第10章 静电场中的电介质
- 格式:ppt
- 大小:4.71 MB
- 文档页数:59
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。
所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D ) o R d +q . 选择题3图 选择题2图5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。
试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。
习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。
试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。
习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。
第⼗章静电场中的导体和电介质第⼗章静电场中的导体和电介质在上⼀章中,我们讨论了真空中的静电场。
实际上,在静电场中总有导体或电介质存在,⽽且在静电的应⽤中也都要涉及导体和电介质的影响,因此,本章主要讨论静电场中的导体和电介质。
本章所讨论的问题,不仅在理论上有重⼤意义,使我们对静电场的认识更加深⼊,⽽且在应⽤上也有重⼤作⽤。
§10-1 静电场中的导体⼀、静电平衡条件1、导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很⼤(相差10多个数量级,⽽不同导体间电导率数量级最多就相差⼏个数量级)。
(2)微观上导体内部存在⼤量的⾃由电⼦,在外电场下会发⽣定向移动,产⽣宏观上的电流⽽电介质内部的电⼦处于束缚状态,在外场下不会发⽣定向移动(电介质被击穿除外)。
2、导体的静电平衡条件(1)导体内部任何⼀点处的电场强度为零;(2)导体表⾯处的电场强度的⽅向,都与导体表⾯垂直.导体处于静电平衡状态的必要条件:0=i E(当导体处于静电平衡状态时,导体内部不再有⾃由电⼦定向移动,导体内电荷宏观分布不再随时间变化,⾃然其内部电场(指外场与感应电荷产⽣的电场相叠加的总电场)必为0。
⼆、静电平衡时导体上的电荷分布1、导体内部没有净电荷,电荷(包括感应电荷和导体本⾝带的电荷)只分布在导体表⾯。
这个可以由⾼斯定理推得:ii sq E ds ε?=,S 是导体内“紧贴”表⾯的⾼斯⾯,所以0i q =。
2、导体是等势体,导体表⾯是等势⾯。
显然()()0b a b i a V V E dl -=?=?,a,b 为导体内或导体表⾯的任意两点,只需将积分路径取在导体内部即可。
3、导体表⾯以处附近空间的场强为:0E n δε=,δ为邻近场点的导体表⾯⾯元处的电荷密度,?n 为该⾯元的处法向。
简单的证明下:以导体表⾯⾯元为中截⾯作⼀穿过导体的⾼斯柱⾯,柱⾯的处底⾯过场点,下底⾯处于导体内部。
由⾼斯定理可得:12i s s dsE ds E ds δε?+?=,1s ,2s 分别为⾼斯柱⾯的上、下底⾯。
第10章 静电场中的电介质10.1 在HCl 分子中,氯核和质子(氢核)的距离为0.128 nm ,假设氢原子的电子完全转移到氯原子上并与其他电子构成一球对称的负电荷分布而其中心就在氯核上。
此模型的电矩多大?实测的HCl 分子的电矩为3.4×10-30C·m ,HCl 分子中的负电分布的“重心”应在何处?(氯核的电量为17e )解:按假设模型计算,HCl 分子的电矩为此结果比实测数值大。
设如图10-1所示,在HCl分子中负电分布的“重心”在氯核与质子中间离氯核l 距离处。
这时HCL 分子的电矩应为图10-110.2 两个同心的薄金属球壳,内、外球壳半径分别为R1=0.02 m 和R2=0.06m 。
球壳间充满两层均匀电介质,它们的相对介电常量分别为εr1=6和εr2=3。
两层电介质的分界面半径R =0.04 m 。
设内球壳带电量Q =﹣6×10-8 C ,求:(1)D 和E 的分布,并画D-r ,E-r 曲线;(2)两球壳之间的电势差;(3)贴近内金属壳的电介质表面上的面束缚电荷密度。
解:(1)由D 的高斯定律可得再由,可得D-r 和E-r曲线如图10-2所示。
图10-2(2)两球壳之间的电势差为(3)10.3 两共轴的导体圆筒的内、外筒半径分别为R1和R2,R2<2R1。
其间有两层均匀电介质,分界面半径为r0。
内层介质相对介电常量为εr1,外层介质相对介电常量为εr2,εr2=εr1/2。
两层介质的击穿场强都是Emax 。
当电压升高时,哪层介质先击穿?两筒间能加的最大电势差多大?解:设内筒带电的线电荷密度为λ,则可导出在内外筒的电压为U 时,内层介质中的最大场强(在r =R L处)为而外层介质中的最大场强(在r =r 0处)为两结果相比由于r 0<R 2,且R 2<2R 1,所以总有E 2/E 1>0,因此当电压升高时,外层介质中先达到E max 而被击穿。
而最大的电势差可由E 2=Emax 求得为10.4 一平板电容器板间充满相对介电常量为εr 的电介质而带有电量Q 。
第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。
解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。
10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。
解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。
P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。
因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。