2020-2021杭州市育才中学小学二年级数学下期末第一次模拟试卷(含答案)
- 格式:doc
- 大小:201.50 KB
- 文档页数:8
2020-2021学年人教版二年级下期末考试数学试卷一、我会填.(每空1分,共28分).1.(4分)12÷6=2读作:.表示把12平均分成份.还表示12里面有个.2.(1分)每份分得多,叫平均分.3.(2分)7个8的和是,36里面有个9.4.(6分)在〇里填上“+”“﹣”“×”或“÷”8〇6=4827〇9=365〇5=127〇9=36〇3=34〇8=325.(1分)48连续减8,减次是0.6.(4分)☆÷△=7…7,△最小是,这时☆是.在计算有余数的除法时,比小.7.(2分)用0、4、7、8组成的最大四位数是,最小四位数是.8.(2分)10个一百是,10000里面有个一千.9.(2分)一个四位数,它的千位上是2,十位上是2,其他数位上是0,这个数是.读作:10.(2分)数位顺序表中,从右起第三位是位,第位是万位.11.(2分)与9000相邻的两个数分别是和.二、我会判.(对的画“√”,错的画“×”,每题1分,共5分)12.(1分)比较万以内数的大小,要从个位比起.(判断对错)13.(1分)两个计数单位间的进率是10.(判断对错)14.(1分)“81÷8=9…9”(判断对错)15.(1分)一台电脑的售价是5198元,可以说这台电脑的售价大约是5200元.(判断对错)16.(1分)把45颗珠子穿成每7颗一串的手链,最多能穿7串.(判断对错)三、我会选(将正确答案序号填写在相应的括号里,每小题1分,共5分)17.(1分)下面各数中,一个“0”也不读的数是()A.9060B.9006C.960018.(1分)下面的数,()最接近8000A.7999B.8002C.801019.(1分)下列()种分法是平均分。
A.B.C.20.(1分)有一串珠子是按“红黄蓝蓝红黄蓝蓝”这样的顺序穿起来的,第24颗是()颜色.A.红色B.黄色C.蓝色21.(1分)用2、6、0能摆出()个不同的两位数.A.2B.4C.6四、我会算(30分).22.(12分)直接写出得数.20÷4=700﹣500=732+69≈90+80=6000﹣3500=88﹣42≈7÷7=5×7=56﹣9=30÷6=500+900=56+17=23.(18分)用竖式计算.26÷8=35÷5=47÷9=68÷7=45÷9=83﹣47=46+37=49÷6=72÷8=五、解答题(共2小题,满分12分)24.(7分)看图列式计算.25.(5分)下面是我国五岳的海拔,请你根据山的海拔把这些数按从大到小的顺序进行排列.名称东岳泰山南岳衡山西岳华山北岳恒山中岳嵩山海拔(米)15331290215520161512>>>>.六、解决问题(20分)26.(3分)有28棵白菜,每个篮子4棵,需要几个篮子?27.(4分)旅游团一行有30人,乘坐4人座的轿车去机场,至少需要几辆车?28.(4分)一本森林童话故事书有81页,明明每天看9页,看了7天,还剩多少页没有看?29.(4分)一台电视3800元,一台空调4100元,妈妈有8000元,买这两种电器够吗?30.(5分)哪种商场的饮料便宜一些?2020-2021学年人教版二年级下期末考试数学试卷参考答案与试题解析一、我会填.(每空1分,共28分).1.(4分)12÷6=2读作:12除以6等于2.表示把12平均分成6份.还表示12里面有2个6.解:12÷6=2读作:12除以6等于2;表示把12平均分成6份,每份是2;还表示12里面有2个6。
2020-2021杭州市育才中学高三数学下期末第一次模拟试卷(含答案)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙3.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④4.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .105.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .236.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r 的夹角为 A .π6B .π3 C .2π3D .5π67.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}8.如图所示,程序据图(算法流程图)的输出结果为( )A .34 B .16C .1112D .25249.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁10.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.已知双曲线C :()222210,0x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线的3,则双曲线的渐近线方程为() A .3y x =B .2y x =C .y x =±D .2y x =±二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.17.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____. 20.函数232x x --的定义域是 .三、解答题21.已知函数()3f x ax bx c =++在点2x =处取得极值16c -.(1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数; (3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?25.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围. 26.已知0,0a b >>. (1)211ab a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:22(1i)1i,1i 1i (1i)(1i)z z +===+∴=---+,选B. 【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.A解析:A 【解析】【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.3.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.4.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.5.C解析:C 【解析】 【分析】由题意,求得(),()P AB P A 的值,再由条件概率的计算公式,即可求解. 【详解】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”, 则P(AB)=,P(A)=,∴P(B|A)==,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥r r r,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.7.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.8.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 9.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.10.B解析:B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin 33α=⇒α=β=γ=,故选B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.11.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.12.A解析:A 【解析】 【分析】利用双曲线C :()222210,0x y a b a b -=>>的焦点到渐近线的距离为2c ,求出a ,b 的关系式,然后求解双曲线的渐近线方程. 【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=的距离为2,可得:2c =,可得2b c =,ba =C 的渐近线方程为y =.故选A . 【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 解析:10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴=. 故答案为:10. 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高222224232h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为:3. 【点睛】 本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.15.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边 解析:79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos αβ=-=(或cos cos βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.16.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐解析:4【解析】【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积.【详解】 画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y x y x =⎧⎪⎨=⎪⎩,解得π3B ⎛ ⎝⎭,所以1π2ABC S ∆=⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.17.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.18.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使 解析:.【解析】 ()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-Q 函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2ax g x a x x-=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a<<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a =时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 19.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8【解析】【详解】由题意知a ∈P ,b ∈Q ,则a+b 的取值分别为1,2,3,4,6,7,8,11.故集合P+Q 中的元素有8个. 点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.20.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域 三、解答题21.(1) 1,12a b ==-;(2) 4-.【解析】【分析】(1)f′(x )=3ax 2+b ,由函数f (x )=ax 3+bx+c 在点x=2处取得极值c ﹣16.可得f′(2)=12a +b=0,f (2)=8a+2b+c=c ﹣16.联立解出.(2)由(1)可得:f (x )=x 3﹣12x+c ,f′(x )=3x 2﹣12=3(x+2)(x ﹣2),可得x=﹣2时,f (x )有极大值28,解得c .列出表格,即可得出.【详解】解:因()3f x ax bx c =++.故()23f x ax b '=+ 由于()f x 在点x=2处取得极值c-16.故有()()20,216,f f c ⎧'=⎪⎨=-⎪⎩即120,8216,a b a b c c +=⎧⎨++=-⎩化简得120,48,a b a b +=⎧⎨+=-⎩解得a=1,b=-12. (2)由(1)知()312f x x x c =-+; ()()()2312322f x x x x ==-'-+.令()0f x '=,得12x =-,22x =.当(),2x ∈-∞-时,()0f x '>,故()f x 在(),2-∞-上为增函数;当()2,2x ∈-时,()0f x '<,故()f x 在()2,2-上为减函数;当()2,x ∈+∞时,()0f x '>,故()f x 在()2,+∞上为增函数.由此可知()f x 在12x =-处取得极大值;()216f c -=+,()f x 在22x =处取得极小值()216f c =-.由题设条件知16+c=28,得c=12.此时()3921f c -=+=,()393f c =-+=,()2164f c =-+=-,因此()f x 在[]3,3-上的最小值为()24f =-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于中档题.22.(1)证明见解析;(2 【解析】【分析】(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值.