A. B.C. D.答案:【A】5、C. 全不为零D. 全为正数答案:【C】6、设是矩阵,是非齐次线性方程组,则必有()A. 当时,有无穷多个解B. 当时,有惟一解C. 有无穷多解只有零解D. 有解向量可由的列向量组线性表示答案:【D】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A. B.C. D.答案:【A】8、设是从正态总体中抽取的一个样本,记则服从()分布A. B.C. D.答案:【C】9、设总体的概率密度为为来自总体样,为样本均值,则()答案:【A】10、已知为阶方阵,以下说法错误的是()A.B. 的全部特征向量为的全部解C. 若有个互不相同的特征值,则必有个线性无关的特征向量D. 若可逆,而矩阵的属于特征值的特征向量也是矩阵属于特征值的特征向量答案:【B】11、设二维随机变量的概率密度函数为,则()A. B.C. D.答案:【B】12、两个独立事件A和B发生的概率分别为和,则其中之一发生的概率为()A. B.C. D.答案:【D】13、已知,则为()A. B.C. D.答案:【D】14、A. 2B.C.D.答案:【D】15、设是来自正态总体的样本,是来自正态总体的样本且与相互独立,则服从的分布为()A. B.C. D.答案:【C】16、设是随机向量的联合分布函数,则关于的边际分布函数为()A. B.C. D.答案:【D】17、A. B.C. D.答案:【A】18、设相互独立,且则下列结论正确的是()A. B.C. D.答案:【D】19、下列各式中有()等于A. B.C. D.答案:【D】20、极大似然估计必然是()C. 似然方程的根D. 无偏估计答案:【B】21、设随机变量独立同分布,且,则()A. B. C. D. 1答案:【A】22、为任意两事件,若之积为不可能事件,则称与()C. 互为独立事件D. 为样本空间的一个部分答案:【B】23、设,则()C. 或D.答案:【A】24、矩阵()是二次型的矩阵A. B.C. D.答案:【C】25、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A. 样本值,显著水平B. 样本值,显著水平,样本容量C. 样本值,样本容量D. 显著水平,样本容量答案:【D】26、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A. B.C. D.答案:【D】27、某种商品进行有奖销售,每购买一件有的中奖概率。
1、每张奖券中尾奖的概率为,某人购买了20张号码杂乱的奖券,则中尾奖的张数服从( )分布。
A. 二项正确:【A】2、设随机变量的方差,利用切比雪夫不等式估计()A.B.C.D.正确:【A】3、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确:【D】4、实二次型的矩阵,若此二次型的正惯性指数为3,则()A.B.C.D.正确:【C】5、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确:【B】6、矩阵()合同于A.B.C.D.正确:【A】7、设总体,是总容量为2的样本,为未知参数,下列样本函数不是统计量的是()A.B.C.D.正确:【D】8、设随机变量的,用切比雪夫不等式估计()A. 1B.C.D.正确:【D】9、A. 0B.C.D.正确:【C】10、A.B.C.D.正确:【D】11、某人打靶的命中率为0.4,现独立的射击5次,那么5次中有2次命中的概率为()A.B.C.D.正确:【C】12、A.B.C.D.正确:【D】13、设服从参数为的泊松分布,则下列正确的是()A.B.C.D.正确:【D】14、已知和是线性方程组的两个解,则系数矩阵是()A.B.C.D.正确:【C】15、A.B.C.D.正确:【B】16、若都存在,则下面命题正确的是()A. 与独立时,B. 与独立时,C. 与独立时,D.正确:【C】17、下列各函数中是随机变量分布函的为()A.B.C.D.正确:【B】18、设为二维连续随机变量,则和不相关的充分必要条件是()A. 和相互独立B.C.D.正确:【C】19、设是三阶方阵的三个特征值,对应特征向量分别为,且存在可逆矩阵,使得,则()A.B.C.D.正确:【B】20、设是的两个不同的特征值,又与是属于的特征向量,则与()正确:【B】21、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确:【C】22、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确:【A】23、设随机变量和的密度函数分别为若与相互独立,则()B.C.D.正确:【D】24、设总体,其中已知,为来自总体的样本,为样本均值,为样本方差,则下列统计量中服从分布的是()A.B.C.D.正确:【D】25、设二维随机变量,则()A.B. 3C. 18D. 36正确:【B】26、A. 2B.C.D.正确:【D】27、已知是阶方阵,且,则的个行向量中()A. 任意个行向量线性无关B. 必有个行向量线性无关C. 任一行向量都可由其余个行向量线性表出D. 任意个行向量都为极大无关组正确:【B】28、齐次线性方程组的自由未知量为()A.B.C.D.