PTC热敏电阻基础知识总结
- 格式:doc
- 大小:171.00 KB
- 文档页数:9
热敏电阻得物理特性与表示热敏电阻得物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
1、电阻值:R〔Ω〕电阻值得近似值表示为:R2=R1exp[1/T2-1/T1]其中:R2:绝对温度为T2〔K〕时得电阻〔Ω〕R1:绝对温度为T1〔K〕时得电阻〔Ω〕B:B值〔K〕2、B值:B〔k〕B值就是电阻在两个温度之间变化得函数,表达式为:B= InR1-InR2 =2、3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2其中:B:B值〔K〕R1:绝对温度为T1〔K〕时得电阻〔Ω〕R2:绝对温度为T2〔K〕时得电阻〔Ω〕3、耗散系数:δ〔mW/℃〕耗散系数就是物体消耗得电功与相应得温升值之比。
δ= W/T-Ta = I² R/T-Ta其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗得电功〔mW〕T:达到热平衡后得温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上得电流值〔mA〕R:在温度T时加热敏电阻上得电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成得升温。
4、热时间常数:τ〔sec、〕热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身得温度发生改变,当温度在初始值与最终值之间改变63、2%所需得时间就就是热时间系数τ。
5、电阻温度系数:α〔%/℃〕α就是表示热敏电阻器温度每变化1ºC,其电阻值变化程度得系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为:α = 1/R·dR/dT×100 = -B/T²×100其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时得电阻值〔Ω〕B:B值〔K〕PTC热敏电阻发热元件一、PTC热敏电阻得简介:PTC热敏电阻发热元件就是现代以至将来高科技尖端之产品。
它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越得优点。
PTC热敏电阻基础知识分析
一、工作原理:
二、特性参数:
1.热敏系数(α):热敏系数是指PTC热敏电阻单位温度变化时,电
阻值相应变化的比例,通常以%/°C表示。
2.额定电阻值(R25):额定电阻值是指在指定温度(通常为25°C)下的电阻值。
3. 最高温度(Tmax):最高温度指PTC热敏电阻可以安全工作的最
高温度。
4.质量温度系数(β):质量温度系数是指PTC热敏电阻材料质量随
温度变化的程度,通常以单位质量温度系数%/°C表示。
三、应用领域:
四、优点:
1.可靠性高:PTC热敏电阻在温度变化时具有很高的灵敏度和稳定性,能够准确地感知温度变化并做出相应的响应。
2.响应速度快:PTC热敏电阻具有快速的响应速度,能够在极短的时
间内感知到温度的变化并改变电阻值。
3.结构简单:PTC热敏电阻的结构相对简单,制造成本相对较低,容
易集成到各种电路中。
综上所述,PTC热敏电阻是一种根据温度变化来改变电阻值的电阻器件。
其工作原理是利用半导体材料的特性,在温度升高时电阻值呈指数增
加。
PTC热敏电阻广泛应用于温度保护和限流控制等领域,具有高可靠性、快速响应和简单结构等优点。
了解PTC热敏电阻的基础知识,有助于在实
际应用中合理选择和使用该器件。
ptc热敏电阻温度系数
PTC热敏电阻的温度系数是衡量其对温度变化反应灵敏度的参数,表征了阻温特性曲线的陡峭程度。
PTC热敏电阻是一种具有正温度系数(Positive Temperature Coefficient)特性的半导体电阻器,它的电阻值会随着温度的升高而增加。
这种特性使得PTC热敏电阻在过热保护、温度传感和自我调节加热等领域有着广泛的应用。
具体来说:
1. 温度系数定义:PTC热敏电阻的温度系数α是指温度变化导致的电阻相对变化。
数学上,它可以通过以下公式计算:α= (lgR2-lgR1)/(T2-T1),其中T1和T2分别是两个不同的温度点,R1和R2是对应温度下的电阻值。
2. 温度系数的意义:温度系数α越大,表明PTC热敏电阻对温度变化的反应越灵敏,即PTC 效应越显著。
这意味着相应的PTC热敏电阻的性能更好,使用寿命更长。
3. 居里温度:PTC热敏电阻有一个特定的温度点称为居里温度,当温度超过这个点时,电阻值会急剧增加。
这个特性使得PTC热敏电阻可以用作过温保护元件,防止电路因过热而损坏。
4. 应用范围:由于PTC热敏电阻的这些独特性质,它们常被用于限制电流、防止过热、温度传感和控制等电路中。
例如,在电源开关、马达启动和彩电消磁等领域都有应用。
综上所述,了解PTC热敏电阻的温度系数对于选择合适的PTC元件以及预测其在特定应用中的表现至关重要。
贴片ptc热敏电阻贴片PTC热敏电阻是一种常见的电子元件,它在电路中起到了重要的作用。
本文将详细介绍贴片PTC热敏电阻的特点、应用以及工作原理。
一、贴片PTC热敏电阻的特点贴片PTC热敏电阻是一种基于正温度系数(PTC)效应的热敏电阻。
它的主要特点如下:1. 温度敏感性强:贴片PTC热敏电阻在一定温度范围内,其电阻值会随温度的升高而增加。
这种正温度系数的特性使得贴片PTC热敏电阻能够有效控制电路中的温度。
2. 稳定性好:贴片PTC热敏电阻在工作温度范围内具有较好的稳定性,能够保持稳定的电阻值,从而保证电路的正常工作。