【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱,∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥,又CD AD ⊥,1AA AD A =I ,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,∵1AA AD ⊥,1AA AD =,∴11AA D D 是正方形,∴AE ED ⊥,又CD ED D =I ,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D ,∴()0,2,2E ,∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r ,则·0·0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩, 不妨取()2,1,1n =--r ,则直线1A C 与平面EAC 所成角的正弦值为444663666n AC n AC-+-==r u u u r g r u u u r g . 【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.23.(Ⅰ)见解析(Ⅱ)35. 【解析】【分析】(Ⅰ)所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,由此能求出400位参与“微信运动”的微信好友中,每天行走20008000~步的人数.(Ⅱ)该天抽取的步数在800010000~的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人,由此能求出其中至少有一位女性微信好友被采访的概率.【详解】(Ⅰ)由题意,所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,所以400位参与“微信运动”的微信好友中,每天行走20008000~步的人数约为2640026040⨯=人; (Ⅱ)该天抽取的步数在800010000~的人数中,根据频率分布直方图可知,男生人数所占的频率为0.1520.3⨯=,所以男生的人数为为200.36⨯=人,根据柱状图可得,女生人数为3人,再按男女比例分层抽取6人,则其中男4人,女2人.再从这6位微信好友中随机抽取2人进行采访,基本事件总数2615n C ==种,至少1个女性的对立事件是选取中的两人都是男性, ∴其中至少有一位女性微信好友被采访的概率:2426315C P C =-=. 【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的求解,以及分层抽样等知识的综合应用,其中解答中认真审题,正确理解题意,合理运算求解是解答此类问题的关键,着重考查了运算与求解能力,属于基础题.24.(1)12; (2)40; (3)选B 款订餐软件. 【解析】【分析】⑴运用列举法给出所有情况,求出结果⑵由众数结合题意求出平均数⑶分别计算出使用A 款订餐、使用B 款订餐的平均数进行比较,从而判定【详解】(1)使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e从中随机抽取3个商家的情况如下:共20种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{}{},,c d c e 甲,甲,,{},d e 甲,,{},,a b c ,{},,a b d ,{},,a b e ,{},,a c d ,{},,a c e ,{},,a d e ,{},,b c d ,{},,b c e ,{},,b d e ,{},,c d e .甲商家被抽到的情况如下:共10种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{},c d 甲,,{},c e 甲,,{},d e 甲,记事件A 为甲商家被抽到,则()101202P A ==. (2)依题意可得,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为 150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=.(3)使用B 款订餐软件的商家中“平均送达时间”的平均数为150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=<所以选B 款订餐软件.【点睛】本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题.25.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3,且()f x 取最小值时x 的取值范围是[]1,2-.(2)因为(){}10x f x ax R +-=,所以x R ∀∈,()1f x ax >-+. 函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线.如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-,直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<,所以a 的范围为()1,2-.【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用.26.(1)见解析;(2)见解析【解析】【分析】(1) 已知0,0a b >>直接对11a b+使用均值不等式; (2)不等式分母为-a b ,通过降次构造-a b ,再使用均值不等式.【详解】证明:(1)2 “”11a b a b ≤===+时取; (2)()()()2222244 4a b ab a b a b a b a b a b a b a b -+-++===-+≥=----,当且仅当11a b ==-+或11a b ==--【点睛】“一正二定三相等”,不能直接使用均值不等式的化简变形再用均值不等式.。
2020-2021杭州市初二数学下期中第一次模拟试题含答案一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 3.估计26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间4.实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++ 5.把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --6.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .437.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A.83B.8C.43D.68.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y29.如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.4110.在▱ABCD中,已知AB=6,AD为▱ABCD的周长的27,则AD=()A.4B.6C.8D.1011.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B.7C.5D.5或712.下列各式中一定是二次根式的是( )A.23-B.2(0.3)-C.2-D.x二、填空题13.菱形ABCD中,边长为10,对角线AC=12.则菱形的面积为__________.14.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第1个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第2个内接正方形HIKJ;再取线段KJ 的中点Q,在△QHI内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.15.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.16.计算2(2233)+的结果等于_____.17.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.18.若函数()12m y m x -=+是正比例函数,则m=__________.19.化简|25|-=_____;计算384-+=_____.20.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .三、解答题21.二次根式中也有这种相辅相成的“对子”.如:(23)(23)1+-=,52)(52)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:133333⨯==⨯23(23)(23)74323(23)(23)+++==+-+-母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题:(1)37的有理化因式是_________25-的分母有理化得__________; (2)计算:①已知:3131x +=-,3131y -=+22x y +的值; (12233420192020)++++++.22.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1).图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,求S 2的值.以下是求S 2的值的解题过程,请你根据图形补充完整.解:设每个直角三角形的面积为SS 1﹣S 2= (用含S 的代数式表示)①S 2﹣S 3= (用含S 的代数式表示)②由①,②得,S 1+S 3= 因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103. 23.计算:123101010234+-. 24.如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.25.鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16 19 24 27 鞋码 22 28 38 44(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式;(3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A 进行判断;根据二次根式的性质对B 、C 进行判断;根据分母有理化和二次根式的性质对D 进行判断.【详解】A 2,所以A 选项错误;B 、原式=B 选项错误;C 、原式=2,所以C 选项错误;D 3=,所以D 选项正确. 故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 2.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 5.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】要使 10a∴-≥ 0a ∴<∴==故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC ≌'D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC 为直角三角形,∴5AC ===,根据折叠可得:DEC ≌'D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】 此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.D解析:D【解析】【分析】连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB .【详解】解:如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴6,故选D.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.8.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.9.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.10.C解析:C【解析】【分析】由平行四边形的性质和已知条件得出AD=27(AB+BC+CD+AD),求出AD即可.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD27=(AB+BC+CD+AD),∴AD27=(2AD+12),解得:AD=8,∴BC=8;故选C.【点睛】本题考查了平行四边形的性质以及周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.11.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴BO=22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.15.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共 8个.故答案为8.16.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=35+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除解析:6【解析】【分析】利用完全平方公式计算.【详解】原式=6+27=6.故答案为:6.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.17.