典型相关分析SPSS例析演示教学
- 格式:doc
- 大小:441.50 KB
- 文档页数:10
典型相关分析的spss操作流程1.首先,打开SPSS软件并创建一个新的数据文件。
First, open the SPSS software and create a new data file.2.导入你要进行典型相关分析的数据到SPSS中。
Import the data for canonical correlation analysis into SPSS.3.确保数据变量的命名和类型是正确的。
Make sure the data variable names and types are correct.4.确认数据的缺失值情况,并进行适当的处理。
Check for missing values in the data and handle them appropriately.5.选择“分析”菜单中的“相关”选项。
Select the "Correlate" option from the "Analysis" menu.6.选择“典型相关”作为分析的方法。
Choose "Canonical Correlation" as the method for analysis.7.将想要进行分析的自变量和因变量添加到对应的框中。
Add the predictor and criterion variables to their respective boxes for analysis.8.确定是否需要进行变量的标准化处理。
Decide if standardization of variables is needed.9.点击“OK”开始进行典型相关分析。
Click "OK" to start the canonical correlation analysis.10.解释典型相关分析的结果和统计显著性。
Interpret the results and statistical significance of the canonical correlation analysis.11.对典型相关分析的结果进行图表展示。
SPSS相关分析实例操作步骤-SPSS做相关分析SPSS(Statistical Product and Service Solutions)是目前在工业、商业、学术研究等领域中广泛应用的统计学软件包之一。
Correlation是SPSS的一个功能模块,可以用于分析两个或多个变量之间的关系。
下面是SPSS进行相关分析的具体步骤:1. 打开SPSS软件,选择“变量视图”(Variable View),输入相关的变量名,包括数字型变量和分类变量。
2. 进入“数据视图”(Data View),输入数据,并保存数据集。
3. 打开菜单栏中的“分析”(Analyze),选择“相关”(Correlate),再选择“双变量”(Bivariate)。
4. 在双变量窗口中,选择包含需要分析的变量的变量名,并将其移至右侧窗口中的变量框(Variables)。
5. 如果需要控制其他变量的影响,可以选择“控制变量”(Options)。
6. 点击“确定”(OK)按钮后,SPSS将输出结果,并将其显示在输出窗口中。
相关系数(Correlation Coefficient)介于-1和1之间,可以用来衡量两个变量之间的线性关系的强度。
7. 如果需要对结果进行图形化展示,可以选择“图”(Plots),并选择适当的图形类型。
需要注意的是,进行相关分析时需要确保变量之间存在线性关系。
如果变量之间存在非线性关系,建议使用其他统计方法进行分析。
同时,SPSS进行相关分析的结果只能描述变量之间的关系,不能用于说明因果关系。
以上是SPSS做相关分析的具体步骤,希望能对大家进行SPSS 数据分析有所帮助。
(CCA)典型相关在线SPSS操作实例讲解,SPSSAU文章相关分析是研究两两变量间关系的方法,在现实生活中,变量间的关系往往更加复杂。
比如,要考察多个变量与多个变量(即两组变量)之间的相关性,该如何分析呢?如果用普通的相关分析,不仅费时费力,也无法很好的解释结果,面对这样的数据最好的方法是使用典型相关分析。
典型相关分析(CCA)用于研究一组X与一组Y数据之间的相关关系情况。
它是借助主成分分析思想,从两组变量中提取出一个或少数几个综合变量(即典型变量),从而将对两组变量关系集中到少数几对典型变量间的关系之上。
分析步骤从步骤上讲:典型相关分析共分为三个步骤。
第一步:提取出典型相关变量【非常重要】第二步:寻找典型变量与研究变量之间的关系表达式,以及典型变量与研究变量间的关系情况第三步:典型冗余分析下面通过一个案例让大家对典型相关有更为直观的认识。
案例应用(1)背景为研究运动员体力和运动能力之间的相关关系情况。
共收集38个学生样本进行分析。
测试数据包括体力指标共7项(反复横向跳、纵跳、背力、握力、台阶试验指数、立定体前屈、俯卧向体后仰);运动能力指标共5项(50米跑时间、跳远、投球、引体向上、耐力跑)。
从上述背景来看,X共由7项表示,Y由5项表示。
若是研究X和Y这两组指标之间的相关关系情况,不能通过常规的相关分析直接研究,因而使用典型相关分析进行研究。
(2)操作步骤使用途径:SPSSAU→进阶方法→典型相关分析时如有需要可保存典型变量,用于后续研究。
(3)结果分析SPSSAU共输出4个表格:表格1用于典型变量表述典型变量之间的相关关系情况;表格2和表格3用于展示典型变量与研究变量间的数学表达式关系和相关有关系;表格4可用于典型冗余分析。
①典型相关系数及显著性结果表1 典型相关系数及显著性结果表1展现的是典型变量的提取情况,上表中共显示共有5个典型变量被提取,经过显著性检验,有2个典型变量呈现出显著性(P<0.01),因此,最终以两个典型变量为准进行后续研究。
SPSS概览之数据分析实例详解(doc 180页)第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS 的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS各个模块的精确用法。
我们教学时是以SPSS 10.0版为蓝本讲述的--什么?你还在用7.0版!那好,由于10.0版在数据管理的界面操作上和以前版本有较大区别,本章我们将特别照顾一下老版本,在数据管理界面操作上将按9.0及以前版本的情况讲述,但具体的统计分析功能则按10.0版本讲述。
没关系,基本操作是完全一样的。
好,说了这么多废话,等急了吧,就让我们开始吧!希望了解SPSS 10.0版具体情况的朋友请参见本网站的SPSS 10.0版抢鲜报道。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同(卫统第三版例4.8)?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
典型相关分析
典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。
典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。