3. 尺寸小:贴片PTC热敏电阻采用贴片封装,尺寸小巧,适合于集成电路和微型电子设备中的应用。
4. 响应快速:贴片PTC热敏电阻对温度的变化具有较快的响应速度,能够迅速地调节电路中的温度。
二、贴片PTC热敏电阻的应用贴片PTC热敏电阻广泛应用于各种电子设备和电路中,主要包括以下几个方面:1. 温度保护:贴片PTC热敏电阻能够根据温度的变化来控制电路的工作状态,当温度超过设定值时,电阻值会急剧上升,从而有效地保护电路免受过热的损害。
2. 温度补偿:贴片PTC热敏电阻可用于温度补偿电路,通过调节电路的工作温度,使其保持稳定的工作状态。
3. 温度测量:贴片PTC热敏电阻可以作为温度传感器,测量环境或设备的温度,常见的应用包括温度计、温湿度计等。
4. 温度控制:贴片PTC热敏电阻可用于温度控制电路,根据温度的变化来控制电路的输出功率或电流,实现对设备的精确控制。
三、贴片PTC热敏电阻的工作原理贴片PTC热敏电阻的工作原理基于热敏效应,即电阻值随温度变化而变化。
当温度升高时,贴片PTC热敏电阻内部的材料会发生结构变化,导致电阻值增加。
这是由于材料内部的晶格结构发生变化,电子的运动受到阻碍,从而导致电阻值的增加。
当温度降低时,材料的晶格结构恢复原状,电阻值减小。
贴片PTC热敏电阻的工作温度范围由其材料的特性决定,通常在-40℃至+125℃之间。
ptc热敏电阻知识PTC(Positive Temperature Coefficient)热敏电阻是一种在温度变化时电阻值也发生相应变化的电阻器件。
当温度升高时,其电阻值也随之增加,反之降低。
PTC热敏电阻被广泛应用于温度测量、温度补偿、过热保护等领域。
本文将从PTC热敏电阻的工作原理、特性以及应用等方面进行详细介绍。
一、PTC热敏电阻的工作原理PTC热敏电阻是基于半导体材料的热敏效应工作的。
当PTC热敏电阻材料受热时,内部的电子会获得更多的激发能量,从而在半导体晶格中形成更多的能带激发状态。
这些能带激发状态会导致电子迁跃,进而增加了电子的浓度,从而使得材料的电阻值增加。
因此,当PTC热敏电阻材料受热时,电阻值随之增加;反之冷却时,电阻值会减小。
二、PTC热敏电阻的特性1. 温度系数大:PTC热敏电阻的温度系数通常在2000-5000ppm/℃之间,远大于一般的金属电阻器的温度系数。
这意味着在相同温度变化下,PTC热敏电阻的电阻变化更为显著,更加敏感。
2.阻值范围宽:PTC热敏电阻的阻值范围通常在几十Ω到几百KΩ之间,可以满足不同电路的要求。
3.可靠性高:PTC热敏电阻的材料通常采用半导体材料,具有较好的电气和热学性能,以及较高的稳定性和可靠性。
4.触发温度稳定:PTC热敏电阻的触发温度稳定性较好,可以通过控制原材料和生产工艺来实现所需的触发温度。
三、PTC热敏电阻的应用1.温度测量和补偿:由于PTC热敏电阻的阻值与温度呈正相关,可以通过测量PTC热敏电阻的电阻值来得到温度信息。
在电子设备中,常用PTC热敏电阻作为温度传感器,用于测量电路板、电子元器件等的温度,并进行温度补偿。
2.过热保护:PTC热敏电阻的阻值与温度呈正相关,因此可以利用其特性实现过热保护功能。
当PTC热敏电阻所在的电路或设备发生过热时,电阻值会急剧升高,从而限制电流流过,起到过热保护的作用。
3.温度控制:PTC热敏电阻可以用于温度控制电路中,通过控制PTC 热敏电阻的电阻值来实现对温度的控制。
电机ptc热敏电阻电机PTC热敏电阻(又称为正温度系数电阻)是一种电子元器件,通常用于电机过载保护和恒温控制。
下面将对PTC热敏电阻的工作原理、应用以及常见问题进行介绍。
一、工作原理PTC热敏电阻的电阻值会随着温度的升高而增加,这是由于PTC热敏电阻内部材料的电阻率与温度呈正相关性所致。
当电机过载时,电流会急剧增加,导致电机内部温度上升,PTC热敏电阻的电阻值也会随之增加,从而限制电机电流。
当电机内部温度降低时,PTC热敏电阻的电阻值也会相应降低,从而允许更大的电流通过电机。
二、应用1.电机过载保护PTC热敏电阻被广泛应用于电机过载保护。
当电机内部温度超过一定的阈值时,PTC热敏电阻会自动升高电阻值,从而限制电机电流,保护电机不受损坏。
2.恒温控制PTC热敏电阻还可以用于实现恒温控制。
通过将PTC热敏电阻安装在恒温器中,当温度达到设定值时,PTC热敏电阻会升高电阻值,从而停止加热,使温度保持恒定。
三、常见问题1. PTC热敏电阻老化失效PTC热敏电阻经过一定时间的使用后,可能会出现老化失效的情况。
这是由于PTC热敏电阻内部材料的长期使用导致其性能逐渐衰退所致。
此时需要更换新的PTC热敏电阻。
2. PTC热敏电阻安装不当在安装PTC热敏电阻时,需要注意其位置和固定方式。
如果安装不当,可能会导致PTC热敏电阻发生断裂或接触不良,从而影响其正常工作。
3. PTC热敏电阻误差较大PTC热敏电阻的响应速度较慢,同时也会受到周围环境温度的影响,因此可能会出现误差较大的情况。
在实际应用中需要结合其他传感器和控制器来实现更精确的温度控制。
总之,PTC热敏电阻是一种广泛应用于电机过载保护和恒温控制的重要元器件。
了解其工作原理、应用和常见问题可以帮助我们更好地使用和维护它,提高电机的工作效率和稳定性。
PTC热敏电阻基础知识PTC热敏电阻的工作原理是基于热阻效应。
它由聚合物材料制成,材料中含有大量的填料,如炭黑或氧化铁等。
在正常温度下,填料之间形成了低电导率的连通路径,因此阻值较低。
当温度升高时,填料之间的电导路径会发生断裂,导致电阻值急剧上升。
这是由于材料的热膨胀系数比填料的热膨胀系数小,当温度升高时,填料会膨胀变形,从而断裂连通路径。
1.过流保护:PTC热敏电阻可以用于保护电路免受过流损害。
