第二类曲线积分典型例题解析
- 格式:doc
- 大小:143.00 KB
- 文档页数:3
第二类曲面积分例题曲面积分是对曲面上某个量进行积分的数学工具,用于计算曲面上的各种物理量或几何特性。
下面我会给出一个例题,并从多个角度进行解答。
例题,计算曲面积分 $\iint_S (x^2+y^2+z^2)dS$,其中曲面$S$ 是球面 $x^2+y^2+z^2=a^2$,且法向量与 $z$ 轴的夹角小于$\frac{\pi}{2}$。
解答:1. 参数化法:我们可以使用球坐标系来参数化球面 $S$,令$x=a\sin\phi\cos\theta$,$y=a\sin\phi\sin\theta$,$z=a\cos\phi$,其中 $0\leq\phi\leq\frac{\pi}{2}$,$0\leq\theta\leq2\pi$。
计算曲面积分可转化为计算参数化后的积分:$$\iint_S (x^2+y^2+z^2)dS =\int_0^{\frac{\pi}{2}}\int_0^{2\pi}(a^2\sin^2\phi\cos^2\theta + a^2\sin^2\phi\sin^2\theta +a^2\cos^2\phi)a^2\sin\phi d\theta d\phi$$。
化简后可得结果。
2. 法向量法,由于曲面 $S$ 是球面,其法向量可以表示为$\mathbf{N} = \frac{\mathbf{r}}{a}$,其中 $\mathbf{r} =x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ 是曲面上的任意一点。
计算曲面积分可转化为计算 $\iint_S(\mathbf{r}\cdot\mathbf{N})dS$。
代入球面方程和法向量表达式后,进行积分即可得结果。
3. 散度定理法,根据散度定理,曲面积分可以转化为对曲面所围立体的体积分。
因为球面 $S$ 是闭合曲面,所以可以使用散度定理。
计算散度 $\nabla\cdot(\mathbf{F})$,其中 $\mathbf{F} = (x^2+y^2+z^2)\mathbf{i} + (x^2+y^2+z^2)\mathbf{j} +(x^2+y^2+z^2)\mathbf{k}$。
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
2014考研数学备考重点解析一一第二类曲线积分的计算1•计算方法1)直接法;fc Q 田)2)格林公式疔dx+Qdy=JJ ——-—^».D i法€y丿3)补线用格林公式4)利用线积分与路径无关:Q.x(2)计算:a)改换路径;b)利用原函数f Pdx+Qdy = F(x2,y2)-卩(为,%),其中(x1 y)Pdx Qd^dF(x, y),求原函数方法:①偏海文钻石卡视频积分:②凑微分.2•两类线积分的联系::Pdx • Qdy 二「(Pcos= " Qcos :)ds.C Cf—2 2 2 2【例1】计算I =[ ye y dx (xe y2xy e y )dy.其中C为y=3_x从0(0,0)到A(1,1)的曲线段.Cde 2 2 22 2【解析】由于一(ye y) =—(xe y- 2xy2e y) = e y2y2e y,则本题中的线积分与路径无关.d ye x解法1改换路径,B点为(1,0)点。
2 2 2 2 2 2原式= OB ye y dx (xe y2xy2e y)dy .臥ye y dx (xe y2xy2e y)dy1 2 2=0 0(e y2y2e y )dy= 0 - ;2y2e y2dy 012y2e『dy =3.也可将路径改换为另一折线0C、CA,其中C点为(0,1)点,则原式22 222 2I= 0Cye y dx (xe y2xy 2e y)dyCAye y dx (xe y2xy 2e y)dy = 0°edx=e .解法2利用原函数,由于y 2y 22 y 2y 2y 2y 2ye dx (xe 2xy e )dy 二(ye )dx xd(ye ) = d(xye )2则 F(x,y) =xye •2,则-(e y )dx - (x y 2)dy =C【解析】由格林公式得2 2 2%e ydx +(x + y 2)dy = "(1 -2ye y )d<rD=d ; - SD则其面积S =2二.y 22故 ■- L e y dx (x y )dy 二 2 . 