正确:【C】29、对于正态分布,抽取容量为10的样本,算得样本均值,样本方差,给定显著水平,检验假设 .则正确的方法和结论是()A. 用检验法,查临界值表知,拒绝B. 用检验法,查临界值表知,拒绝C. 用检验法,查临界值表知,拒绝D. 用检验法,查临界值表知,拒绝正确:【C】30、A.B.C.D.正确:【B】31、设随机事件A与B相互独立,A发生B不发生的概率与B发生A不发生的概率相等,且,则()A. 0.5B.C.D.正确:【B】32、A.B.C.D.正确:【A】33、设随机事件A与B相互独立,,则()A. 0.6正确:【D】34、为任意两事件,若之积为不可能事件,则称与()A. 相互独立B. 互不相容C. 互为独立事件D. 为样本空间的一个部分正确:【B】35、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确的是()A. 是的无偏估计B. 是的矩估计C. 是的矩估计D. 是的矩估计正确:【D】36、已知为阶方阵,以下说法正确的是()A.B. 的全部特征向量为的全部解C. 若有个互不相同的特征值,则必有个线性无关的特征向量D. 若可逆,而矩阵的属于特征值的特征向量也是矩阵属于特征值的特征向量正确:【B】37、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确:【A】38、A.B.C.D.正确:【A】39、A.B.C.D.正确:【A】40、设,则()A.B.C.D.正确:【D】1、下列矩阵是正定矩阵的是()A.B.C.D.正确:【C】2、从一批产品中随机抽两次,每次抽1件。
线性代数与概率统计1、甲、乙二人射击,A、B分别表示甲、乙射中目标的事件,表示至少有一人没射中2、A,B为n阶矩阵,且AB=A+B,则 (A-E) -1=B-E3、A,B都是n阶方阵,则必有|AB|=|BA|4、设A是方阵,则|A|=0是A不可逆的充分必要条件5、A是三阶矩阵,|A|=1,则|-3A|=-276、排列45321的逆序数为97、8、若A2=0,则(E-A)-1=E+A9、析 A为n阶矩阵,且A2-2A-4E=0,则(A+E) -1=A-3E10、A为5阶矩阵,k为常数,则|kA| =k5|A| 是正确的11、排列4132的逆序数为412、设A为mFk矩阵,B是kFn矩阵,C是nFm矩阵,则下列运算中无意义的是A+BC13、排列1234的逆序数为014、甲、乙二人射击,A、B分别表示甲、乙射中目标的事件表示二人都没射中15、A,B,C都是n阶矩阵,下面四个等式中必定成立的有2个团(A+B)-C=B-(C-A)2B(A+C)=AB+BCO(AB)C=B(AC)O[(A+B)C]T=CTAT+ CTBT16、设A是可逆矩阵,则矩阵方程XA=B的解X=BA-117、4阶行列式D中第三列元素依次为-1,2,1,0,他们的余子式依次分别为0,3,2,3,则D=-417、A是3阶矩阵,且|A|=1/3,则A=1/918、已知A,B,C是同阶的非零矩阵,则AB=AC是B=C的必要非充分条件19、已知(A-B)(A+B)=A2-B2,则矩阵A,B必满足AB=BA20、事件A与B互逆,则A不发生时,B一定发生21、事件A与B互斥,则A不发生时,B一定发生。
这句话是错误的。
22、X为随机变量,C为常数,则D(CX)= C2D(X)23、Xy为随机变量,D(X+ Y= D(X)+ DY,这句话是错误的。
24、若n阶行列式D=0,则D有两行对应元素成比例。
这句话是错误的.25、行列式任一行的元素与另一行的对应元素的代数余子式乘积之和等于0.26、n阶方阵A可逆的充要条件是|AzO27、n阶方阵A可逆的充要条件是]A=0,这句话是错误的.28、X为随机变量,D(E(X))= E(X),这句话是错误的29、n阶行列式D有两行对应元素成比例,则D=030、AB为两个矩阵,则AB/=/A//B/是错误的31、互斥的两个事件一定是互逆的。
《线性代数与概率统计》作业题及其解答一、计算题1.答案:原式=18.2.计算行列式133353664x x x ---+---. 答案:原式=31216x x --.3.计算行列式1214012110130131D -=. 答案:原式= -7.4.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫= ⎪⎝⎭,求AB 与BA .答案:1213AB ⎛⎫= ⎪⎝⎭1012⎛⎫⎪⎝⎭3446⎛⎫= ⎪⎝⎭, 1012BA ⎛⎫= ⎪⎝⎭1213⎛⎫ ⎪⎝⎭1238⎛⎫= ⎪⎝⎭.5.设2()21f x x x =-+,1101A ⎛⎫= ⎪⎝⎭,求矩阵A 的多项式()f A .(密封线内不答题)解:因为 2111112010101A AA ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,2121110()22010101f A A A E ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=2302⎛⎫⎪⎝⎭.6.设矩阵263113111,112011011A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .