数学教育学第一章
- 格式:ppt
- 大小:138.50 KB
- 文档页数:24
中学数学教育学概论课后习题及答案第一章课后习题答案1.你认为目前我国中小学数学课程存在的突出问题主要表现在那些方面?答:〔1〕不注重数学的应用性和实用性;〔2〕不注重学生主体的活动性;〔3〕过于强调接受学习,死记硬背,机械训练;〔4〕过分强调甄别与选拔的功能〔5〕过于注重知识传授;〔6〕教师水平不高,不够专业化2.《全日制义务教育数学课程标准〔实验稿〕》的基本理念和课程总体目标是什么?答:《标准1》的基本理念:〔1〕数学课程应突出表达基础性普及性和发展性,使数学教育面向全体学生,实现------人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展;〔2〕数学是人类生活的工具,用于交流的语言,是一种人类文化,能赋予人创造性;数学学习的内容应当是现实的、有意义的、富有挑战性的,有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动;〔3〕数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;〔4〕评价的目的是为了全面了解学生的数学学习历程,激励学生的学习和教师的教学;〔5〕现代信息技术的发展对数学教育的价值目标内容以及学与教的方式产生了重大的影响。
《标准1》中确定的的义务教育数学课程的总体目标是,通过义务教育阶段的数学学习,学生能够:〔1〕获得适应未来社会生活和进一步发展所必须要的重要数学知识〔包括数学事实,数学活动经验〕以及基本的数学思想方法和必要的应用技能〔2〕初步学会运用数学的思维方式去观察,分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;〔3〕体会数学与自然以及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;〔4〕具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
〔具体可看41页下面的表格〕3.《普通高中数学课程标准〔实验〕》的基本理念和课程总体目标是什么?答:《标准2》的基本理念:〔1〕构建共同基础,提供发展平台;〔2〕提供多样课程,适应个性选择;〔3〕倡导积极主动,勇于探索的学习方式;〔4〕注重提高学生的数学思维能力;〔5〕发展学生的数学应用意识;〔6〕与时俱进地认识双基;〔7〕强调本质,注意适度形式化;〔8〕表达数学的文化价值;〔9〕注重信息技术与数学课程的整合;〔10〕建立合理、科学的评价体系.《标准2》中确定的普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
02018数学教育学大纲一课程性质及其设置目的与要求(一)课程性质与特点数学教育学是一门研究数学教育现象、揭示数学教育规律的课程。
它是建立在数学和教育学的基础上,综合运用哲学、逻辑学、心理学、认知科学和行为科学等成果于数学教育实践而形成的一门多学科交叉性的综合学科,是作为中小学数学教师必修的专业课程。
(二)教学目的与要求课程内容包括:数学的特点、方法与意义,数学课程概述,国内外数学课程改革、一般教学理论、数学教学模式、数学教学评价、数学教学原则、数学教学设计、数学知识的分类教学设计、备课与说课、数学教学的语言、计算机辅助数学教学、数学能力及其培养、中学数学思想方法、数学学习的基本理论等。
教学目的和要求:使学生掌握较深广的中小学数学教育的基础知识和基本理论,培养他们分析、处理、组织中小学数学教材的能力和运用教法的初步能力;提高他们对中小学数学教育现状的认识,激发学生为发展我国基础教育而学习的责任心和积极性,直接为培养他们成为合格的中小学数学师资服务。
二课程内容与考核目标第一章数学的特点、方法与意义(一)课程内容数学的对象和特点,数学的思想方法及作用。
(二)学习与考核要求了解数学语言、数学方法、数学模型等概念的内涵,理解数学抽象性、严谨性等特点,明确公理化方法、随机思想方法的特点。
第二章数学课程概述(一)课程内容数学课程的有关理论以及影响数学课程发展的因素,数学课程的现代发展和中学数学课程编排体系。
(二)学习与考核要求了解大众数学的内涵和大众数学意义下的数学课程的特点,并能阐述对“问题解决”内涵的理解,注重问题解决的数学课程有哪些特点。