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大5+1【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,22215+=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值5.5.【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.18.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x-=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 19.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数-【解析】【分析】(1)根据是负数,根据负数绝对值等于它的相反数可得到答案; (2)根据立方根和算术平方根的求法可得到答案【详解】+2+2=0,0.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数20.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA∵OA=OB∴OA=OB =BC =AC∴四边形OACB 是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴12AB•OC=12×2×OC=4,解得OC=4cm.故答案为:4.【点睛】本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题21.(1)(或-3),-6-2)①14,②1【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x与y分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(3)(=9-7=2,(3)(-3)=7-9=-2∴3的有理化因式是(或-3)32645++=-故答案为:(或-3);(2)①当212x===+21422y-====x2+y2=(x+y)2−2xy=(2+2−2×(2=16−2×1=14....++1...-+1.=【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.22.4S ;4S ;2S 2.【解析】【分析】设每个直角三角形的面积为S ,根据图形的特征得出S 1-S 2=4S ,S 2-S 3=4S ,两者相减得到S 1+S 3=2S 2,再代入S 1+S 2+S 3=10即可求解.【详解】解:设每个直角三角形的面积为S ,S 1﹣S 2=4S (用含S 的代数式表示)①S 2﹣S 3=4S (用含S 的代数式表示)②由①,②得,S 1+S 3=2S 2,因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103. 故答案为:4S ;4S ;2S 2.【点睛】此题主要考查了勾股定理的证明,图形面积关系,根据已知得出S 1+S 3=2S 2,再利用S 1+S 2+S 3=10求出是解决问题的关键.23 【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.24.(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线AB的解析式,再把P点坐标代入直线解析式可求得P点坐标;(2)由条件可证明△BPQ≌△CDQ,可证得四边形BDCP为平行四边形,由B、P的坐标可求得BP的长,则可求得CD的长,利用平行线分线段成比例可求得OC的长,则可求得C的坐标;(3)由条件可知AR∥BO,故可先求出直线OB,BC的解析式,再根据直线平行求出AR 的解析式,联立直线AR、BC即可求出R点坐标.【详解】(1)设直线AB解析式为y=kx+b,把A、B两点坐标代入可得4360k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴直线AB解析式为y=32x+9,∵(,2)P m在直线AB上,∴2=−32m+9,解得m=-143,∴P点坐标为(-143,2);(2)∵//CD AB,∴∠PBQ=∠DCQ,在△PBQ和△DCQ中PBQ DCQCQ BQPQB DQC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ≌△DCQ(ASA),∴BP=CD,∴四边形BDCP为平行四边形,∵(4,3)B-,(-143,2),∴CD =BP3=, ∵A (-6,0), ∴OA =6,AB=∵CD ∥AB ,∴△COD ∽△AOB ∴CO CD AO AB =,即6CO =,解得CO =2, ∴C 点坐标为(-2,0);(3)∵ABO RBO S S ∆∆=,∴点A 和点R 到BO 的距离相等,∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q , 把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩, ∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.25.(1)一次函数;(2)y =2x ﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.【详解】解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b =+则由题意得22162819k b k b =+⎧⎨=+⎩解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.。
2020-2021杭州市小学二年级数学下期中一模试题(及答案)一、选择题1.56米长的彩带,剪了7次,平均每段长多少米?()。
A. 8B. 7C. 62.在下面的数中,除以8没有余数的是()。
A. 30B. 40C. 503.“40÷8=30÷”,应填的数是()A. 64B. 6C. 32D. 54.下面图形中,()一定是轴对称图形。
A. 六边形B. 平行四边形C. 长方形D. 三角形5.从24里面连续减6,减()次后结果是0。
A. 6B. 4C. 36.有15枝玫瑰、25枝百合,如果用3枝玫瑰和4枝百合扎成一束,这些花最多可以扎成()束。
A. 5B. 6C. 77.下面的算式里,商是6的是()。
A. 3×2=6B. 24÷4=6C. 14-8=68.下表是二年级学生喜欢的图书人数情况。
种类连环画故事书科技书其他人数181284A.连环画B.故事书C.科技书D.其他(2)喜欢( )的人数最少。
A.连环画B.故事书C.科技书D.其他(3)喜欢故事书的人数比喜欢连环画的少( )人。
A.10B.6C.4D.8(4)喜欢连环画的和喜欢科技书的一共有( )人。
A.30B.20C.26D.129.下列现象是平移的是()。
A. B. C.10.把一个三角形像下图这样折一折,可以知道()。
A. ∠2=∠3,∠1=∠3,所以∠1=∠2B. 这是一个等腰三角形C. 这个三角形有两条对称轴D. 无法判断11.下面是学校门前5分钟内通过机动车辆数的情况那么通过的车辆数最多的是()。
面包车小轿车大客车正正正正正正一面包车 C. 大客车12.从统计表中可以看出,面包车比货车多()辆种类客车货车面包车小轿车辆数(辆)20152540A. 10B. 5C. 15二、填空题13.在横线上填上“>、<或=”。
54÷6________54÷9 4×4________8+8 7-7________7÷75×9________6×7 42÷6________63÷9 2米________29厘米+71厘米14.在横线上填上“>”“<”“=”。
2020-2021杭州市育才中学小学四年级数学下期中第一次模拟试卷(含答案)一、选择题1.70×★-8与70×(★-8)的计算结果相差()。
A. 560B. 552C. 5682.76×98+2×76=76×100,这是运用( )进行计算的。
A. 乘法交换律B. 乘法结合律C. 乘法分配律3.下面的小数中,最接近10的是()。
A. 9.9B. 10.01C. 9.9984.在3.5与3.6之间有()个两位小数。
A. 10B. 9C. 无数5.( )拍到的照片是正好相反的。
A. 乐乐和甜甜B. 乐乐和小东C. 小东和甜甜6.下面3个物体,从()看到的图形相同。
A. 上面B. 前面C. 左面7.请你判断:下面方案是从空中看到的“绿色金字塔”.(即此种方案按一定顺序种植,若干年后会形成“绿色金字塔”)()A. B. C. D.8.计算2274+(825﹣475÷25×4),第一步应算()A. 825﹣475B. 475÷25C. 25×4D. 2274+825 9.(380﹣65×2)÷5的正确运算顺序是()A. 除法、乘法、减法B. 乘法、除法、减法C. 乘法、减法、除法10.下面说法不正确的是( )。
A. 除法是乘法的逆运算B. 乘法是若干个相同数字相加的简运算C. 在除法描述中,除和除以意思相同。
11.下面没有运用乘法结合律的是()。
A. a×4×25=a×(4×25)B. 4×35×25=4×25×35C. 56×125=7×(8×125)12.把一个小数的小数点先向右移动一位,再向左移动两位,这个小数()A. 扩大到原数的10倍B. 缩小到原来的C. 缩小到原来的二、填空题13.用3,0,6这三个数和小数点,可组成________个两位小数,其中最大的是________,最小的是________。
2020-2021杭州市育才中学小学一年级数学下期末第一次模拟试卷(含答案)一、选择题1.下列算式的结果最接近60的是()。
A. 46+9B. 66-7C. 63-62.比80少2个十的数是()。
A. 78B. 60C. 1003.20+70-30=()A. 50B. 80C. 60D. 904.错误的卡片是()A. 58+3=61B. 72+8=80C. 49+5=64D. 36+8=445.用下面的钱买一个1元1角的毽子,( )A. 够B. 不够C. 无法确定够不够6.2张1元,2张5角,5张1角合起来是()。
A. 3元5角B. 3元C. 9元7.在46这个数中,“4”表示4个()A. 一B. 十C. 百8.十位上是5的两位数中最大的是()。
A. 95B. 50C. 599.停车场上有15辆小汽车,9辆大汽车.小汽车比大汽车多多少辆?正确的解答是()A. 15+9=24(辆) B. 15-6=9(辆) C. 24-6=18(辆) D. 15-9=6(辆) 10.“17-9 9”,比较大小,在里应填的符号是()A. >B. <C. =D. -11.用两根8厘米和两根6厘米的小棒,一定能摆成一个平行四边形。
A. 对B. 错12.下图是小男孩用手中的长方体和笔,最多可以画出()个不同的长方形。
A. 6B. 4C. 3二、填空题13.在横线上填上“<”“>” 或“=”.45________54 78-8________60+12 36+4________36-457-50________57-5 32-27________32-26 85-50________8014.86=________+80 ________-10=5515.在横线上填上“>”、“<”、“=”。
14________16 6+6________7+512-2________10-2 15+4________3+1516.比30多20的数是________,86比________少3。
2020-2021杭州市育才中学高一数学下期末第一次模拟试卷(含答案)一、选择题1.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .1582.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥3.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}4.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6 C .4 D .25.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,7sin B =,57ABC S =△b =( ) A .3B .7C 15D 146.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+7.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭11.已知二项式2(*)nx n N ⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-12.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.14.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________. 15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.16.设向量(12)(23)a b ==r r ,,,,若向量a b λ+r r 与向量(47)c =--r ,共线,则λ= 17.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.18.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______. 19.若a 10=12,a m,则m =______. 20.若1tan 46πα⎛⎫-= ⎪⎝⎭,则tan α=____________. 三、解答题21.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.22.