解:AB =A B ⋅=(5)15-⋅=-.7.设101111211A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求逆矩阵1-A .解:因为 ()101100111010211001A E ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭23132100211010312001111r r r r --⎛--⎫⎪−−−→-- ⎪ ⎪-⎝⎭.所以 1211312111A ---⎛⎫⎪=-- ⎪⎪-⎝⎭.8.求224114113021121113312211422608A ⎛⎫ ⎪---- ⎪⎪= ⎪--- ⎪ ⎪---⎝⎭的秩.答案:原式=5.9.解线性方程组 123123123214254225x x x x x x x x x -+=⎧⎪++=⎨⎪++=⎩.解 :12323321246x x x x x x -+=⎧⎪+=⎨⎪=-⎩.这样,就容易求出方程组的解为123656x x x =⎧⎪=⎨⎪=-⎩.10.解线性方程组 ⎪⎩⎪⎨⎧=+=++=+-622452413231321321x x x x x x x x .解用初等行变换将增广矩阵(,)A b 化为行阶梯形矩阵,2131(,)42542026A b -⎛⎫⎪= ⎪ ⎪⎝⎭1323r r r r -+−−−→100901010016⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 这个行最简形矩阵对应的线性方程组为⎪⎩⎪⎨⎧-=++-=++=++610010109001321321321x x x x x x x x x , 所以此线性方程组的唯一解为 ⎪⎩⎪⎨⎧-=-==619321x x x .11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.解:11732107()15C C P A C ==.12. 一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.解 由概率的古典定义,事件A 的概率为2854510505!45!50!()/0.20982!3!8!37!10!40!C C P A C ==⋅=.13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率; (2)至少有一粒发芽的概率; (3)恰有一粒发芽的概率.解: (1)()P AB =()()P A P B =0.9⨯0.8=0.72(2)()()()()()P A B P A P B P A P B +=+-=0.9+0.8-0.72=0.98 (3)()()()()()P AB AB P A P B P A P B +=+0.90.20.10.80.26=⨯+⨯=14.某工厂生产一批商品,其中一等品点12,每件一等品获利3元;二等品占13,每件二等品获利1元;次品占16,每件次品亏损2元。
计算机系《线性代数与概率统计》(概率统计)(A)参考答案及评分标准一、选择题(本大题共 5题,每小题 3 分,共 15 分)1. 一射手向目标射击3 次,i A 表示第i 次射击击中目标这一事件)3,2,1(=i ,则3次射击中至多2次击中目标的事件为( B )321321321321)()()()(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 若x x cos )(=ϕ可以成为随机变量X 的概率密度函数,则X 的可能取值区间为( A )(A )]2,0[π(B) ],2[ππ(C ) ],0[π (D ) ]47,23[ππ 3. 设随机变量X 的概率密度为()p x ,且{}01P x ≥=,则必有( C ) (A ) ()p x 在()0+∞,内大于零(B ) ()p x 在(),0-∞内小于零(C ) 01p(x)dx +∞=⎰(D ) ()p x 在()0+∞,上单调增加4. 下列数列是随机变量的分布律的是( A ).(A ) )5,4,3,2,1,0(15==i ip i(B ) )3,2,1,0(652=-=i i p i(C ) )4,3,2,1(51==i p i (D ) )5,4,3,2,1(251=+=i i p i5. 设X 1,X 2,X 3,X 4是来自总体N (?,?2)的简单随机样本,则四个统计量:μ1=( X 1+X 2+X 3+X 4 )/4, μ2=X 1,μ3=X 1/2+X 2/3+X 3/6,μ4=X 1/2+X 2/3+X 3/4中,是?的无偏估计量的个数为( C ) (A ) 1(B ) 2 (C ) 3 (D ) 4二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1.设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB =__0.3___.2.将3个球随机地放入3个盒子中(每个盒子中装多少个球不限),则每盒中各有一球的事件的概率等于____2/9___.3.设离散随机变量X的分布函数为00;1,01;3()=2,12;31, 2.xxF xxx<⎧⎪⎪≤<⎪⎨⎪≤<⎪⎪≥⎩, 则122P X⎧⎫<≤=⎨⎬⎩⎭___2/3______.4.连续型随机变量取任何给定实数值a的概率为 0 .5.设随机变量X与Y服从分布:X~(1,2)N,Y~(100,0.2)B,则(23)-+=E X Y -15 .三、计算题(本大题共 6 题,其中1、2小题每题8分,3、4小题每题10分,5、6小题每题12分,共 60 分)1.设一口袋装有10只球,其中有4只白球,6只红球,从袋中任取一只球后,不放回去,再从中任取一只球。