当电流超过设定值时,PTC热敏电阻的阻值会急剧上升,从而限制电流的通过,达到过流保护的目的。
这种特性常应用于电源、电动工具、电机等设备中。
2.温度测量:由于PTC热敏电阻的阻值随温度变化而变化,因此可以通过测量其阻值来间接测量温度。
这种方法常用于温度计、恒温控制、温度补偿等应用中。
3.过温报警:当温度超过设定值时,PTC热敏电阻的阻值会急剧上升,可用于触发报警装置,提醒人们注意过温情况。
这种应用常见于电热水壶、电热器、电磁炉等家用电器中。
4.电路保护:PTC热敏电阻可以用于保护电路免受过电压、过电流、过功率等情况的损害。
它可以作为电子元件的短路保护装置,当电流或功率超过设定值时,阻值急剧上升,限制电流通过,保护电路的安全运行。
PTC热敏电阻的选择与使用需要注意一些要点。
首先,要根据需要选择适当的阻值和尺寸。
阻值决定了PTC热敏电阻的感应能力,尺寸则与装配方式有关。
其次,应注意与周围环境的匹配。
PTC热敏电阻的外部环境温度、湿度等因素都会影响其性能。
最后,还需要注意温度特性的匹配。
不同型号的PTC热敏电阻在阻值、温度响应等方面可能存在差异,需要根据具体要求进行选择。
总结起来,PTC热敏电阻是一种根据温度变化而产生阻值变化的电阻器件,其工作原理是基于热阻效应。
它具有过流保护、温度测量、过温报警、电路保护等应用特点。
选择和使用PTC热敏电阻时,需要考虑阻值、尺寸、周围环境等因素。
通过合理选择和使用,可以有效地应用PTC热敏电阻保护电路、测量温度、报警过温等。
PTC热敏电阻基础知识总结PTC热敏电阻(Positive Temperature Coefficient Thermistor)是一种温度敏感的电子元件,其电阻值随温度的升高而增加。
它通常由半导体材料制成,具有许多独特的特性和应用。
本文将对PTC热敏电阻的基础知识进行总结,主要包括PTC热敏电阻的原理、特性、应用领域和选型指南等内容。
一、PTC热敏电阻的原理PTC热敏电阻的电阻值随温度的变化而变化,其原理是基于材料的温度系数。
在低温区域,PTC热敏电阻的材料表现为负温度系数(NTC),即电阻随温度的升高而降低。
而在高温区域,PTC热敏电阻的材料表现为正温度系数(PTC),即电阻随温度的升高而增加。
二、PTC热敏电阻的特性1.温度响应速度快:PTC热敏电阻对温度的变化有良好的响应,可以迅速感知到温度的变化。
2.稳定性高:PTC热敏电阻的温度系数相对稳定,可以保持较长时间的使用寿命。
3.低功耗:PTC热敏电阻的功耗较低,不会消耗大量的电能。
4.压降小:PTC热敏电阻的电压降低较小,保持电路稳定。
三、PTC热敏电阻的应用领域1.温度保护:PTC热敏电阻可以用于温度保护装置,例如温控器、温度开关等,当温度超过设定值时,PTC热敏电阻的电阻值会上升,触发相应的保护措施。
2.温度测量:PTC热敏电阻可以用于温度传感器,通过测量电阻值的变化来获取温度信息。
3.电路稳定:PTC热敏电阻可以用作电路的稳定器,通过增加电阻值来保持电路的稳定性。
4.温度补偿:PTC热敏电阻可以用于温度补偿电路,校正电子设备对温度的敏感度。
四、PTC热敏电阻的选型指南在选择PTC热敏电阻时1.温度系数:根据应用需求选择合适的温度系数。
2.额定电阻值:根据电路的需求选择合适的额定电阻值。
3.额定电压:根据电路的工作电压选择合适的额定电压。
4.环境条件:考虑工作环境的温度、湿度等条件,选择适合的PTC热敏电阻。
5.尺寸和包装:根据实际应用的空间限制选择合适的尺寸和包装形式。
关于PTC热敏电阻24个基础问题1. 高分子PTC热敏电阻主要应用于哪些方面?高分子PTC热敏电阻可用于计算机及其外部设备、移动电话、电池组、远程通讯和网络装备、变压器、工业控制设备、汽车及其它电子产品中,起到过电流或过温保护作用。
2. 高分子PTC热敏电阻的工作原理是什么?高分子PTC热敏电阻是由填充炭黑颗粒的聚合物材料制成。
这种材料具有一定导电能力,因而能够通过额定的电流。
如果通过热敏电阻的电流过高,它的发热功率大于散热功率,此时热敏电阻的温度将开始不断升高,同时热敏电阻中的聚合物基体开始膨胀,这使炭黑颗粒分离,并导致电阻上升,从而非常有效地降低了电路中的电流。
这时电路中仍有很小的电流通过,这个电流使热敏电阻维持足够温度从而保持在高电阻状态。
当故障排除之后,高分子PTC热敏电阻很快冷却并将回复到原来的低电阻状态,这样又象一只新的热敏电阻一样可以重新工作了。
3. 高分子PTC热敏电阻与保险丝、双金属电路断路器及陶瓷PTC热敏电阻的主要区别是什么?高分子PTC热敏电阻是一种具有正温度系数特性的导电高分子材料,它与保险丝之间最显着的差异就是前者可以多次重复使用。
这两种产品都能提供过电流保护作用,但同一只高分子PTC热敏电阻能多次提供这种保护,而保险丝在提供过电流保护之后,就必须用另外一只进行替换。
高分子PTC热敏电阻与双金属电路断路器的主要区别在于前者在事故未被排除以前一直出于关断状态而不会复位,但双金属电路断路器在事故仍然存在时自身就能复位,这就可能导致在复位时产生电磁波及火花。
同时,在电路处于故障条件下重新接通电路可能损坏设备,因而不安全。
高分子PTC热敏电阻能够一直保持高电阻状态直到排除故障。
高分子PTC热敏电阻与陶瓷PTC热敏电阻的不同在于元件的初始阻值、动作时间(对事故事件的反应时间)以及尺寸大小的差别。
具有相同维持电流的高分子PTC热敏电阻与。
PTC热敏电阻基础知识总结PTC热敏电阻(Positive Temperature Coefficient Thermistor)是一种电阻随温度升高而增加的热敏元件。
它由可压缩的半导体材料制成,具有温度敏感的特性。
当温度升高时,PTC热敏电阻的电阻值上升,当温度降低时,电阻值下降。