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x . (1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围,23.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.24.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (Ⅰ)求取出的两个球上标号为相同数字的概率; (Ⅱ)求取出的两个球上标号之积能被3整除的概率. 25.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.26.以原点为圆心,半径为r 的圆O 222:()0O x y r r +=>与直线380x y --=相切.(1)直线l 过点(2,6)-且l 截圆O 所得弦长为43求直线l l 的方程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ⋅=-,证明:直线AB 恒过一个定点,并求出该定点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】 【分析】 【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构2.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.4.C解析:C 【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x⎛⎫++=+++ ⎪⎝⎭Q .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意; 若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.5.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c ,由sin 4B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC V 中,sin 4B =,4ABC S =△1sin 24ABC S ac B ==V ,联立521sin 24sin 4a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin B =,所以3cos 4B ==所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.6.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D . 【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.7.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.8.C解析:C 【解析】 【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 9.C解析:C 【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列10.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.11.C解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rr r nT C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r =,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rrr n T C x -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =. 所以()()366216221rr n rr rr r r nT C x C x---+⎛==- ⎝ 令3632r -=,解得:2r =, 所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.12.B解析:B 【解析】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果.二、填空题13.【解析】分析:令得当时由此推导出数列是首项为1公差为的等差数列从而得到从而得到详解:令得解得当时由)得两式相减得整理得且∴数列是首项为1公差为的等差数列可得所以点睛:本题考查数列的通项公式的求法是中解析:*2()n n S n n N =∈g【解析】分析:令1n =,得12a =,当2n ≥ 时,11122n n n S a ---=-,由此推导出数列{}2n na 是首项为1公差为12的等差数列,从而得到()112n n a n -+=,从而得到n S . 详解:令1n =,得11122a a =-,解得12a = ,当2n ≥ 时,由22n n n S a =-),得11122n n n S a ---=-,两式相减得()()1112222,n n n n n n n a S S a a ---=-=--- 整理得111222n n n n a a ---=,且111,2a = ∴数列{}2n n a是首项为1公差为12 的等差数列, ()111,22n na n ∴=+- 可得()112,n n a n -=+ 所以()12221222.nn n nn n S a n n -⎡⎤=-=+-=⋅⎣⎦点睛:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.14.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式解析:1n-【解析】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-= ,即1111n n S S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=- ,即1n S n=-. 【点睛】这类型题使用的公式是11{n n n S a S S -=- 12n n =≥ ,一般条件是()n n S f a = ,若是消n S ,就需当2n ≥ 时构造()11n n S f a --= ,两式相减1n n n S S a --= ,再变形求解;若是消n a ,就需在原式将n a 变形为:1n n n a S S -=- ,再利用递推求解通项公式.15.9【解析】【分析】由一元二次方程根与系数的关系得到a+b=pab=q 再由ab ﹣2这三个数可适当排序后成等差数列也可适当排序后成等比数列列关于ab 的方程组求得ab 后得答案【详解】由题意可得:a+b=p解析:9 【解析】 【分析】由一元二次方程根与系数的关系得到a+b=p ,ab=q ,再由a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a ,b 的方程组,求得a ,b 后得答案. 【详解】由题意可得:a+b=p ,ab=q , ∵p>0,q >0, 可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列, 也可适当排序后成等比数列, 可得①或②. 解①得:;解②得:.∴p=a+b=5,q=1×4=4, 则p+q=9. 故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题. 【思路点睛】解本题首先要能根据韦达定理判断出a ,b 均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b 与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p ,q .16.2【解析】【分析】由题意首先求得向量然后结合向量平行的充分必要条件可得的值【详解】=由向量共线的充分必要条件有:故答案为2【点睛】本题主要考查平面向量的坐标运算向量平行的充分必要条件等知识意在考查学解析:2 【解析】 【分析】由题意首先求得向量a b λ+r r ,然后结合向量平行的充分必要条件可得λ的值.【详解】a bλ+r r =(,2(2,3)(2,23λλλλ+=++)), 由向量共线的充分必要条件有:()()(2)7(23)42λλλ+⋅-=+⋅-⇒=. 故答案为2. 【点睛】本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】【详解】试题分析:由得记为点;由得记为点;由得记为点分别将ABC 的坐标代入得所以的最小值为【考点】简单的线性规划【名师点睛】利用线性规划求最值一般用图解法求解其步骤是:(1)在平面直 解析:5-【解析】 【分析】 【详解】 试题分析:由10{30x y x y -+=+-=得12x y =⎧⎨=⎩,记为点()1,2A ;由10{30x y x -+=-=得34x y =⎧⎨=⎩,记为点()3,4Β;由30{30x x y -=+-=得3x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【考点】 简单的线性规划 【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.18.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈ ⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫ ⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫=⎪⎝⎭Q ,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >, 又()()()00ff f ππ=-==Q ,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.19.5【解析】解析:5 【解析】5,52a m ==== 20.【解析】故答案为 解析:75【解析】1tan tan 17446tan tan 144511tan tan644ππαππααππα⎛⎫-++ ⎪⎡⎤⎛⎫⎝⎭=-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦--- ⎪⎝⎭故答案为75.三、解答题21.(1)a n =-2n +5.(2)4 【解析】(Ⅰ)设{a n }的公差为d ,由已知条件,,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5.(Ⅱ)S n =na 1+d =-n 2+4n =-(n -2)2+4,所以n =2时,S n 取到最大值4.22.(1)f (0)=0,f (1)=﹣1(2)()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)(﹣1,0)【解析】 【分析】(1)根据题意,由函数的解析式,将x =0代入函数解析式即可得f (0)的值, 同理可得f (1)的值,利用函数的奇偶性分析可得f (f (1))的值;(2)设x <0,则﹣x >0,由函数的解析式分析f (﹣x )的解析式,进而由函数的奇偶性分析可得答案;(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,作出函数f (x )的图象,由数形结合法分析即可得答案. 【详解】(1)根据题意,当x ≥0时,f (x )=x 2﹣2x ; 则f (0)=0, f (1)=1﹣2=﹣1,又由函数f (x )为偶函数,则f (1)=f (﹣1)=﹣1, 则f (f (1))=f (﹣1)=﹣1; (2)设x <0,则﹣x >0,则有f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x , 又由函数f (x )为偶函数, 则f (x )=f (﹣x )=x 2+2x , 则当x <0时,f (x )=x 2+2x ,∴()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)若方程f (x )﹣m =0有四个不同的实数解, 则函数y =f (x )与直线y =m 有4个交点, 而y =f (x )的图象如图:分析可得﹣1<m <0;故m 的取值范围是(﹣1,0). 【点睛】本题考查偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,注意利用数形结合法分析与应用,是中档题. 23.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=u u u r u u u r和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=u u u r u u u r得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,22122sin 1cos 1().3B B =-=-= 由正弦定理,得22242sin sin 339c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换. 24.(1) . (2).【解析】 【分析】【详解】设从甲、乙两个盒子中各取1个球,其数字分别为x ,y . 用(x ,y )表示抽取结果,则所有可能的结果有16种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}. 事件A 由4个基本事件组成,故所求概率P (A )==.(2)设“取出的两个球上标号的数字之积能被3整除”为事件B ,则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=.