《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--(B ) A .3 B .4 C .5 D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =(B ) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B ⎛⎫=⎪⎝⎭,则C =?(D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---= B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(C ) A .0 B .1 C .2 D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
(D)A .样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{2,4,6}B .样本空间为{1,3,5}Ω=,事件“出现奇数点”为{1,3,5}C .样本空间为{2,4,6}Ω=,事件“出现奇数点”为{1,3,5}D .样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{1,3,5}12.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示四枪中至少有一枪击中目标(C ):A .1234A A A AB .12341A A A A -C .1234A A A A +++D .113.一批产品由8件正品和2件次品组成,从中任取3件,则这三件产品全是正品的概率为(B )A .25 B .715C .815D .3514.甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为(C )A .0.8B .0.85C .0.97D .0.9615.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是(D )A .16125B .17125C .108125D .10912516.设A ,B 为随机事件,()0.2P A =,()0.45P B =,()0.15P AB =,(|)P A B =(B)A .16B .13C .12D .2317.市场供应的热水瓶中,甲厂的产品占50%,乙厂的产品占30%,丙厂的产品占20%,甲厂产品的合格率为90%,乙厂产品的合格率为85%,丙厂产品的合格率为80%,从市场上任意买一个热水瓶,则买到合格品的概率为(D )A .0.725B .0.5C .0.825D .0.86518.有三个盒子,在第一个盒子中有2个白球和1个黑球,在第二个盒子中有3个白球和1个黑球,在第三个盒子中有2个白球和2个黑球,某人任意取一个盒子,再从中任意取一个球,则取到白球的概率为(C )A .3136 B .3236C .2336 D .343619.观察一次投篮,有两种可能结果:投中与未投中。
令1,;0,X ⎧=⎨⎩投中未投中.试求X 的分布函数()F x 。
(C)A .0,01(),0121,1x F x x x <⎧⎪⎪=≤<⎨⎪>⎪⎩B .0,01(),0121,1x F x x x ≤⎧⎪⎪=<<⎨⎪≥⎪⎩C .0,01(),0121,1<⎧⎪⎪=≤<⎨⎪≥⎪⎩x F x x xD .0,01(),0121,1x F x x x <⎧⎪⎪=≤≤⎨⎪>⎪⎩20.设随机变量X 的分布列为===(),1,2,3,4,5kP X k k ,则或===(12)PX X ?(C )A .115B .215C .15D .415第二部分 计算题1.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB . 解:AB =231123111112011011-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=5611246101⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦||AB =5611246101--=61156(1)4624-+-=02.已知行列式2512371446125927-----,写出元素43a 的代数余子式43A ,并求43A 的值.3.解:43A =4343(1)M +-252374462-=---743437(2(5)2)624246--=---+-- =54答:43A =-2*(1-28)=543.