在实际应用中,PTC热敏电阻被广泛用于温度测量、过温保护、温度补偿等领域。
1.温度敏感性:PTC热敏电阻的电阻值随温度的升高而增加,其电阻与温度之间呈正相关关系。
这种特性使得PTC热敏电阻可以用于测量和控制温度。
2.高稳定性:PTC热敏电阻具有较高的稳定性,能够长时间保持其特性参数不变。
这使得PTC热敏电阻在恶劣的工作环境下也能够正常工作。
3.高精度:PTC热敏电阻的温度-电阻特性通常具有较高的精度,可以满足各种工业和科学应用的需求。
4.高灵敏度:PTC热敏电阻的电阻随温度变化的灵敏度较高,可以实现对温度的精确测量和控制。
5.快速响应:PTC热敏电阻具有快速的响应速度,在温度变化时能够迅速调整电阻值,以实现对温度的实时测量和控制。
PTC热敏电阻电阻值的变化是由其材料的特性决定的。
当温度升高时,PTC热敏电阻中的半导体材料会发生结构变化,电荷载体的迁移速度增加,电阻值随之升高。
这是因为半导体材料的导电性与电荷载体的迁移速度有关,温度升高会加快电荷载体的迁移速度,导致电阻值的增加。
1.温度测量:由于PTC热敏电阻的电阻随温度变化的灵敏度较高,可以用于测量温度。
常见的应用包括温度计、温度传感器等。
2.过温保护:PTC热敏电阻可以用于电路的过温保护。
在电路中,当温度升高超过一定阈值时,PTC热敏电阻的电阻值迅速上升,从而限制电流的通过,达到过温保护的效果。
3.温度补偿:由于PTC热敏电阻的电阻随温度变化的特性,可以用于电路中的温度补偿。
在一些需要温度补偿的应用中,PTC热敏电阻被用来调整电路的工作点,以使电路的性能随温度的变化保持稳定。
PTC热敏电阻基础知识解析PTC热敏电阻(Positive Temperature Coefficient Thermistor)是一种特殊的电阻器件,其电阻值随温度的升高而增加。
在它的结构中,含有特殊的半导体材料,通过改变材料的阻带宽度和能带隙状态来控制电阻的改变。
PTC热敏电阻具有体积小、响应快、稳定性好、可靠性高、成本低等优点,广泛应用于电子、电气、汽车、仪器仪表及工业控制等领域。
PTC热敏电阻的基本原理是自热效应,即当电流通过PTC热敏电阻时,由于材料的电阻率与温度密切相关,电流通过电阻时会产生热量。
当环境温度升高时,材料的电阻率会随之增加,使电流通过电阻的热量也随之增加,从而使温度继续升高。
当温度达到材料特定的“临界温度”时,材料的电阻急剧升高,形成热平衡。
在这个温度范围内,PTC热敏电阻的电阻值变化较小。
一旦温度超过临界温度,电阻值急剧增加,电流通过PTC热敏电阻的热量减小,温度开始下降。
因此,PTC热敏电阻可用作温度传感器。
PTC热敏电阻的关键参数有:临界温度(Curie/Trip Point)、电阻值(Resistance)和响应时间(Response Time)。
临界温度是PTC热敏电阻在温度变化中最重要的参数,其值决定了PTC热敏电阻的工作温度范围。
电阻值是PTC热敏电阻的基本特征之一,其值与温度呈正相关,用来反映温度的高低。
响应时间是指PTC热敏电阻从温度变化到电阻变化的时间间隔,一般来说,响应时间越短,反应越快。
PTC热敏电阻的应用十分广泛。
在电子领域中,PTC热敏电阻可用于控制温度,例如电熨斗、电热水壶等家电产品中,当温度超过设定值时,PTC热敏电阻的电阻值急剧升高,从而自动切断电源,起到保护作用。
在汽车领域中,PTC热敏电阻可用于汽车座椅加热系统,通过监测座椅温度,控制加热功率,提供舒适的座椅温度。
在工业控制领域中,PTC热敏电阻可用于温度补偿,将温度信号转换为电阻信号,进行温度补偿控制。
PTC热敏电阻热敏电阻(PTC)是一种能够随温度变化而改变电阻的元件。
PTC 热敏电阻是根据正温度系数(Positive Temperature Coefficient,简称PTC)特性设计制造的,即随温度上升,电阻值也随之上升。
PTC热敏电阻的工作原理是基于半导体材料的特性。
在低温下,半导体处于冷状态,其电阻值相对较低。
随着温度上升,半导体材料中的电子和空穴的热激活增加,电子迁移到导带中,形成载流子。
这些载流子的增加会导致电阻值的增加,从而实现对电阻值的温度响应。
PTC热敏电阻广泛应用于各个领域,包括电子设备、电路保护和温度控制等。
其中,最常见的应用是在电路保护中。
例如,在电路中,当电流过大时,PTC热敏电阻会自动断开电路,以保护电子元件不受过电流的损害。
这种自动断开的特性是基于PTC热敏电阻的温度响应特性实现的。
PTC热敏电阻还常用于温度控制。
例如,它可以被用作温度传感器,通过检测环境的温度变化,来控制加热系统的开关。
当环境温度达到设定值时,PTC热敏电阻的电阻值增大,从而触发开关断开电路,停止加热系统的工作。
当环境温度降低时,PTC热敏电阻的电阻值减小,开关恢复闭合,从而重新启动加热系统。
此外,PTC热敏电阻还可以用于电子设备的过热保护。
在电子设备中,由于工作时产生的热量,有可能导致设备过热,进而损坏电子元件。
为了保护电子设备,可以在关键部件上安装PTC热敏电阻。
一旦设备温度超过安全范围,PTC热敏电阻的电阻值会急剧增加,从而导致电路断开,停止设备的工作。
总结来说,PTC热敏电阻是一种根据温度变化而改变电阻的元件。
它的工作原理基于半导体材料的温度响应特性。
PTC热敏电阻广泛应用于电子设备、电路保护和温度控制等领域。
通过自动断开电路、控制加热系统和过热保护等功能,PTC热敏电阻可以有效保护电子元件和设备的安全运行。
热敏电阻的物理特性与表示热敏电阻的物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