考点:古典概型的概率计算 25.(1)0;(2),62ππ⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)首先化简()g x 解析式,然后求得左移ϕ个单位后函数()f x 的解析式,根据()f x 的奇偶性求得ϕ的值,进而求得()fϕ的值.(2)根据(1)中求得的()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,求得226x πϕ++的取值范围,根据ϕ的取值范围,求得22πϕ+的取值范围,根据()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得ϕ的取值范围. 【详解】(1)()()314sin sin 321cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭Q 2sin 216x π⎛⎫=+- ⎪⎝⎭,()2sin 2216f x x πϕ⎛⎫∴=++- ⎪⎝⎭,又()f x 为偶函数,则262k ϕππ+=+π(k Z ∈),02πϕ<≤Q ,6πϕ∴=.()06f f πϕ⎛⎫∴== ⎪⎝⎭.(2)7,6x ππ⎛⎫∈ ⎪⎝⎭Q ,2222,22662x πππϕπϕπϕ⎛⎫∴++∈++++ ⎪⎝⎭, 02πϕ<≤Q ,72,666πππϕ⎛⎤∴+∈ ⎥⎝⎦,32,222πππϕ⎛⎤+∈ ⎥⎝⎦, ()f x Q 在7,6ππ⎛⎫⎪⎝⎭上是单调函数.262ππϕ∴+≥且02πϕ<≤. ,62ππϕ⎡⎤∴∈⎢⎥⎣⎦.【点睛】本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题. 26.(1)2x =-或20x +-=100x +-=;(2)(2,0). 【解析】分析:(1)先由直线和圆相切得到圆的方程,再由垂径定理列式,分直线斜率存在与不存在两种情况得到结果;(3)联立直线和圆,由韦达定理得到交点的坐标,由这两个点写出直线方程,进而得到直线过定点. 详解:(1)∵圆222:(0)O x y r r +=>与直线0x y -+=80x --=相切, ∴圆心O到直线的距离为4d ==,∴圆O 的方程为:2216x y +=若直线l 的斜率不存在,直线l 为2x =- 1x =, 此时直线l截圆所得弦长为若直线l 的斜率存在,设直线l为()2y k x =+()1y k x =-,由题意知,圆心到直线的距离为1d == 2d =,解得:k = 此时直线l为100x +-=,则所求的直线l 为2x =-或20x +-=-100x += (2)由题意知,()4,0M ()2,0A -,设直线()1:4MA y k x =-,与圆方程联立得:()12224y k x x y ⎧=+⎨+=⎩ ()122416y k x x y ⎧=-⎨+=⎩, 消去y 得:()()222211114440k x k x k +++-= ()22221111816160k x k x k +-+-=,∴()21211611M A k x x k -=+∴()2121411Ak xk -=+,12181Ak yk -=+ 用13k -换掉1k 得到B 点坐标 ∴21213649B k x k -=+,121249B k y k =+ 12141B k y k =+ ∴直线AB 的方程为21112221118444131k k k y x k k k ⎛⎫-+=- ⎪+-+⎝⎭整理得:()121423k y x k =-- 则直线AB 恒过定点为()2,0.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。
2020-2021无锡育才中学小学二年级数学下期末模拟试卷及答案一、选择题1.1吨钢材与1000克棉花相比()A. 钢材重B. 钢材轻C. 一样重D. 无法确定2.一件衣服的价格是385元,一件裤子的价格是249元,大约一共要()元.A. 600B. 640C. 5503.下面各数中只读一个“零”的数是()。
A. 2080B. 3100C. 32804.下面说法正确的是()A. 一千克铁比一千克棉花重B. 小学一节课一般是40分钟C. 10000比9990多15.□÷○=8……6,当除数最小时,□里应填()A. 70B. 62C. 466.一共有40人,先坐满1辆大车,剩下的坐小车,至少需要()辆小车.A. 3B. 2C. 17.一支钢笔的价钱是6元,李老师用54元可以买()支。
A. 9B. 8C. 488.如图是用纸折叠成的图案,其中是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个9.小月把一根20厘米长的铁丝剪成同样长的小段,围成一个图形,每个图形的每条边长都是5厘米,她围成的是()。
A. B. C.10.选一选。
小动物举行运动会,四种动物参加50米跑,它们的比赛如小表。
运动员小猫小狗小熊小兔成绩13秒9秒20秒11秒A.小猫B.小狗C.小熊(2)给它们排个名次:()。
A.小猫、小狗、小熊、小兔B.小狗、小兔、小猫、小熊C.小熊、小猫、小兔、小狗D.小熊、小猫、小狗、小兔11.54人参加联欢会,每张桌子坐8人,至少要准备()张桌子.A. 6B. 7C. 8二、填空题12.在横线上填上“<” 、“>”或“=”8000克________9千克 4千克________4000克3千克________2990克 1千克________1010克13.一个数,千位上的数字是6,十位上的数字是3,其余数位上都是0,这个数是________,请在计数器上画出来。
________14.49里面最多有________个8,25里面最多有________个4。
2020-2021深圳育才中学(初中)小学二年级数学下期中一模试卷带答案一、选择题1.小华做了36朵红花,每9朵扎成一束,一共可以扎()束。
A. 4B. 5C. 6D. 7 2.下面的算式商不是1的是()。
A. 9÷9B. 12÷3C. 8÷83.在○里填上适当的运算符号:(1)27○9=3()A.“+”B.“-”C.“×”D.“÷”(2)6○6=36()A.“+”B.“-”C.“×”D.“÷”(3)9○9=0()A.“+”B.“-”C.“×”D.“÷”4.如图,把一张正方形纸对折后沿线剪开,得到的图形是()。
A. B. C.5.在“HONG”这几个子母中,有()个轴对称字母。
A. 2B. 3C. 1D. 4 6.有8个盘,每个盘里放4个苹果,共有几个苹果?列式正确的是()。
A. 8+4B. 8×4C. 8÷47.27是多少个9相加得到的,正确列式是()。
A. 27-9B. 27÷9C. 27+98.一盒白粉笔2元钱,一盒彩色粉笔6元钱,一盒彩色粉笔是一盒白粉笔的()倍。
A. 2B. 3C. 4D. 129.下表是二年级学生喜欢的图书人数情况。
种类连环画故事书科技书其他人数181284A.连环画B.故事书C.科技书D.其他(2)喜欢( )的人数最少。
A.连环画B.故事书C.科技书D.其他(3)喜欢故事书的人数比喜欢连环画的少( )人。
A.10B.6C.4D.8(4)喜欢连环画的和喜欢科技书的一共有( )人。
A.30B.20C.26D.1210.下面是某年级(二)班同学对水果的爱好情况统计表,喜欢()水果的人数最多。
A. 苹果B. 梨C. 香蕉D. 桃11.下面图形中,不是轴对称图形的是()。
A. B. C. D. 12.下图中三角形有几个?()A. 5个B. 3个C. 4个二、填空题13.横线上最大能填几?5×________<16 ________×4<20 4×________<254×________<21 ________×6<20 34>5×________14.54是9的________倍,18是9的________倍。
2020-2021杭州市育才中学小学二年级数学上期中第一次模拟试卷(含答案)一、选择题1.36个52相加的和是多少?列式错误的是()。
A. 36+52B. 52×36C.2.一共有多少本书?列式错误的是()。
A. 5+2B. 5+5C. 5×23.下图中有()个角。
A. 6B. 7C. 84.三时三十分,钟面上时针与分针之间的夹角为()A. 钝角B. 锐角C. 直角5.一件上衣82元,付给售货员100元,应找回()元。
A. 8B. 28C. 186.一个算式中,减数是40,差是15,被减数是()A. 25B. 35C. 557.下面哪个算式的结果与98 – 22的结果相同。
A. 45+32B. 87 – 11C. 72+168.100厘米长的铁丝和1米长的绳子的长度()。
A. 铁丝长B. 绳子长C. 一样长9.1米-14厘米=()A. 13厘米B. 不够减C. 86厘米10.下列图形中,只有2个直角的是()。
A. B. C.11.这根铁钉长()。
A. 4厘米8毫米B. 48毫米C. 2厘米8毫米12.小红有5盒珠子,每盒9个,分给小朋友20个后,还剩几个?正确的列式是()。
A. 5+9+20B. 5×9+20C. 5×9-20二、填空题13.在横线上填上“>”“<”或“=”。
3×4________6×5 3+3+3________2×2×2 3×2________3+26+6________6×2 5×5________15+5 18________3×635-17________31 18+9________51-32 26-16________3×314.3×2=________+________+________=________+________15.红领巾上有________个角,有________个锐角,________个钝角。
2020-2021杭州市育才中学小学五年级数学下期中第一次模拟试卷(含答案)一、选择题1.要用()个棱长是1cm的小正方体才可以拼成一个棱长是3cm的大正方体.A. 9B. 18C. 27D. 542.一个长方体的长为20cm,宽为10cm,高为15cm,沿竖直或水平方向切一刀,将长方体切成两个相同的小长方体,表面积最多增加()。
A. 200cm2B. 300cm2C. 400cm2D. 600cm2 3.一个长方体高不变,长与宽的和也不变。
如果长与宽的差越小,这个长方体的体积()。
A. 越小B. 越大C. 不变D. 有可能变小,也有可能变大4.如果一个正方形的边长是质数,那么它的面积是()。
A. 奇数B. 合数C. 质数D. 偶数5.下面的几何体中从正面看是,从上面看是的是()A. B. C.6.从左面和正面观察所看到的图形都是()。
A. B. C. D.7.从正面观察,所看到的图形是()A. B. C.8.由7个小立方块摆成的立体图形,从左面看到的形状是,从正面看到的形状是,这个图形是( )。
A. B. C.9.一个数既是48的因数,也是6的倍数,这个数可能是()。
A. 16B. 24C. 3610.下面各数中,因数个数最多的是()。
A. 18B. 48C. 10011.下列各数既是奇数又是合数的是()。
A. 51B. 18C. 47D. 42 12.把下图中的硬纸片折成一个正方体,与数字“3”相对的是数字“()”。
A. 2B. 4C. 5D. 6二、填空题13.一盒磁带的长为110mm,宽为70mm,高为16mm,将3盒这样的磁带包成一包(接口处不计),当包成的长方体长为________mm、宽为________mm、高为________mm 时,最节省包装纸。
14.一个长方体纸盒从里面量长9cm,宽7cm,高6cm,若把棱长3cm的正方体积木装进纸盒内(不外露),最多能装________块。
2020-2021杭州市育才中学小学二年级数学上期末第一次模拟试卷(含答案)一、选择题1.把5本书全部分给小明、小芳和小丽,每人至少1本。
有()种分法。
A. 5B. 6C. 72.图中有()个三角形。
A. 6B. 12C. 153.1时50分等于()分.A. 150B. 110C. 6504.小明9:45到达电影院,电影已经开始了15分钟,电影是()开始的。
A. 9:30B. 10:00C. 9:455.36+28 6×9比较,内应填()。
A. <B. >C. =6.哪一个是小红从正上方看到的小轿车的形状?( )A. B. C.7.角的两边是()。
A. 直线B. 线段C. 射线8.笑笑一本书35元,售货员找给她15元,她付了()元。
A. 40B. 20C. 509.有一条90厘米长的绳子,第一次用去了22厘米,第二次用去了48厘米,现在比原来短了多少厘米?列式正确的是()。
A. 90-22-48B. 90-(22+48)C. 22+4810.积是15的算式是()。
A. 20-5B. 5×3C. 8+7D. 30-20+5二、填空题11.用5、0、8可以组成________个不同的两位数,其中最大的是________.12.分针从6走到10,走了________分,时针从12开始绕了一圈又走回12,走了________时。
13.中性笔一支2元,买8支要________元。
14.他们分别看到的是哪个图形。
________________________________A. B. C. D .15.一根彩带对折2次后,长是3米,这根彩带原来有________米。
16.1时整,时针和分针的夹角是________度,9时整时针与分针的夹角是________度。
17.赛跑①谁跑得最快?________。
已经跑了________米,离终点还有________米。
②谁跑得最慢?________。
2020-2021杭州养正学校小学二年级数学下期中一模试题(及答案)一、选择题1.63÷★=7,★为数字( )。
A. 7B. 9C. 82.小红买了5千克苹果花了45元,每千克苹果()元。
A. 8B. 7C. 93.“60-52○48÷8”,比较大小,在○里应填的符号是()A. >B. <C. =D. +4.下面()不是轴对称图形。
A. B. C. D.5.如下书写的三个汉字,其中为轴对称图形的是()。
A. B. C.6.小月把一根20厘米长的铁丝剪成同样长的小段,围成一个图形,每个图形的每条边长都是5厘米,她围成的是()。
A. B. C.7.20里面有4个()。
A. 10B. 4C. 5D. 168.一支2元钱,小明有10元钱,可以买()支。