设1100010000100021A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦,求2A . 解:A 2= (1 2 0 00 1 0 0 0 0 1 0 0 0 0 0答:2A =(1 2 0 0;0 1 0 0;0 0 1 0;0 0 0 1)4.求矩阵25321585431742041123A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦的秩5.解:25321585431742041123A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦→17420253214112358543-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦→174200952102715630271563-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→17420095210000000000-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦所以,矩阵的秩为2 .答:秩=26.解线性方程组12312312331331590x x x x x x x x x +-=⎧⎪--=⎨⎪+-=⎩.7.解:对增广矩阵施以初等行变换:A =113131311590-⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦113104620461-⎡⎤⎢⎥→--⎢⎥⎢⎥--⎣⎦113104620003-⎡⎤⎢⎥→--⎢⎥⎢⎥-⎣⎦所以,原方程组无解。
答:X 1 X 2 X 3 无解6..解齐次线性方程组123412341234123424023450413140750x x x x x x x x x x x x x x x x --++=⎧⎪+--=⎪⎨--+=⎪⎪--+=⎩.解:对系数矩阵施以初等变换:7.A =121423451413141175--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→121401230612180369--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→1214012300000000--⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦→1052012300000000--⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦→1052012300000000-⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ 与原方程组同解的方程组为:13423452030x x x x x x -+=⎧⎨+-=⎩ 所以:方程组的一般解为1342345223x x x x x x =+⎧⎨=--⎩(其中,34,x x 为自由未知量)答:X 1 =3 X 2 =1 X 3 =1 X 4 =17.袋中有10个球,分别编有号码1到10,从中任取一球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小于5},问下列运算表示什么事件:(1)A+B ;(2)AB ;(3)AC ;(4)AC ;(5)B C +;(6)A-C.答: (1)A+B={取得球的号码是整数}(2)AB={取得球的号码既是奇数又是偶数} (3)AC={取得球的号码是2.4}(4)AC ={取得球的号码是1.3.5.6.7.8.9.10} (5)B C +={取得球的号码是6.8} (6)A-C={取得球的号码是6.8.10}8.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。
答:(C<4.1>*C<6.2>+C<4.2>*C<6.1>+C<4.3>)/C<10.3>=5/69.设A ,B ,C 为三个事件,1P(A)=P(B)=P(C)=4,()()0P AB P BC ==,1()8P AC =,求事件A ,B ,C 至少有一个发生的概率。
解:因为1P (A )=P (B )=P (C )=4,()()0P AB P BC ==,1()8P AC =,所以A.B 和 B.C 之间是独立事 件.但 A.C 之间有相交.所以P(A.B.C 至少一个发生)=1-(1-1/4-1/4-1/4+1/8)=5/810.一袋中有m 个白球,n 个黑球,无放回地抽取两次,每次取一球,求: (1)在第一次取到白球的条件下,第二次取到白球的条件概率;(2)在第一次取到黑球的条件下,第二次取到白球的条件概率。
解:用A 表示“第一次取到白球”,B 表示“第二次取到白球”。
(1)袋中原有m+n 个球,其中m 个白球。
第一次取到白球后,袋中还有m+n-1球,其中m-1个为白球。
故1(|)1m P B A m n -=+-; (2)袋中原有m+n 个球,其中m 个白球,第一次取到黑球后,袋中还有m+n-1个球,其中m 个为白球。