1、电阻值:R〔Ω〕电阻值的近似值表示为:R2=R1exp[1/T2-1/T1]其中:R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B:B值〔K〕2、B值:B〔k〕B值是电阻在两个温度之间变化的函数,表达式为:B= InR1-InR2 =2.3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2其中:B:B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕3、耗散系数:δ〔mW/℃〕耗散系数是物体消耗的电功与相应的温升值之比。
δ= W/T-Ta = I² R/T-Ta其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上的电流值〔mA〕R:在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。
4、热时间常数:τ〔sec.〕热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。
5、电阻温度系数:α〔%/℃〕α是表示热敏电阻器温度每变化1ºC,其电阻值变化程度的系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为:α = 1/R·dR/dT×100 = -B/T²×100其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B:B值〔K〕PTC热敏电阻发热元件一、PTC热敏电阻的简介:PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。
它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。
1、PTC 热敏电阻PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。
通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻。
该器件能在电流浪涌过大、温度过高时对电路起保护作用。
使用时,将其串接在电路中,在正常情况下,其阻值很小,损耗也很小,不影响电路正常工作;但若有过流(如短路)发生,其温度升高,它的阻值随之急剧升高,达到限制电流的作用,避免损坏电路中的元器件。
当故障排除后,PPTC器件的温度自动下降,又恢复到低阻状态,因此PPTC器件又称为可复性保险丝。
ptc的工作原理自恢复保险丝是由高分子材料添加导电粒子制成起基本原理是一种能量的平衡,当电流流过元件时产生热量,所产生的热量一部分散发到环境中去,一部分增加了高分子材料的温度.在工作电流下,产生的热量和散发的热量达到平衡电流可以正常通过,当过大电流通过时,元件产生大量的热量不能急时的散发出去,导致高分子材料温度上升,当温度达到材料结晶融化温度时,高分子材料集聚膨胀,阻断由导电粒子组成的导电通路,导致电阻迅速上升,限制了大电流通过,从而起到过流保护作用.PROFIBUS由三个兼容部分组成,即PROFIBUS-DP(Decentralized Periphery).PROFIBUS-PA(Process Automation ).PROFIBUS-FMS (Fieldbus Message Specification )。
主要使用主-从方式,通常周期性地与传动装置进行数据交换。
PROFIBUS是一种用于工厂自动化车间级监控和现场设备层数据通信与控制的现场总线技术。
可实现现场设备层到车间级监控的分散式数字控制和现场通信网络,从而为实现工厂综合自动化和现场设备智能化提供了可行的解决方案。
ptc热敏电阻的工作原理以下是关于PTC热敏电阻的工作原理的详细解释,并辅以案例讲解。
一、PTC热敏电阻的工作原理PTC热敏电阻,即正温度系数热敏电阻(Positive Temperature Coefficient Thermistor),是一种电阻值随温度升高而增加的热敏电阻。
其工作原理主要基于材料特性的变化,具体表现在以下几个方面:1. 材料特性PTC热敏电阻的材料在低温下具有较高的电导率,电子可以自由运动,电流能够较容易地通过。
然而,当环境温度升高并达到材料的Curie温度(也称为居里温度)时,材料的电导率会开始急剧下降。
这是因为随着温度的升高,材料中的半导体粒子受到热激发,电荷载流子密度剧增,同时能带结构也发生改变,导致电流通过材料时的阻力大大增加,从而使电阻值上升。
2. 半导体粒子与能带结构PTC热敏电阻的正温度系数特性是由于材料中的半导体粒子在高温下受到热激发而发生电荷载流子密度剧增以及能带结构的改变所导致的。
当温度升高时,半导体粒子中的价电子获得足够的能量跃迁到导带,成为自由电子,同时空穴也相应增加。
这些自由电子和空穴在电场作用下定向移动,形成电流。
然而,随着温度的进一步升高,材料内部的散射作用增强,导致电子和空穴的运动受到阻碍,电阻值增大。
3. 晶体粒子界面的影响在晶体与晶体之间存在的晶体粒子界面上,当温度较低时,由于内电场的作用,导电电子可以较容易地越过粒子界面,电阻值较小。
然而,当温度升高时,内电场会受到破坏,导电电子很难越过粒子界面,电阻值就会上升。
这种界面效应也是PTC热敏电阻电阻值随温度升高而增加的原因之一。
二、PTC热敏电阻的应用案例案例一:过流保护与过温保护PTC热敏电阻通常使用于过流保护、过温保护等电路中。
当电路中电流或温度超过设定值时,PTC热敏电阻的电阻值迅速上升,从而起到保护电路的作用。
应用场景:在电源供应器、电动机控制器等电子设备中,为了防止因电流过大或温度过高而导致的设备损坏,通常会使用PTC热敏电阻进行保护。