A. 4B. 5C. 6D. 79.下面是三(一)班5个同学踢毽子情况统计表。
小丽小红小明小强小鹏3334302819A.小丽B.小红C.小明D.小鹏(2)()踢得最少。
A.小丽B.小红C.小明D.小鹏10.下面是某年级(二)班同学对水果的爱好情况统计表,喜欢()水果的人数最多。
A. 苹果B. 梨C. 香蕉D. 桃11.下列各图形不是轴对称图形的是()。
A. B. C.12.红红调查同学们最喜欢吃的水果,结果如下。
喜欢吃香蕉的有()人。
A. 12B. 8C. 7D. 15二、填空题13.一瓶药有24片,每天吃8片,分4次服下。
这瓶药够吃________天。
14.教室的玻璃窗户的开和关是________现象,电风扇的运动是________现象。
15.平行四边形________轴对称图形。
16.从10里连续减去________个2,结果为0。
17.12棵树平均栽在路两旁,每边可以栽________棵。
18.下表是小丽统计她所在班最喜欢的动画片的人数情况。
《喜羊羊与灰太狼》《猫和老鼠》《西游记》《七龙珠》正正正正正片名《喜羊羊与灰太狼》《猫和老鼠》《西游记》《七龙珠》人数________________________________19.四年级某班一次数学测验的成绩情况,请你用分段整理的方法统计,并制成条形统计图.80分以下________人;80~89分________人;90~100分________人。
2020-2021杭州市初二数学下期末第一次模拟试题(附答案)一、选择题1.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形2.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B3.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.计算4133÷的结果为( ). A .32 B .23C .2D .25.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠6.12(751348 ) A .6B .3C .3D .127.下列计算正确的是( ) A 2(4)-=2B 52=3C 52=10D 62=38.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =2,那么 AC 的长等于( )A.12B.16C.43D.829.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁10.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.711.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.612.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15二、填空题13.如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.16.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.17.观察下列各式:221111++1212⨯, 221111++2323⨯, 221111++3434⨯, ……请利用你所发现的规律, 22111++1222111++2322111++3422111++910,其结果为_______. 18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.19.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.20.若m =+5,则m n =___.三、解答题21.如图,在ABCD 中,E ,F 分别是边AD ,BC 上的点,且AE CF =.求证:四边形BEDF 为平行四边形.22.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.23.如图,在四边形ABCD 中,//AD BC ,12AD cm =,15BC cm =,点P 自点A 向D 以/lcm s 的速度运动,到D 点即停止.点Q 自点C 向B 以2/cm s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为()t s .()1用含t 的代数式表示:AP =______;DP =______;BQ =______.(2)当t 为何值时,四边形APQB 是平行四边形?24.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S=甲,数据:11,15,18,17,10,19的方差235 3S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.25.如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.2.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.3.B解析:B【解析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.B解析:B 【解析】 【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断. 【详解】解:A 、∵在平行四边形ABCD 中,OA=OC ,OB=OD , 若AE=CF ,则OE=OF , ∴四边形DEBF 是平行四边形;B 、若DE =BF ,没有条件能够说明四边形DEBF 是平行四边形,则选项错误;C 、∵在平行四边形ABCD 中,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6.D解析:D【解析】【分析】【详解】11275348)3(53343)33123===.故选:D.7.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.8.B解析:B【解析】【分析】首选在AC上截取4CG AB==,连接OG,利用SAS可证△ABO≌△GCO,根据全等三角形的性质可以得到:OA OG==AOB COG∠=∠,则可证△AOG是等腰直角三角形,利用勾股定理求出12AG=,从而可得AC的长度.【详解】解:如下图所示,在AC上截取4CG AB==,连接OG,∵四边形BCEF是正方形,90BAC∠=︒,∴OB OC=,90BAC BOC∠=∠=︒,∴点B、A、O、C四点共圆,∴ABO ACO∠=∠,在△ABO和△GCO中,{BA CGABO ACOOB OC=∠=∠=,∴△ABO≌△GCO,∴OA OG==AOB COG∠=∠,∵90BOC COG BOG∠=∠+∠=︒,∴90AOG AOB BOG∠=∠+∠=︒,∴△AOG是等腰直角三角形,∴12AG==,∴12416AC=+=.故选:B.【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.9.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.10.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.11.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C12.B解析:B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.二、填空题13.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=B O又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB ,∴△BOA 为等边三角形,∴BA=BO ,∵∠BAE=45°,∠ABC=90°,∴△BAE 为等腰直角三角形,∴BA=BE .∴BE=BO ,∠EBO=30°,∠BOE=∠BEO ,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.14.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 15.三【解析】设y=kx+b 得方程组-1=2k+b4=-3k+b 解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三解析:三【解析】设y=kx+b ,得方程组 解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.16.(324800)【解析】【分析】根据题意可以得到关于t 的方程从而可以求得点P 的坐标本题得以解决【详解】由题意可得150t =240(t ﹣12)解得t =32则150t =150×32=4800∴点P 的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决.【详解】由题意可得,150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t =240(t ﹣12)是解决问题的关键.17.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确 解析:9910【解析】 分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:22111++1222111++2322111++3422111++910 =11+12⨯+1+123⨯+1+134⨯+…+1+1910⨯ =9+(1﹣12+12﹣13+13﹣14+…+19﹣110) =9+910=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.18.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙解析:乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.19.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=2223AB BC -=m ,∴AC+BC=2+23(m ).故答案为:2+23.【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.20.【解析】【分析】直接利用二次根式有意义的条件得出mn 的值进而得出答案【详解】∵m =n-2+2-n+5∴n =2则m =5故mn =25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn 的解析:【解析】【分析】直接利用二次根式有意义的条件得出m ,n 的值进而得出答案.【详解】∵m =+5,∴n =2,则m =5,故m n =25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m ,n 的值是解题关键. 三、解答题21.证明见解析.【解析】【分析】由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论.【详解】证明:四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =.∵AE CF =,∴AD AE BC CF -=-.∴ED BF =,∵//ED BF ,ED BF =,∴四边形BEDF 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.22.(1)y=3x-10;(2)41033x -≤≤ 【解析】【分析】(1)先把A (6,m )代入y=-x+4得A (6,-2),再利用点的平移规律得到C (4,2),接着利用两直线平移的问题设CD 的解析式为y=3x+b ,然后把C 点坐标代入求出b 即可得到直线CD 的解析式;(2)先确定B (0,4),再求出直线CD 与x 轴的交点坐标为(103,0);易得CD 平移到经过点B 时的直线解析式为y=3x+4,然后求出直线y=3x+4与x 轴的交点坐标,从而可得到直线CD 在平移过程中与x 轴交点的横坐标的取值范围.【详解】解:(1)把A (6,m )代入y=-x+4得m=-6+4=-2,则A (6,-2),∵点A 向左平移2个单位,再向上平移4个单位,得到点C ,∴C (4,2),∵过点C 且与y=3x 平行的直线交y 轴于点D ,∴CD 的解析式可设为y=3x+b ,把C (4,2)代入得12+b=2,解得b=-10,∴直线CD 的解析式为y=3x-10;(2)当x=0时,y=4,则B (0,4),当y=0时,3x-10=0,解得x=103,则直线CD 与x 轴的交点坐标为(103,0), 易得CD 平移到经过点B 时的直线解析式为y=3x+4, 当y=0时,3x+4=0,解得x=43-,则直线y=3x+4与x 轴的交点坐标为(43-,0), ∴直线CD 在平移过程中与x 轴交点的横坐标的取值范围为41033x -≤≤. 【点睛】本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k 的值不变,会利用待定系数法求一次函数解析式.23.(1)t ;12t -;152t -;(2)5.【解析】【分析】(1)直接利用P ,Q 点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t 的值.【详解】()1由题意可得:AP t =,DP 12t =-,BQ 152t =-,故答案为t ,12t -,152t -;()2AD //BC ,∴当AP BQ =时,四边形APQB 是平行四边形,t 152t ∴=-,解得:t 5=.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.24.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm ,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm (原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可. 25.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)正方形ABCD 中,AB=BC ,BF=AE ,且∠ABF=∠DAE=90°,即可证明△ABF ≌△DAE ,即可得∠DGA=90°,结论成立.(2)延长AF 交DC 延长线于M ,证明△ABF ≌△MCF ,说明△DGM 是直角三角形,命题得证.试题解析:(1)∵四边形ABCD 为正方形∴AB=BC=CD=AD ,∠ABF=∠DAE=90°,又∵E ,F 分别是边AB .BC 的中点∴AE=12AB .BF=12BC ∴AE=BF .在△ABF 与△DAE 中, {DA ABDAE ABF AE BF=∠=∠=,∴△DAE ≌△ABF (SAS ).∴∠ADE=∠BAF ,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF ⊥DE .(2)证明:延长AF 交DC 延长线于M ,∵F 为BC 中点,∴CF=FB又∵DM ∥AB ,∴∠M=∠FAB .在△ABF 与△MCF 中,{M FABCFM BFA CF FB===∠∠∠∠∴△ABF ≌△MCF (AAS ),∴AB=CM .∴AB=CD=CM ,∵△DGM 是直角三角形,∴GC=12DM =DC . 考点:1.全等三角形的判定与性质;2.直角三角形的性质;3.正方形的性质.。