【例3】计算I(e x siny 「b(x y))dx • (e x cosy -ax)dy ,其中a,b 为正常数,C 为从点A(2a,0)沿曲线Cy = ■. 2ax - x 2 到点 O(0,0)的弧.【解析】补线段OA ,则I(e x sin y _b(x y))dx (e x cosy _ax)dyC OA-OA(e x sin y _b(x y))dx (e x cosy _ ax)dy2a= (e x cosy _a -e x cosy b)d ;「_ o (_bx)dx ,D2故 L ye y dx (xe2 2 2 2xy e y )dy 二 xye y(1,1)e .(0,0)2 2【例2】设C 为椭圆4x y -8x 沿逆时针方向其中D 是由4x 2 • y 2 =8x 围成的椭圆域,S 为其面积,海文钻石卡视频该椭圆方程可改写为2(X -1)2」1,4也可将路径改换为另一折线 0C 、CA ,其中C 点为(0,1)点,则2 21【解析】(1)C:x (y -1N ,由格林公式得1ydx -xdyir .(—i —i)d 二(这里用了格林公式)D i-2-:;2=_2二.注:由本题可看出,对线积分ydx-xdy y Q,P ~ 2 2 ,Qx y x 2 y 2—x— 2,除原点(0,0)夕卜,P,Q 有连续一阶偏导数, x y且― ■-Q,(x, (0,0).此时有以下结论: -X 2aI = (b -a)d 匚 b xdx =D(b - a) 2a 2b【例4】计算I”中2 21(DC 为x y -2八二的正向;⑵C 为4x 2 • y 2「8x 二4的正向.ag-x ■(其中D 为曲线C 所围圆域)2 2x -y x 22-y\((x 2y 2)^(x 2y 2)2 )d ;「-0.(2)C :42yi ,此时不能直接用格林公式,因为在 (0,0)点条件不满足.因此,作以(0,0)为中心的圆8L: x 2y 2;2 ( ;0)且取顺时针方向,在 L 和C 大学考研围成的环形域上用格林公式得2 2x -y ydx - xdy _(_ 訂(/ 2 2、2D(x y )2 2x -y (x 2 y 2)2)d一0,xdx —xdy ■L x 2 y 2 :^^=0. x 2 y 2 [“ ydx-xdyydx -xdy C x 2y 2x 2 y 2其中D 为y =-』2ax -x 2与0A 围成的半圆域,则D1)沿任何一条不包含原点在内的分段光滑闭曲线的积分为零 2 )沿任何一条包含原点在内的分段光滑闭曲线的积分均相等 事实上,线积分这个类型.c【例 5 】计算 I = [「(y )cosx -二y ]dx [「(y )si nx -二]dy ,其中 AMB 弧为连结 A (二,2)与点 B (3二,4)的线段AMB【解析】= 2-(1 3二)2=2專 _2二(1 3二)=「6二AMB 『血3 3一飯『血dy兀x1一dxdy—3二(二1)dx二dx"二(x - y)dx+(x+y)dy (x + y)dx _(x _ y)dy xdy_ydxL x^ ,L ,_ I 2 2x_ y4x y x y AB 的下方的任意分段光滑简单曲线,且该曲线与大学考研线段 AB 所围图形面积为2,解法1补线段BA ,则AMB AMB'BA - BAAMBA-BA'AMBA Pdx Qdy「(3)d —ex cy!!^ - 2■:x直线BA 的方程为:y1,则 JIBAFCOSX -二 xx1(1)]dx [ (1) si nx-二]dxJIJI解法其中L 申(y)co xdx + 申(y)si nxdy =®(y)si nxAM B(3 二4)(二,2) =°顺时针方向。
高等数学(2)第12章第二类曲线积分典型例题解析
例1 若对任意的x ,y 有y
P
x Q ∂∂≡∂∂,设C 是有向闭曲线,则⎰+C y Q x P d d = .
解:由格林公式将
y x y
P
x Q y y x Q x y x P D
C
d d )(
d ),(d ),(∂∂-∂∂=+⎰⎰⎰
其中D 为C l 围成的平面区域,及条件
y
P
x Q ∂∂≡∂∂知,应该填写:0 例2._______d d =+-⎰
y x x y l ,其中l 是延圆周1)1()1(2
2
=-+-y x 正向一周.
