纤维的力学性质
- 格式:ppt
- 大小:1.03 MB
- 文档页数:48
第三章纤维的力学性质第一节纤维的拉伸与疲劳性能一、拉伸曲线的基本特征表示纤维在拉伸过程中强力和伸长的关系曲线称为拉伸曲线(强力-伸长曲线、应力-应变曲线)。
纤维在拉伸过程中的行为表现和它的结构在拉伸过程中所发生的变化和破坏是有联系的,这样的本构关系可以通过对拉伸曲线的分析加以表述。
拉伸从O′点开始:(1)自O′至O——如果拉伸前纤维未完全伸直,纤维将通过O′O逐渐伸直。
(2)自O至M——曲线基本上是直线段,表示纤维发生的是导致强力与伸长间呈直线相关的虎克变形,纤维中主要是发生了分子内或分子间键角键长的变形。
(3)自M至Q——强力与伸长间关系进入非直线相关阶段,表明纤维中非晶区内大分子链开始发生构象的变化,链与链之间的关系改变。
(4)自Q至S——Q点可称为屈服点,但大多数纤维都没有明晰的屈服点,因为屈服点是结晶物质的特征点,而纤维只有部份结晶态(区)、甚至没有结晶态只有有序区。
自Q点开始,原存在于分子内或分子间的氢键等次价力联系开始破坏,首先是非晶区中大分子的错位滑移,所以,这一阶段,伸长增长快于强力。
(5)自S至A——随拉伸的进行,错位滑移的分子基本伸直平行,并可能在伸直的分子链间创造形成新次价力的机会,同时,纤维的结晶区也开始被破坏。
拉断结晶区与非晶区中分子间联系,需要较大的外力,所以这一阶段强力上升很快,到A点,纤维断裂。
纤维的应力-应变曲线和强力-伸长曲线的特征相似。
表3-1 常见纤维的拉伸性质指标二、表征纤维拉伸断裂特征的指标1.强力强力是指纤维能够承受的最大拉伸力,又名绝对强力、断裂强力。
2.相对强度相对强度是应力指标,简称为强度,用纤维被拉断时单位横截面上承受的拉伸力来表示。
根据采用的表征纤维截面积的指标不同,强度指标有以下几种:(1)断裂应力σ又名强度极限,它是指纤维单位截面积上所能承受的最大拉伸力,单位为N /mm 2(即兆帕)。
(2)比强度tex P指每特纤维所能承受的最大拉伸力,又称断裂强度,单位为N /tex 或cN/dtex 。
归纳纤维材料力学性质及其指标
一、纤维的拉伸与疲劳性能
(1)表征纤维拉伸断裂特征的指标
1.强力:指纤维能承受的最大拉伸外力,或单根纤维受外力拉伸到断裂时
v 所需要的力(单位:牛顿)
断裂应力:σ﹦P∕S(P-纤维的强力 S-纤维的截面积)
2.相对强度:断裂比强度:P tex﹦P/Tt(P-纤维的强力 Tt-纤维的线密度)
断裂长度:L=P/Tt(P-断裂强力Tt-纤维的线密度)
σ=Y×Pte x×1000 σ﹦L*γ*g
3.伸长率与断裂伸长率:ε=(L-L。
)/L。
ε。
=(L1-L。
)/L。
4.断裂功:是指拉伸纤维至断裂时外力所作的功 W﹦∫PdL
5.断裂比功:拉断单位线密度、单位长度纤维所需要的能量Wr﹦W/(Tt*L)
6.功系数: 指纤维的断裂功与断裂强力和断裂伸长的乘积之比We﹦W/Pa×La
7.柔顺性系数:C﹦2/σ10 -1/σ5
不同纤维的应力-应变曲线。
纤维集合体力学引言:纤维集合体力学是研究纤维材料在力学作用下的行为和性能的学科,广泛应用于纤维材料的设计、制备和应用领域。
纤维集合体力学的研究内容包括纤维材料的结构、力学性质、失效机理等方面,为纤维材料的应用提供了理论基础和技术支持。
一、纤维集合体的结构特点纤维集合体是由纤维按照一定的排列方式形成的结构,纤维之间通过力学作用相互连接。
纤维集合体的结构特点取决于纤维的类型、排列方式和连接方式。
纤维可以是金属、陶瓷、塑料等材料,常见的纤维排列方式有平行排列、交叉排列等。
纤维之间的连接方式可以通过粘接、焊接、编织等方法实现。
二、纤维集合体的力学性质纤维集合体的力学性质是指纤维材料在外力作用下的变形和破坏行为。
纤维集合体的力学性质受到多种因素的影响,包括纤维的材料特性、排列方式、连接方式以及外力的大小和方向等。
纤维集合体的力学性质可以通过实验测试和数值模拟等方法进行研究和分析。
三、纤维集合体的失效机理纤维集合体在受到外力作用时,可能会发生失效现象,如断裂、脱落等。
纤维集合体的失效机理是指失效现象发生的原因和机制。
失效机理的研究对于纤维材料的设计和应用具有重要的指导意义。
纤维集合体的失效机理可以通过断口分析、应力分布等方法进行研究。
四、纤维集合体力学的应用纤维集合体力学在多个领域都有广泛的应用。
在材料工程领域,纤维集合体力学可以用于纤维材料的设计和制备,以提高材料的力学性能和使用寿命。