2020-2021杭州市高中必修二数学下期末第一次模拟试题含答案一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-3.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .4.已知集合 ,则A .B .C .D .5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l m D .若//l α,//m α,则//l m6.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫ ⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称7.已知0,0a b >>,并且111,,2a b成等差数列,则4a b +的最小值为( ) A .2B .4C .5D .98.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 9.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( )A .M 一定在直线AC 上B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上 10.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.在ABC ∆中,2cos (,b,22A b ca c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在ABC ∆中,若3B π=,AC =2AB BC +的最大值为__________.14.()sin10170+=oo_____15.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________. 16.已知函数())ln1f x x =+,()4f a =,则()f a -=________.17.函数()2sin sin 3f x x x =+-的最小值为________.18.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.19.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==u u u v u u u v u u u v u u u v,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN u u u u v的最小值是_____.20.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .三、解答题21.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?22.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x . (1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围,23.已知向量(3,2)a =-r,(2,1)=r b ,(3,1)c =-r ,,m t ∈R .(1)求||a tb +r r 的最小值及相应的t 的值;(2)若a mb -r r 与c r共线,求实数m .24.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ; (2)求证:1C F ∥平面ABE ; (3)求三棱锥E ABC -体积.25.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,21EA =百米,60AED ∠=o . (1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.26.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v (), 整理可得:12 AB 33AD AC +u u u v u u u v u u u v =,221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v,∴2=A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v ., 故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.2.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--u u u r u u u r u u u r,所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.3.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.4.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.5.B解析:B 【解析】 【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D . 【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确; //l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B. 【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6.D解析:D 【解析】()sin(2)cos(2)2)22442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.7.D解析:D 【解析】 ∵111,,2a b成等差数列, ()1111441445529a b a b a b a b a b a b b a b a ⎛⎫∴+=∴+=++=+++⋅= ⎪⎝⎭,…, 当且仅当a =2b 即33,2a b ==时“=“成立, 本题选择D 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()2a A B a BM a ==+=,,222313()2a A M a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.9.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.10.D解析:D 【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D.点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。
2020-2021杭州市之江实验学校小学二年级数学下期末模拟试卷(及答案) 一、选择题 1.4千克的棉花和4000克的铁相比较,( )。 A. 棉花重 B. 铁重 C. 一样重 D. 无法确定 2.王力的体重是45( )。 A. 克 B. 千克 C. 米 3.706>□01,□里最大能填( )。 A. 5 B. 6 C. 7 4.比最小的三位数多600的数是( )。 A. 1600 B. 400 C. 700 5.一条小船最多能坐6人,45人至少需要( )条这样的小船。 A. 7 B. 8 C. 9 6.把50只兔子关进笼子,每个笼子最多只能关进8只。至少要准备( )个笼子,才能全部关得下。 A. 7 B. 6 C. 5 7.每枝钢笔9元钱,用50元买6枝钢笔,还差( )元钱。 A. 4 B. 6 C. 9 8.学校买了63副国际象棋,平均分给二年级7个班,每个班分得( )副。 A. 7 B. 9 C. 8 9.把长方形纸对折后穿了几个孔,展开后的图形是( )。
A. B. C. 10.15÷3读作( ) A. 15除以3 B. 15除3 C. 3除以15 11.老师要给演讲比赛中得奖的同学发奖励,买了两个笔记本,一本字典,五支铅笔,其中得奖的有10名同学,老师应该再买( )个奖品才能保证每位同学都得到奖励
A. 1 B. 2 C. 3 二、填空题 12.猜一猜,把名字填入下面的表格。 ________ ________ ________ 52千克 50千克 25千克
13.李阿姨去超市购物,一袋大米98元、一提纸巾31元、一桶香油106元.大约要带________元钱去购物. 14.横线上可以填什么? 16里面最多有________个3。 50里面最多有________个9。 31里面最多有________个5。 33里面最多有________个6。 15.(17+23)÷5应先算________得________,再算________得________. 16.在横线上填上“>”“<”或“=”。 4________28÷7 9÷3________9-3 32÷4×2________2×7 36÷4________16-8÷2 24+3÷3________4×6 45÷9________48÷8 17.看一看,填一填。
2020-2021杭州市育才中学小学二年级数学下期末第一次模拟试卷(含答案) 一、选择题 1.贝贝的爸爸要买下面的物品,大约应该准备( )钱才够。
A. 600元 B. 700元 C. 800元 2.3508中的5表示( ) A. 5个一 B. 5个十 C. 5个百 3.一个足球约重( )克。 A. 60 B. 440 C. 6000 4.5个苹果约重( )。 A. 20克 B. 2千克 C. 200千克 5.余数是4的算式是( )。 A. 36÷8 B. 10÷4 C. 18÷6 6.张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多.王晓星原来有( )张画片. A. 15 B. 51 C. 74 7.下面的算式中,商最大的是( )。 A. 54÷9 B. 35÷7 C. 48÷6 8.下图中,甲、乙两图的周长相比,结果是( )。
A. 甲长 B. 乙长 C. 一样长 9.25里面有5个( )。 A. 10 B. 4 C. 5 D. 16 10.王老师带着18名同学坐船,每条船最多坐6人,至少需要( )条船。 A. 3 B. 4 C. 5 11.下面是三(1)班男生1分钟跳绳测试的成绩统计图。男生达标成绩是110个,达标的人数是( )人。
A. 25 B. 20 C. 18 二、填空题 12.1袋水泥重50千克,________袋水泥重200千克。 13.最高是千位的是________位数。4083最高位是________位。 14.每件衣服需要5个扣子,29个扣子最多能钉________件衣服。 15.在横线上填上+、-、×、÷、<、>或=。 6________6=9________4 64________8=8 8________7=15 76-(32+4)________ 48 7________1=7 20________5=15 16.在横线上填上合适的数。 7×________=49 36÷________=4 9÷________=3 32=________×8 ________×6=48 5=35÷________ 17.在溜冰时,人的前行是________现象,溜冰鞋底下的轮子运动是________现象。选出正确答案:(旋转、平移) 18.12÷4=3 ,读作________,表示把________平均分成________份,每份是________。 19.下表是某城市十二月份天气情况。
根据上表把下表补充完整。 ________ ________天和________天一样多, 比 多________天。 三、解答题 20.用7、8、9这三个数字可以组成多少个不同的三位数?把它们按从大到小的顺序排列起来。 21.两位老师带着84个同学参加野营活动,每顶帐篷最多住7人,她们至少应该搭多少顶帐篷? 22.足球队有队员69人,排成3排,每排9人,还剩多少人站在队伍外? 23.下面现象是平移的用“△”表示,是旋转的用“○”表示。
24.蓝纸条的长度是绿纸条的几倍?