解:因为圆周1)1()1(2
2=-+-y x 所围圆面积D 为:π⋅2
1,由格林公式得:
⎰⎰
⎰+=+-D
l
y x y x x y d d )11(d d =π2,应该填写:π2
例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分⎰
+l
y Q x P d d 与路径无关的充分必要条件是( ).
A .在域D 内恒有
y Q x P ∂∂=∂∂ B .在域D 内恒有y
P
x Q ∂∂=∂∂ C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+⎰'
l y Q x P
D .在D 内任一条闭曲线l '上,曲线积分
0d d =+⎰'
l y Q x P
解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则
⎰+l
y y x Q x y x P d ),(d ),(与路径无关D y x y
P
x Q ∈∂∂=∂∂⇔
),(,。
所以选择:B
例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .⎰
+C
y x x yx d d 332 B .⎰-C
y x x y d d
C .
⎰-C
y x x xy d d 22
D .⎰+C
y y x yx d d 33
2
解:因为选项A 中,
23323)(,3)3(x x
x x Q x y yx y P =∂∂=∂∂=∂∂=∂∂,由曲线积分与路径无关的充分必要条件知道,正确选择:A
—
例 5 设积分路径⎩⎨
⎧==)
()
(:t y t x l ψϕ,)(βα≤≤t ,那么第二类曲线积分计算公式
⎰+l
y y x Q x y x P d ),(d ),(=( )
. A .⎰'+'β
αψψϕϕψϕt t t t Q t t t P d )]())(),(()())(),(([ B .⎰'+β
αϕψϕψϕt t t t Q t t P d )())](),(())(),(([ C .⎰'+β
αψψϕψϕt t t t Q t t P d )())](),(())(),(([ D .
⎰+β
αψϕψϕt t t Q t t P d ))](),(())(),(([
解:因为积分曲线的路径由参数方程⎩⎨⎧==)
()
(:t y t x l ψϕ,)(βα≤≤t 给出,把参数方程代
入曲线积分中,得:
⎰'+'β
αψψϕϕψϕt t t t Q t t t P d )]())(),(()())(),(([
所以正确选择:A
例6 计算⎰
-++-l
x
x
y x y x x y y d )cos e (d )3sin e (2
,其中l 为由点)0,3(A 经椭圆
⎩⎨
⎧==t
y t
x sin 2cos 的上半弧到点)0,3(-B 再沿直线回到A 的路径. 解:由于l 为封闭曲线,故原式可写成
⎰-++-l
x x
y x y x x y y d )cos e (d )3sin e
(2
其中x y Q x y y P x x
-=+-=cos e ,
3sin e 2
,由格林公式
原式=⎰
-++-l
x
x y x y x x y y d )cos e (d )3sin e (2⎰⎰∂∂-∂∂=
D
d d ][
y x y
P
x Q =
⎰⎰---D
x x y x y y d d ]3cos e ()1cos e [( =
⎰⎰D
y x d d 2=23212⋅⋅⋅π=π6 例7.计算⎰-+-
l x x
y y x y y d )2
1
cos e (d )2sin e (2,其中l 是上半圆周x y x 222=+ )0(>y 和x 轴围成平面区域边界的正向.
解:Θ2
1
cos e ,2sin e 2-=-=y Q y y P x x
,由格林公式得
—
⎰-+-l
x
x
y y x y y d )21cos e (d )2sin e (2⎰⎰∂∂-∂∂=D
d d ][y x y P x Q =
⎰⎰--D
x x
y x y y y d d )]cos e (cos e
[=⎰⎰D
y x y d d
=
⎰
⎰
θ
π
θθcos 20
2
2
d d sin r r =⎰20
3d cos sin 38
π
θθθ
=
32
)cos (3220
4=-π
θ 例8 计算⎰
-l
x y x y xy d d 2
2,其中1:2
2
=+y x l 逆时针方向.
解:Θ22
,
xy Q y x P =-=,由格林公式得
⎰-l
x y x y xy d d 2
2⎰⎰∂∂-∂∂=D
d d ][y x y
P
x Q =
⎰⎰
≤++1
2
222d d )(y x y x y x =⎰⎰1
320
d d r r π
θ =2
412π
π=⨯。