热敏电阻热敏电阻是敏感元件的一类,其电阻值会随着热敏电阻本体温度的变化呈现出阶跃性的变化,具有半导体特性.热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻)负温度系数热敏电阻(简称NTC热敏电阻)PTC热敏电阻(PTC Thermistor)PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件.通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻.PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时, 它的电阻值随着温度的升高呈阶跃性的增高.PTC热敏电阻根据其材质的不同分为: 陶瓷PTC热敏电阻有机高分子PTC热敏电阻PTC热敏电阻根据其用途的不同分为: 自动消磁用PTC热敏电阻延时启动用PTC热敏电阻恒温加热用PTC热敏电阻过流保护用PTC热敏电阻过热保护用PTC热敏电阻传感器用PTC热敏电阻一般情况下,有机高分子PTC热敏电阻适合过流保护用途,陶瓷PTC热敏电阻可适用于以上所列各种用途. NTC热敏电阻(NTC Thermistor)NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件.通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻.NTC热敏电阻是一种典型具有温度敏感性的半导体电阻,它的电阻值随着温度的升高呈阶跃性的减小.NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的.这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料.温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低.NTC热敏电阻根据其用途的不同分为: 功率型NTC热敏电阻补偿型NTC热敏电阻测温型NTC热敏电阻PTC热敏电阻的发展1950年荷兰PHLIPS公司的海曼等人,在BaTiO3材料中掺入稀土元素做半导化实验时,发现这种半导体材料的电阻率具有很高的正温度系数,存在很强的PTC效应, 探索这种现象的机理很快成为引人瞩目的研究课题.几十年来, 在世界众多科学工作者的努力下,在许多方面取得了重大突破.不仅理论日臻成熟, 其应用范围也在不断扩大. 随着研发和设计工程师对PTC热敏电阻的了解越来越深刻,许多新用途不断被开发出来,目前已渗透到日常生活、工业技术、军事科学、通讯、宇航等各个领域.在我国,从60年代开始PTC热敏电阻的科研工作并逐步发展到生产, 1982年,"仪表材料学会"从敏感元件角度组织第一次PTC讨论会;1990年,<家电科技>杂志在广州组织家电轻工系统PTC讨论会,迄今已举行过八次;1990年,国家科委组织科研院所及厂家对PTC热敏电阻及应用器件进行攻关,使PTC热敏电阻进入快速发展时期,到目前已形成多个年产5000万只的骨干大厂分布于山东、广东、浙江、四川、湖北、江苏等地.目前大量被使用的PTC热敏电阻种类: 恒温加热用PTC热敏电阻过流保护用PTC热敏电阻空气加热用PTC热敏电阻延时启动用PTC热敏电阻传感器用PTC热敏电阻自动消磁用PTC热敏电阻PTC热敏电阻工作原理PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得.陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子.对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应.PTC热敏电阻的分类热敏电阻是敏感元件的一类,其电阻值会随着热敏电阻本体温度的变化呈现出阶跃性的变化,具有半导体特性.热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻)负温度系数热敏电阻(简称NTC热敏电阻)PTC热敏电阻(PTC Thermistor)PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件.通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻.PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时, 它的电阻值随着温度的升高呈阶跃性的增高.PTC热敏电阻根据其材质的不同分为: 陶瓷PTC热敏电阻有机高分子PTC热敏电阻PTC热敏电阻根据其用途的不同分为: 自动消磁用PTC热敏电阻延时启动用PTC热敏电阻恒温加热用PTC热敏电阻过流保护用PTC热敏电阻过热保护用PTC热敏电阻传感器用PTC热敏电阻一般情况下,有机高分子PTC热敏电阻适合过流保护用途,陶瓷PTC热敏电阻可适用于以上所列各种用途. NTC热敏电阻(NTC Thermistor)NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件.通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻.NTC热敏电阻是一种典型具有温度敏感性的半导体电阻,它的电阻值随着温度的升高呈阶跃性的减小.NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的.这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料.温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低.NTC热敏电阻根据其用途的不同分为: 功率型NTC热敏电阻补偿型NTC热敏电阻测温型NTC热敏电阻延时启动PTC热敏电阻从PTC热敏电阻的I-t特性曲线得知,外加电压后PTC热敏电阻需经历一段时间才能达到高阻态, 这种延迟特性被用于延时启动用途。