25.在多家商店中调查某商品的价格,所得的数据如下(单位:元) 25 21 23 25 27 29 25 28 30 29 26 24 25 27 26 22 24 25 26 28 请填写下表
26.分苹果。 (1)平均分成3份,每份有几个? (2)每个小朋友分4个,可以分给几人?
【参考答案】***试卷处理标记,请不要删除 一、选择题 1.C 解析: C 【解析】【解答】解:128+286+379≈800(元) 故答案为:C。 【分析】把128看作100,把286看作300,把379看作400,估算出三种商品的价格和即可。 2.C 解析: C 【解析】【解答】 3508中的5表示5个百。 故答案为:C。 【分析】一个整数,百位上是几就表示几个百。 3.B 解析: B 【解析】【解答】解:一个足球约重440克。 故答案为:B。 【分析】根据足球的实际重量作答即可。 4.B 解析:B 【解析】【分析】根据生活经验、对质量单位大小的认识和数据的大小,可知计量5个苹果的质量应用“千克”作单位。 5.A 解析: A 【解析】【解答】选项A,36÷8=4……4,余数是4; 选项B,10÷4=2……2,余数是2; 选项C,18÷6=3。 故答案为:A。 【分析】根据题意,先利用乘法口诀口算出结果,然后根据余数选择。 6.B 解析: B 【解析】【解答】解:86÷2+8=51(张) 故答案为:B。 【分析】用一共有的张数除以2即可求出现在两人各有的张数,因为王晓星给张宁了8张,所以用现在每人的张数加上8就是王晓星原来的张数。 7.C 解析: C 【解析】【解答】54÷9=6;35÷7=5;48÷6=8。 故答案为:C。 【分析】依据乘法口诀计算出商,再进行比较。 8.C 解析: C 【解析】【解答】根据图形可以看出,甲乙两图的周长一样长。 故答案为:C。 【分析】利用平移法,把甲图的线段向上,向右平移,刚好是一个长方形,和乙图一样。 9.A 解析: A 【解析】【解答】25÷5=5 故答案为:C。 【分析】求一个数里面有几个另一个数,用除法计算。 10.B 解析: B 【解析】【解答】(18+1)÷6 =19÷6 =3(条)……1(人) 至少需要:3+1=4(条) 故答案为:B。 【分析】此题主要考查了有余数的除法应用,先求出总人数,老师的人数+学生的人数=总人数,然后用总人数÷每条船最多能坐的人数=船的条数……剩下的人数,不管剩下几人,都需要再多租一条船,据此列式解答。 11.C 解析: C 【解析】【解答】达标人数是18人。 故答案为:C。 【分析】查出跳绳成绩在110个以上的人数即可。 二、填空题
12.【解析】 13.四;千【解析】【解答】解:最高是千位的是四位数4083最高位是千位故答案为:四;千【分析】四位数的最高位是千位 解析: 四;千 【解析】【解答】解:最高是千位的是四位数。4083最高位是千位。 故答案为:四;千。 【分析】四位数的最高位是千位。 14.【解析】【解答】29÷5=5(件)……4(个)最多能钉5件衣服故答案为:5【分析】用扣子数除以每件衣服需要的扣子数求出商和余数商就是最多能钉的衣服件数 解析:【解析】【解答】29÷5=5(件)……4(个),最多能钉5件衣服。 故答案为:5。 【分析】用扣子数除以每件衣服需要的扣子数,求出商和余数,商就是最多能钉的衣服件数。 15.×;×;÷;+;<;×;-【解析】【解答】解:6×6=9×4;64÷8=8;8+7=15;76-(32+4)<48;7×1=7;20-5=15故答案为:×;×;÷;+;<;×;-【分析】观察等号两边 解析: ×;×;÷;+;<;×;- 【解析】【解答】解:6×6=9×4;64÷8=8;8+7=15; 76-(32+4)<48;7×1=7;20-5=15。 故答案为:×;×;÷;+;<;×;-。 【分析】观察等号两边的关系,根据实际情况填入合适的运算符号即可。 16.7;9;3;4;8;7【解析】【解答】解:7×7=49;36÷9=4;9÷3=3;32=4×8;8×6=48;5=35÷7故答案为:7;9;3;4;8;7【分析】根据乘法即可作答即可 解析: 7;9;3;4;8;7 【解析】【解答】解:7×7=49;36÷9=4;9÷3=3; 32=4×8;8×6=48;5=35÷7。 故答案为:7;9;3;4;8;7。 【分析】根据乘法即可作答即可。 17.平移;旋转【解析】【解答】解:在溜冰时人的前行是平移现象溜冰鞋底下的轮子运动是旋转现象故答案为:平移;旋转【分析】旋转现象就是图形或物体围绕某一点或轴进行圆周运动;平移现象是指在平面内将一个图形沿着 解析: 平移;旋转 【解析】【解答】解:在溜冰时,人的前行是平移现象,溜冰鞋底下的轮子运动是旋转现象。 故答案为:平移;旋转。 【分析】旋转现象就是图形或物体围绕某一点或轴进行圆周运动;平移现象是指在平面内,将一个图形沿着某个方向移动一定的距离。 18.12除以4;12;4;3【解析】【解答】12÷4=3读作:12除以4等于3表示把12平均分成4份每份是3故答案为:12除以4等于3;12;4;3【分析】除法算式的读法:被除数除以除数等于商除号前面的 解析: 12除以4;12;4;3 【解析】【解答】 12÷4=3 ,读作:12除以4等于3,表示把12平均分成4份,每份是3。 故答案为:12除以4等于3;12;4;3。 【分析】除法算式的读法:被除数除以除数等于商,除号前面的数是被除数,除号后面的数是除数,等号后面的数是商,据此解答; 根据除法的意义可知,把一个数平均分成几份,求一份是多少,用除法计算,据此解答。 19.13天10天4天4天;落雨天;下雪天;3【解析】【解答】解:填表如下:落雨天和下雪天一样多;多云天比晴天多13-10=3(天)故答案为:131044;落雨天;下雪天;3【分析】根据统计的数据统计出每 解析: 13天,10天,4天,4天 ;落雨天;下雪天;3 【解析】【解答】解:填表如下:
落雨天和下雪天一样多;多云天比晴天多13-10=3(天)。 故答案为:13、10、4、4;落雨天;下雪天;3。 【分析】根据统计的数据统计出每种天气的天数并填表;根据统计的数据判断哪两样天气天数相等;用减法计算多云天数比晴天多多少天。 三、解答题
20. 解:6个。987>978>897>879>798>789。 【解析】【分析】每个数字都可以作为最高位数字,先确定最高位数字,再确定十位和个位数字,然后按照从大到小的顺序排列。百位数字大的数就大,百位数字相等就比较十位数字,十位数字相等就比较个位数字。 21. 解:84+2=86(人) 86÷7=12(顶)……2(人) 12+1=13(顶) 答:她们至少应该搭13顶帐篷。 【解析】【分析】用加法计算总人数,用总人数除以7求出商和余数,由于余下的人还需要1顶帐篷,因此用商加上1就是至少需要搭的帐篷数。 22. 69-3×9 =69-27 =42(人) 答:还剩42人站在队伍外。 【解析】【分析】根据题意可知,先求出3排站了多少人,用每排站的人数×3排=3排站的人数,然后用总人数-3排站的人数=剩下站在队伍外的人数,据此列式解答。