光纤技术及应用---第三章
- 格式:ppt
- 大小:936.00 KB
- 文档页数:96
光纤技术及应用各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢光纤技术及工程应用光纤技术及工程应用1.光纤的演进1966-美籍华人高锟及根据介质波导理论共同提出光纤通讯的概念. 1970-美国康宁公司首次研发出级射率光纤,同年贝尔实验室研发出发光器,正式拉开光纤通讯的序幕.1972-原材质,制棒,抽丝的技术不断提升,衰减系数由原有的20dB/km降至4dB/km. 1976-美国西屋电气公司在亚特兰大成功进行世界第一个以45Mbit/s传输110km的光纤通讯网络的实验.Today-光纤通讯由原有的45Mbit/s 提升至目前的40Gbit/s.2.光纤通讯的特点(与电缆及微波比较)优点缺点高带宽,通讯量大衰减小,传输距离远信号串音小,传输质量高抗电磁干扰,保密性高光纤尺寸小,重量轻,便于敷设及搬运原料信息充裕光纤弯曲半径不宜过小光纤终端处理不易分路及藕合操作繁琐3.光纤基本结构4.光纤的尺寸5.光纤的材质玻璃光纤——玻璃核心及玻璃纤衣(光纤的玻璃是非常纯的二氧化硅或溶解石英,再参杂其他化学原料,以达到所须的折射率,如锗或磷增加折射率,硼减少折射率) 胶套硅光纤——玻璃核心及塑料纤衣塑料光纤——塑料核心及塑料纤衣6.光纤的分类(以光纤的传播模态)级射率多模(Step-Index multimode,阶跃型多模)渐变折射率多模(graded Index multimode)单模(Singlemode)级射率多模光纤(Step-Index multimode,阶跃型多模光纤)级射率多模光纤是最简单的型式,核心直径由10~970μm都有,包含玻璃,胶套硅光纤,塑料光纤结构,虽然级射率光纤在高带宽及低损耗上不是最有效,但是最广范被使用的光纤. 级射率多模光纤最大的缺点是因光纤不同模态的路径长度变化造成的模间色散. 级射率多模光纤的模间色散为15~30ns/km渐变折射率多模光纤渐变折射率多模光纤是减少模间色散的另一种方式,核心有无数中心层玻璃,类似树木的年轮,由中心轴核心向外每一连续层有较低的折射率.渐变折射率多模光纤的模间色散为1ns/km或更少单模光纤另一种减少模间色散的方式是减少核心的直径,直到光纤仅能有效地传送一个模态,单模光纤有一个非常小的核心直径仅5~10μm,标准的纤衣直径为125 μ m.论光纤技术的应用与发展自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术从光通信中脱颖而出,已成为现代通信的主要支柱之一,所以它的主要特点是:抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,通信达到了高速率和大容量,且体积小、损耗低、重量轻,发展也异常迅猛。
《光纤技术及应用》复习题第一章1、写出电场强度和磁场强度在两种介质界面所满足的边界条件方程。
(并会证明)2、TE波、TM波分别指的是什么?3、平面光波发生全反射的条件。
当入射角大于临界角时,入射光能量将全部反射4、古斯-哈恩斯位移指的是什么?其物理本质是什么?证明实际光的反射点离入射点有一段距离,称为古斯-哈恩斯位移。
(相隔约半个波长)实质:光的传播不能简单视为平面光波的行为,必须考虑光是以光束的形式传播,即时空间里的一条极细的光束也是由若干更加细的光线组成的5、写出光线方程,并证明在各向同性介质中光为直线传播。
对于均匀波导,n为常数,光线以直线形式传播第二章1、平板波导的结构,分类。
结构:一般由三层构成:折射率n1中间波导芯层,折射率n2下层介质为衬底,折射率n3上层为覆盖层;n1>n2 , n1>n3。
且一般情况下有n1>n2> n32、均匀平面光波在平板波导中存在的模式有:导模、衬底辐射模、波导辐射模(各有什么特点)。
(入射角与临界角之间的关系以及各种模式相对应的传播常数所满足的条件)P12。
P17-18图满足全反射的光线并不是都能形成导模,还必须满足一定的相位条件。
P13(导模的传输条件)3、在平板波导中TE0模为基模,因为TE0模的截止波长是所有导模中最长的。
P144、非均匀平面光波在平板波导中的模式有:泄露模、消失模5、平板波导中的简正模式具有:稳定性、有序性、叠加性、和正交性。
6、模式的完备性指的是?P24在平板波导中,导模和辐射模构成了一个正交、完备的简正模系,平板波导中的任意光场分布都可以看成这组正交模的线性组合。
7、波导间的模式耦合指的是?P31当两个波导相距很远时,各自均以其模式独立地传播,无相互影响;当两个波导相距很近时,由于包层中场尾部的重叠,将会发生两个波导间的能量交换,称之为波导间的模式耦合。
作业题:2-7、2-8第三章1、什么是光纤?光纤的结构,分类,并画出相应的折射率分布。
第三章单模光纤的传输特性及光纤中的非线性效应3.1.2 单模工作模特性及光功率分布 (3)3.1.3单模光纤中LP01模的高斯近似 (4)3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6)3.2.1双折射概念 (6)3.2.2 偏振模色散概念 (8)3.2.3 单模光纤中偏振状态的演化 (9)3.2.4 单模单偏振光纤 (10)3.3单模光纤色散 (11)3.3.1 色散概述 (11)3.3.2 单模光纤的色散系数 (13)3.4 单模光纤中的非线性效应 (15)3.4.1 受激拉曼散射(SRS) (16)3.4.2 受激布里渊散射(SBS) (19)3.5 非线性折射率及相关非线性现象 (21)3.5.1 光纤的非线性折射率 (21)3.5.2 与非线性折射率有关的非线性现象 (22)3.5.3 自相位调制 (23)第三章单模光纤的传输特性及光纤中的非线性效应3.1 单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。
例如在阶跃型光纤只传播HE11模(或LP01)的光纤。
由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。
长途光纤通信系统都无例外的采用单模光纤作为传输介质。
由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。
单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。
3.1.1 单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。
单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<2.405。
单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ按上式计算截止波长只有理论意义。
第一章 光纤光学基础1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)A :单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um 左右,多模一般在50um 以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
A::NA 的大小表征了光纤接收光功率能力的大小,即只有落入以m 为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?A :阶跃型光纤的NA 与光纤的几何尺寸无关,渐变型光纤的NA 是入射点径向坐标r 的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
A :2221212112n n n n n n --D =?D 的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?A :固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
A :材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?A :单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
A :设光纤的长度为L ,光纤中平行轴线的入射光线的传输路径最短,为L ;以临界角入射到纤芯和包层界面上的光线传输路径最长,为sin c L f 。