热敏电阻的物理特性与表示热敏电阻的物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
1、电阻值:R〔Ω〕电阻值的近似值表示为:R2=R1exp[1/T2-1/T1]其中:R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B:B值〔K〕2、B值:B〔k〕B值是电阻在两个温度之间变化的函数,表达式为:B= InR1-InR2 =2.3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2其中:B:B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕3、耗散系数:δ〔mW/℃〕耗散系数是物体消耗的电功与相应的温升值之比。
δ= W/T-Ta = I² R/T-Ta其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上的电流值〔mA〕R:在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。
4、热时间常数:τ〔sec.〕热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。
5、电阻温度系数:α〔%/℃〕α是表示热敏电阻器温度每变化1ºC,其电阻值变化程度的系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为:α = 1/R·dR/dT×100 = -B/T²×100其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B:B值〔K〕PTC热敏电阻发热元件一、PTC热敏电阻的简介:PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。
它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。
有恒温、调温、自动控温的特殊功能当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。
不燃烧、安全可靠PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。
PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。
省电PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。
寿命长PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。
并且多孔型比无孔型寿命更长。
结构简单PTC元件本身自动控温,不需另加自动控制温度线路装置。
特别是我公司新产品棗多孔型PTC更不需要其他散热装置,也不需用导电胶。
使用电压范围广PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。
二、PTC热敏电阻的应用:低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。
高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手器、茶叶烘干机、水管加热器、旅行干衣机、汽车烤漆房、液化气瓶加热器、沐浴器、美容器、电热餐桌、奶瓶恒温器、电热炙疗器、电热水瓶、电热毯等。
三:PTC热敏电阻的实物图如下:注:我们可以根据用户的要求生产有:1:不同尺寸;2:不同居里点(110~350℃范围内);3:不同使用电压以及其它不同参数的PTC。
四、PTC热敏电阻的技术要求:K≥1×热敏电阻技术简介及其应用一、热敏电阻技术简介:自1950年荷兰菲力浦公司的海曼等人发现BaTiO3系陶瓷半导化后可获得正温度系数(PTC)特性以来,人们对它的了解越来越深刻。
与此同时,在其应用方面也正日益广泛,渗透到日常生活、工农业技术、军事科学、通讯、宇航等各个领域。
形成这种状况的原因在于PTC热敏电阻具有其独特的电-热-物理性能。
目前正处于:对PTC陶瓷材料性能的进一步优化和对PTC陶瓷元件应用的进一步推广,三者相互促进的阶段。
PTC热敏电阻器的应用是当今最为热门而前景又十分宽广的新型应用技术。
热敏电阻按电阻温度系数分为正电阻温度系数(PTC)和负电阻温度系数(NTC)热敏电阻。
PTC是Positive temperature Coefficient的缩写,实为正的温度系数之意,习惯上用于泛批量正电阻温度系数很大的半导体材料或元器件等。
PTC元件的实用化始于60年代初期。
最早的商品是用于晶体管电路的温度补偿元件。
随后,用于电机过热保护、彩电消磁限流及恒温发热等场合的系列化产品相继商品化,并很快形成大生产规模。
我国对PTC元件的研制始于1964年,60年代末期商品化,80年代后期主要产品系列化并初具规模。
PTC元件的应用范围十分广泛,有待开发的应用产品极其丰富。
这一点已成越来越多的行家所共识。