第三章国外的数学课程改革(一)课程内容20世纪的数学教育改革运动概况,大规模的数学教育国际比较研究以及面向新世纪的各国数学课程改革。
(二)学习与考核要求了解20世纪的数学教育改革运动(贝利-克莱因运动、新数学运动、回到基础、问题解决等),领会这些运动对数学课程发展的意义,掌握国外的数学新课程对我国的数学课程改革有哪些借鉴作用。
第一章、绪论一、数学教育学研究的对象:数学学习论、数学课程论、数学教学论(数学教学评价、数学教育史、数学教育心理学、比较数学教育学)二、数学教育学的基本特点:综合性,实践性,教育性,科学性、发展性三、数学发展过程中的三次运动:培利-----克莱因运动;“新数”运动;“数学大众化”运动第二章、数学学习理论一.学习是指动物和人类所共有的一种心理活动.对人类来说,学习是“知识经验的获得及行为变化的过程”.二.学生数学学习的特点学生的学习是在教育情境中进行的,是凭借知识经验产生的、按照教育目标有计划、有组织地进行的比较持久的行为变化.学生的学习特点主要表现在以下几方面.①学生的学习是在人类发现基础上的再发现②学生的学习是在教师的指导下有目的进行的③学生的学习是依据一定的课程和教材进行的④学生的学习主要目的是为终生学习奠定基础三、两大学派:一种是以桑代克(E .L.Thorndike)、斯金纳(B.T.Skinner)等为代表的刺激——反应联结说的理论;另一种是以布鲁纳、奥苏贝尔等为代表的现代认知理论。
一、行为主义的学习理论1.桑代克的联结主义试误说:刺激和反应的联结。
2.斯金纳的操作性条件反射学习理论:刺激——反应——强化的学习模式。
二、认知学派的学习理论1.格式塔学派的顿悟说(完形主义):2.现代认知学习理论:布鲁纳的发现说继承了完形,布鲁纳非常重视人的主动性;奥苏贝尔的学习理论。
美国心理学家奥苏贝尔提出的有意义学习理论,不像布鲁纳那样强调有意义的接受学习。
他认为,学习过程是在原有认知结构基础上,形成新的认知结构的过程。
四.建构主义学说对数学学习的指导意义:1.建构主义强调知识是一个建构的过程,必须突出学习者的主体作用。
2.建构主义十分强调外部环境的制约和影响。
-----提供给儿童的数学活动应有助于儿童产生真正的数学问题,促进他们反思和重组他们已有的思维方式。
3.建构主义还强调学习是发展,是改变观念。
第一篇数学课程第一章:数学的特点、方法和意义1数学:研究现实世界的数和形之间各种量、量变及其关系的一门学科。
具有抽象性、严谨性,广泛应用性。
数学抽象的彻底性,层次性,数学的严谨性是指逻辑上要无懈可击,结论要十分确定,一般又称为逻辑严密性或严格性,结论确定性或可靠性。
2、课程是指学校学生所应学习的学科总和及其进程与安排。
广义的课程是指学校为实现培养目标而选择的教育内容及其进程的总和,它包括学校所交的各门学科和有目的、有计划的教育活动。
狭义的课程是指某一门学科。
2、作为教育学科的数学特征,(1)数学是一门渐进性的科学,(2)数学具有独特的语言,符号系统。
数学语言主要由文字语言(术语),符号语言(记号)和图像语言组成。
数学语言具有精确,简洁,形式化,符号化的特点,3、数学思想数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动而产生的结果,是对数学事实与数学理论的本质认识,基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
通过数学思想的培养,数学的能力才会有一个大幅度的提高。
掌握数学思想,就是掌握数学的精髓。
4、数学方法数学方法是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态,关系和过程,经过推理运算和分析,以形成解释、判断和预言的方法。
数学的方法同样具有数学科学的三个基本特点,一是高度的抽象性和概括性,二是精确性,三是应用的普遍性和可操作性。
5、数学思想和数学方法的关系数学思想、数学观念与数学方法三者密不可分,思想是相应的方法的精神实质和理论基础,方法则是实施有关思想的技术手段,数学教育中出现的数学观念和各种数学方法都体现着一定的数学思想。
具体来说,数学方法是处理、探索、解决问题,数学数学思想的技术工具和手段,而数学方法都是体现着一定的数学思想。