在航空航天领域,纤维集合体力学可以用于研究飞机和航天器的结构强度和耐久性。
在医学领域,纤维集合体力学可以用于研究人体组织的力学性质,为医学诊断和治疗提供依据。
结论:纤维集合体力学是研究纤维材料在力学作用下行为和性能的学科。
纤维集合体的结构特点、力学性质和失效机理是纤维集合体力学研究的重要内容。
纤维集合体力学在材料工程、航空航天和医学等领域都有广泛的应用。
通过深入研究纤维集合体力学,可以提高纤维材料的设计和应用水平,促进相关领域的发展和进步。
第七章纺织纤维和纱线的力学性质讨论纺织纤维与纱线的拉伸性质及其对时间依赖性、纤维基本力学模型,纤维弹性、动态力学性质及疲劳,以及纤维的弯曲、扭转、压缩等力学性能。
第一节纤维的拉伸性质一、纤维的拉伸曲线与性能指标1.拉伸曲线纤维的拉伸曲线有两种形式,即负荷p-伸长△l 曲线和应力σ-应变ε曲线。
2.拉伸性能指标(1)强伸性能指标强伸性能是指纤维断裂时的强力或相对强度和伸长(率)或应变。
图7-1 纺织纤维的拉伸曲线a.强力P:又称绝对强力、断裂强b力。
它是指纤维能承受的最大拉伸外力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。
b.断裂强度(相对强度) Pb:简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex,常用cN/dtex(或cN/d)。
c.断裂应力σb:为单位截面积上纤维能承受的最大拉力,标准单位为N/m2(即帕)常用N/mm2(即兆帕Mpa)表示。
:纤维重力等于其断d.断裂长度Lb裂强力时的纤维长度,单位为km。
(2)初始模量初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即σ- ε曲线在起始段的斜率。
(5-10)初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。
(3)屈服应力与屈服伸长率图7-2 纤维屈服点的确定纤维在屈服以前产生的变形主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切,所以基本上是可恢复的急弹性变形。
而屈服点以后产生的变形中,有一部分是大分子链段间相互滑移而产生的不可恢复的塑性变形。
(4)断裂功指标a.断裂功W:是指拉伸纤维至断裂时外力所作的功,是纤维材料抵抗外力破坏所具有的能量。
b.断裂比功Wv :一是拉断单位体积纤维所需作的功Wv,单位为N/mm2。
另一定义是重量断裂比功Ww,是指拉断单位线密度与单位长度纤维材料所需做的功。
c.功系数η:指纤维的断裂功与断裂强力(Pb)和断裂伸长(Δlb)的乘积之比。
第三章纤维的力学性质第一节纤维的拉伸性质纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。
纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。
纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。
一、拉伸曲线及拉伸性质指标1.纤维的拉伸曲线特征纤维的拉伸曲线由拉伸试验仪得到,图3-1是一试样长度为20cm,线密度为0.3 tex,密度为1.5R/cm3的纤维在初始负荷为零开始一直拉伸至断裂时的一根典型的纤维拉伸曲线。
它可以分成3个不同的区域:A为线性区(或近似线性区);B为屈服区,在B区负荷上升缓慢,伸长变形增加较快;C为强化区,伸长变形增加较慢,负荷上升较快,直至纤维断裂。
图3-1 纤维的拉伸曲线纤维的拉伸曲线可以是负荷-伸长曲线,也可以将它转换成应力-应变曲线,图形完全相同,仅坐标标尺不同而已。
纤维拉伸曲线3个不同区域的变形机理是不同的。
当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。
所以,A区的变形是由于分子链键长(包括横向次价键)和键角的改变所致。
变形的大小正比于外力的大小,即应力-应变关系是线性的,服从虎克定律。
当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。
由于键的变形速度与原子热振动速率相近,回复时间的数量级是10-13s,因此,变形的时间依赖性是可以忽略的,即变形是瞬时的。