二、热敏电阻应用:PTC热敏电阻在电路控制及传感器中的应用:晶体管温度补偿电路、测温控温电路、过热保护电路、孵育箱、电风扇、彩卷冲洗、开水壶、电热水器、电热毯、日光灯、节能灯、电池充电、变压器绕阻、取暖器、延迟器、压缩机、彩电、彩显、过流保安、液位控制、电子镇流器、程控交换机、电子元件老化台PTC热敏电阻在电热器具中的应用:暖风机、暖房机、干燥机(柜)、滚筒干衣机、干手器、吹风机、卷发器、蒸汽美容器、电饭煲、驱蚊器、暖手器、干鞋器、高压锅、消毒柜、煤油气化炉、电熨斗、电烙铁、塑料焊枪、封口机PTC热敏电阻在汽车中的应用:电器过载保护装置、混合加热器、低温启动加热器、燃料加热器、蜂窝状加热器、燃油液位指示器、发动机冷却水温度检测表高分子PTC热敏电阻基础知识()高分子PTC热敏电阻用于过流保护1.PTC效应:说一种材料具有PTC (Positive Temperature Coefficient) 效应, 即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。
如大多数金属材料都具有PTC效应。
在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。
2.非线性PTC效应:经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应,如图1所示。
相当多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。
这些导电聚合体对于制造过电流保护装置来说非常有用。
3. KT系列高分子PTC热敏电阻用于过流保护:高分子PTC热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性(即PTC特性,如图1所示),因而极为适合用作过流保护器件。
热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用,如图2所示。
图1. PTC热敏电阻的电阻-温度关系曲线图2. 高分子PTC热敏电阻的使用电路图当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串图3. 热敏电阻动作过程中电路中电流的变化联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(Ts,见图1)时,电阻瞬间会变得很大,把电路中的电流限制到很低的水平。
此时电路中的电压几乎都加在热敏电阻两端,因而可以起到保护其它元件的作用。
当人为切断电路排除故障后,热敏电阻的阻值会迅速恢复到原来的水平,电路故障排除后,热敏电阻无需更换而可以继续使用。
图3为热敏电阻对交流电路保护过程中电流的变化示意图。
热敏电阻动作后,电路中电流有了大幅度的降低,图中t为热敏电阻的动作时间。
由于高分子PTC热敏电阻的可设计性好,可通过改变自身的开关温度(Ts)来调节其对温度的敏感程度,因而可同时起到过温保护和过流保护两种作用,如KT16-1700DL规格热敏电阻由于动作温度很低,因而适用于锂离子电池和镍氢电池的过流及过温保护。
环境温度对高分子PTC热敏电阻的影响高分子PTC热敏电阻是一种直热式、阶跃型热敏电阻,其电阻变化过程与自身的发热和散热情况有关,因而其维持电流(I hold)、动作电流(I trip)及动作时间受环境温度影响。
图4为热敏电阻典型的维持电流、动作电流与环境温度的关系示意图。
当环境温度和电流处于A区时,热敏电阻发热功率大于散热功率而会动作;当环境温度和电流处于B区时发热功率小于散热功率,热敏电阻将长期处于不动作状态;当环境温度和电流处于C区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。
图5为热敏电阻的动作时间与电流及环境温度的关系示意图。
热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。
图 4 维持电流、动作电流与温度的关系图 5. 热敏电阻动作特性曲线高分子PTC热敏电阻动作后的恢复特性高分子PTC热敏电阻由于电阻可恢复,因而可以重复多次使用。
图6为热敏电阻动作后,恢复过程中电阻随时间变化的示意图。
电阻一般在十几秒到几十秒中即可恢复到初始值1.6倍左右的水平,此时热敏电阻的维持电流已经恢复到额定值,可以再次使用了。
一般说来,面积和厚度较小的热敏电阻恢复相对较快;而面积和厚度较大的热敏电阻恢复相对较慢。
图 6. 热敏电阻动作后恢复特性曲线KT系列高分子PTC热敏电阻的特点高分子PTC热敏电阻是一种具有正温度系数特性的导电高分子材料,它与传统保险丝之间最显著的差异就是前者可以多次重复使用。
这两种产品都能提供过电流保护作用,但同一只高分子PTC热敏电阻能多次提供这种保护,而保险丝在提供过电流保护之后,就必须用另外一只进行替换。
高分子PTC热敏电阻与双金属电路断路器的主要区别在于前者在事故未被排除以前一直出于关断状态而不会复位,但双金属电路断路器在事故仍然存在时自身就能复位,这就可能导致在复位时产生电磁波及火花。
同时,在电路处于故障条件下重新接通电路可能损坏设备,因而不安全。
高分子PTC热敏电阻能够一直保持高电阻状态直到排除故障。
高分子PTC热敏电阻与陶瓷PTC热敏电阻的不同在于元件的初始阻值、动作时间(对事故事件的反应时间)以及尺寸大小的差别。
具有相同维持电流的高分子PTC热敏电阻与陶瓷PTC热敏电阻相比,高分子PTC热敏电阻尺寸更小、阻值更低,同时反应更快。
应用知识问答1. 高分子PTC热敏电阻主要应用于哪些方面?高分子PTC热敏电阻可用于计算机及其外部设备、移动电话、电池组、远程通讯和网络装备、变压器、工业控制设备、汽车及其它电子产品中,起到过电流或过温保护作用。