6、宏观的数学方法有公理化方法,数学模型方法,随机思想方法7、公理化方法公理化方法,就是指从尽可能少的原始概念和不加证明的原始命题(即公理、公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法。
目录第一章数育教育学的概述 (1)第二章数学教学的目的与内容 (1)第三章教学课程的演变及理论研究 (2)第四章数学课程设计与教材编写 (7)第五章数学教学过程及教学设计 (9)第六章数学学习与数学认知结构 (10)第七章数学学习的认知过程 (12)第八章数学教育实验、测量和评价 (13)第十章数学教师的培训与终身学习 (15)参考书目 (19)试题 (20)第一章数育教育学的概述1、数育教育学的研究对象是以数学教学过程为研究对象,研究领域主要有数学教学论、数学学习论、数学课程论。
2、数学教学的主要内容(1)数学学习论,主要研究数学学习心理学、研究学生知识获得和保持,揭示学生学习过程的基本心理规律(2)数学教学论,研究范围是数学教学的目的和任务,数学教学过程的基本原理、数学教学组织形式,数学教学原则以及数学教学效果的检查与评价等。
(3)数学课程论,主要研究什么是课程、课程技能问题,影响课程设置的因素,教学内容的选择、内容的体系安排、课程评价。
第二章数学教学的目的与内容1、人类数学发展的四个高率(P20~22)(1)希腊的注释数学时期(2)牛顿—莱布尼茨的微积分时期(3)希尔伯特为代表的形式主义公现化时期(4)以计算机技术为标志的新教学时期2、关于数学特征的概述(P27~29)(1)流行的提法:抽象性、严谨性和广泛应用性(2)张真西艾先生的看法(P29)A、教育对象的特征:思想材料的形式化抽象B、教育思维的特征:策略创造与逻辑注释的结合C、教育知识的特征:通过简易的科学语言D、教育应用的特征:教学模型的技术3、数学概念的变化(p29~33)(1)国家改革开放的大环境与数学教育(2)教育普及和数学教学(3)心理学的进步,带来数学教育新模式(4)数学和信息科学的进步对数学教育的影响4、孔子的教育思想(p36)(1)有教无类:主张教育平等(2)诲人不倦:要求教师有奉献精神(3)举一反三:倡导启发式教育(4)教育相长:为在发展学术探讨(5)学而优则仕:万般皆下品,唯有读书高,师道尊严等消极方面。
数学教学论--第一章-绪论-为什么要学习数学教育学学习提要:1.数学教育的沿革与发展;2.数学教育研究热点的演变;3.数学教育学的内容及学习意义与方法。
教学目标:1.使学生了解数学教育学的研究对象、掌握数学教育学的研究内容及学习该学科的意义;2.了解一定的数学教育发展历史,了解数学教育研究热点的演变趋势;3.了解数学教育学的研究对象、特点和研究方法,理解学习数学教育学的意义。
教学重点、难点:数学教育学的内容及学习该学科的意义为本章重点;学习该学科的方法为本章难点。
教学方法:讲解法、讨论法学习提要一、关于数学教育学的认识二、数学教育的沿革与发展三、学习数学教育学的意义四、学习数学教育学的方法教学过程:引:问题与思考1、为什么要学习数学教育学?2、你最喜欢什么样的数学老师?,关于数学教育学的认识●数学教育的含义广义:传播数学知识、数学技能的活动狭义:在中小学进行数学教学的活动●数学教育学的含义研究数学教育现象,揭示数学教育规律推荐精选“教什么、学什么”;“怎样教、怎样学”;“教得怎样,学得怎样”以及相关的理论推荐精选●数学教育学的特征▲数学教育是一门关于数学、教育学、心理学的交叉学科。
数学心理学教育学●数学教育学是一门年轻学科,但其历史源远流长(1)年轻学科:1969年,法国里昂,第一届国际数学教育大会1970年,《数学教育学》(苏联:斯托利亚尔)1978年,《中学数学教与学》(美国)1980年,《中学数学教材教法》(十三院校)1984年,《数学教育学》(丁尔陞译)(2)历史源远流长:公元前4000年,古埃及,算术知识的记载公元前3000年,古埃及,十进制公元前1100年,中国西周,六艺—礼、乐、射、御、书、数一、数学教育的沿革与发展(一)数学教育成为一个专业的历史古代:中国古代数学教育的主要目的是为了经世致用,古代算学以测量田亩、计算税收等为目的,主要用于国家管理,数学属“六艺”教育(礼、乐、射、御、书、数)之一;西方数学教育的目的主要是为了训练学生的心智,在“七艺”教育(文法、修辞、逻辑学、算术、几何、天文、音乐)中,几何和天文学的地位排在文法、修辞与逻辑学之后。