当施加的外力增大时,无定形区中有些横向连接键因受到较大的变形而不能承受施加于它们的力而发生键的断裂。
这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。
在这一阶段,纤维伸长变得较容易,而应力上升很缓慢。
第7章纤维的力学性质教学内容: 拉伸指标及性能 粘弹性能 弹性性能 疲劳破坏 弯曲性能(了解)第1节纤维的拉伸性质1. 拉伸曲线负荷p —伸长△ I 曲线 应力匚-应变曲线2. 拉伸性能指标 2.1强伸性能指标强伸性能是指纤维断裂时的强力(或相对强度)和伸长 (率)或应变。
(1) 强力P b :又称绝对强力、断裂强力。
――是指纤维能承受的最大拉伸外力,或单根纤维受外力拉伸到 断裂时所需要的力,单位为牛顿 (N )。
纤维常用cN 强度指标(2) 比强度(相对强度)p b :或称比应力――是指每特(或每旦)纤维能承受的最大拉力,单位为 N/tex ,常 用 cN/dtex (或 cN/d )。
(3) 断裂应力(T b :为单位截面积上纤维能承受的最大拉力,标准单 位为帕Pa (N/m 2),常用兆帕MPa (N/mm 2)表示。
(4) 断裂长度L b :纤维重力等于其断裂强力时的纤维长度,单位为 km 。
三类相对强度的表达式分别为:)_M_=mNpb力应 力应比R P d =-^ P b 单位为N P t 单位为N/tex N tex N denPb hiL b N mg-b=Pb-b = P 103A(5)断裂伸长率纤维拉伸至断裂时的伸长率(或应变) ,;,100%L0表示纤维断裂时的伸长变形能力的大小2.2 初始模量初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即二-;曲线在起始段的斜率。
初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。
小变形情况下(<1 %),晶区大分子基本不发生形变,只有非晶区分子链发生形变——主要取决于非晶区分子链的取向度。
影响材料的保形、弹性及刚度:大,制品挺括;小,柔软2.3屈服应力与屈服伸长率屈服点:在纤维拉伸曲线上伸长变形随应力增大突然变大时的转折点。
对应屈服点处的应力或伸长率就是屈服应力和屈服伸长率屈服点前后变形情况对比:(1)之前:主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切一一基本上是可恢复的急弹性变形。
复合材料纤维材料的力学性质研究复合材料已经在各个领域中得到了广泛的应用,比如航空航天、汽车、体育器材等等。
那么,复合材料为什么能够取代石油化工材料呢?答案就在于它具有更好的力学性质。
在复合材料中,纤维材料是其中十分重要的一部分。
纤维材料分为多种类型,比如碳纤维、玻璃纤维、芳纶纤维等等。
不同类型的纤维材料具有不同的力学性质,因此我们需要对它们进行仔细的研究。
首先,我们需要知道纤维材料的力学性质是由哪些因素决定的。
通常情况下,纤维材料的力学性质受到以下几个因素的影响:1.纤维本身的强度和刚度2.纤维的取向和密度3.矩阵材料的性质4.纤维和矩阵材料的相互作用其中,纤维本身的强度和刚度是最为重要的因素之一。
不同的纤维材料具有不同的强度和刚度,因此它们所组成的复合材料的力学性质也是不同的。
例如碳纤维具有很高的强度和刚度,因此它们所组成的复合材料具有更好的力学性能。
除此之外,纤维的取向和密度也会对复合材料的力学性能产生影响。
如果纤维的取向合理,可以使得复合材料的强度和刚度都更高。
而纤维的密度越高,则可以使得复合材料的强度越大。
另外,矩阵材料的性质也是决定复合材料力学性质的重要因素之一。
矩阵材料一般是树脂类材料,而不同的树脂所具有的性质也是不同的。
例如环氧树脂具有很高的强度和刚度,因此它们可以被用于制造高强度、高刚度的复合材料。
最后,纤维和矩阵材料的相互作用也会对复合材料的力学性质产生影响。
通常情况下,纤维和矩阵材料的相互作用会影响到复合材料的界面性能。
如果纤维和矩阵材料之间的黏结不好,就会导致复合材料的强度和刚度受到影响。
因此,对于复合材料的力学性质研究,我们需要做到以下几点:1.对纤维材料的强度和刚度进行仔细的研究和测试,了解它们的力学性质。
2.分析纤维取向和密度等因素对复合材料的力学性质的影响。
3.研究不同种类的树脂材料对力学性能的影响。
4.研究纤维和矩阵材料的相互作用,了解其对复合材料力学性能的影响。