典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。
典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。
典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。
典型相关会找出一组变量的线性组合**=i i
j
j
X a x Y b y
=
∑∑与 ,称为典型变量;以
使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。
i a 和j b 称为典型系数。
如果对变量进行标准化后再进行上述操作,得到的是标准化的典型系数。
典型变量的性质
每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。
一个典型相关系数只是两个典型变量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。
典型负荷系数和交叉负荷系数
典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。
典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。
重叠指数
如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。
将重叠应用到典型相关时,只要简单地将典型相关系数平方(2CR ),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。
例1:CRM (Customer Relationship Management )即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM 实施程度变量( W EB 网站,电子邮件,客服中心,DM 快讯广告Direct mail 缩写,无线上网,简讯服务),三个CRM 绩效维度(行销绩效,销售绩效,服务绩效)。
试对三组变量做典型相关分析。
数据的格式如上所示,以下对三组变量两两做典型相关分析。
首先对公司规模和CRM实施程度做典型相关分析
SPSS并未提供典型相关分析的交互窗口,只能直接在synatx editor 窗口中呼叫SPSS的CANCORR程序来执行分析。
并且cancorr不能读取中文名称,需将变量改为英文名称。
打开文件后
File-→ new --→synatx editor打开语法窗口
输入语句
INCLUDE 'D:\spss19\Samples\English\Canonical correlation.sps'.
CANCORR Set1=Capital Sales
/Set2=Web Mail Call DM Mobile ShortM.
小写字母也行,但是变量名字必须严格一致
include 'D:\spss19\Samples\English\Canonical correlation.sps'.
cancorr set1=Capital Sales
/set2=Web Mail Call DM Mobile ShortM.
注意第三行的“/”不能为“\”
run→all得到典型相关分析结果
第一组变量间的简单相关系数
第一对典型变量的典型相关系数为CR1=0.434,第二对典型变量的典型相关系数为CR2=0.298.
此为检验相关系数是否显著的检验,原假设:相关系数为0.
每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。
第一行看出,第一对典型变量的典型相关系数是不为0的,相关性显著。
第二行sig值P=0.263>0.05,在5%显著性水平下不显著。
第一个典型变量的标准化典型系数为-0.287和-0.774.
CV1-1=--0.287capital--0.774sales, CV1-2=--1.4capital+1.2sales
CV2-1=--0.341web+0.117mail+0.027call—0.091DM—0.767mobile—0.174shortm CV2-2=--0.433web—0.168mail—1.075call+0.490DM+0.139mobile+0.812shortm
典型负荷系数和交叉负荷系数表
重叠系数分析Redundancy index 0.157=21CR *0.833=0.434^2*0.833 0.08=21*0.425CR =0.434^2*0.425
此为计算的典型变量,保存到原文件后部。
公司规模与CRM绩效的典型相关分析
CRM绩效与CRM实施程度典型相关分析
自变量因变量规则相关系数检验的P值公司规模CRM实施程度0.434 0.05 CRM实施程度CRM绩效0.368 0.00
公司规模CRM绩效0.358 0.112
由上表知,公司规模与CRM实施程度显著相关,且公司规模越大实施程度越高;此外CRM 实施程度越高越能实现CRM绩效,但公司规模与CRM绩效并不显著相关;就整体而言,公司规模不直接影响CRM绩效,而是通过CRM实施程度间接影响CRM绩效。
影响CRM绩因素很多,光靠较大公司规模还不是CRM绩效的保证,还有其他因素影响CRM绩效。
例2:全国30省市自治区农村收入与支出的指标,x1—x4反映农村收入,y1---y8反映农村生活费支出,对收入与支出进行典型相关分析。
语法输入
INCLUDE 'D:/spss19/Samples/English/Canonical correlation.sps'.
cancorr set1=x1 x2 x3 x4
/set2=y1 y2 y3 y4 y5 y6 y7 y8.
只有前两对典型相关系数是显著的;分别为CR1=0.982和CR2=0.910.
CV1-1=-0.511x1-0.039x2-0.448x3-0.142x4
CV1-2=-1.046x1-0.293x2+1.459x3-0.319x4
CV2-1=-0.199y1+0.017y2+0.442y3-0.615y4+0.096y5-0.415y6-0.07y7-0.22y8
CV2-2=-0.117y1-1.512y2-1.515y3+1.320y4-0.03y5+0.705y6+0.453y7+0.274y8
第一对典型变量说明靠劳动报酬和转移收入为主的家庭其对应的消费主要在家庭设备和服务,交通和通讯支出上,在居住支出上比较少。
例三:已知294个被调查者的cesd(抑郁症),health与sex , age ,education,income两组指标建立数据文件。
对两组进行典型相关分析。
语法输入
INCLUDE 'D:/spss19/Samples/English/Canonical correlation.sps'.
CANCORR Set1=cesd health
/Set2=sex age educ income.
结果选录
从第一对典型变量的表达式看出,年龄较大,教育程度较低,相对的无抑郁症趋势;显然健康比较差。
第二对典型变量表明,年龄小,教育度低,收入低的女性相对的有抑郁症。