弹性力学总结与复习(2014)概论
- 格式:ppt
- 大小:715.00 KB
- 文档页数:13
1、绪论1-1 弹性力学的研究对象和任务课程研究对象研究内容理论力学质点、质点系(刚体)机械运动的一般规律材料力学单根杆件弹性体在外因素作用下所产生的内力、应力、应变和位移,提供强度、刚度和稳定性计算的理论。
结构力学杆系结构弹性力学实体结构、板壳总复习z y x σσσ,,zxyz xy τττ,,zy x εεε,,zxyz xy γγγ,,wv u ,,zy x f f f ,,zy x ff f ,,基本量符号量纲正负号规定应力分量正应力N/m 2正面上沿坐标轴正向为正负面上沿坐标轴负向为正切应力N/m 2应变分量正应变无量纲线段伸长为正切应变无量纲线段间夹角变小为正位移分量m 沿坐标轴正向为正外力体力分量N/m 3面力分量N/m 21-2 弹性力学的基本量直角坐标表示的基本量基本假定引用后的结果物理假设(理想弹性体假设)连续性应力、应变和位移可用坐标的连续函数表示均匀性物理的弹性常数不随坐标位置而改变各向同性物理的弹性常数不随方向而改变完全弹性保证了应力与应变之间的一一对应的线性关系几何假设小变形基本方程化为线性方程,可引用硬化原理、叠加原理1-3 弹性力学的基本假定1-4 弹性力学问题已知量:物体的形状和大小(边界);物体的弹性常数(E、 、G);物体的体力、面力;物体的边界约束。
待求量:应力分量、形变分量、位移分量。
超静定问题。
物理量平面应力问题平面应变问题Oxy平面内的分量(基本未知量)Z方向的分量(不存在或不独立)Oxy平面内的分量(基本未知量)Z方向的分量(不存在或不独立)位移分量仅是x、y的函数,与z无关由积分得到仅是x、y的函数,与z无关应变分量应力分量弹性体形状特征物体厚度方向(Z向)的尺寸远小于板面尺寸(X、Y)的等厚度薄板。
物体长度方向(Z向)的尺寸远大于截面尺寸(X、Y)的等截面柱体。
弹性体受力特征外力平行于板面,作用在板的周边,沿厚度不变;板面上无面力,都为零。
外力垂直于柱体轴线,且沿长度方向(Z向)不变。
《弹性力学》期末复习提纲第七章、平面问题1. 会正确区分是否是平面问题,如果是,具体属于哪类平面问题(平面应力、平面应变、广义平面应力、广义平面应变)?2. 明确各类平面问题中的各种非零变量,能够正确写出平面问题的平衡方程、几何方程、本构方程(注意平面应力和平面应变问题的区别,应力→应变、应变→应力)和边界条件。
极坐标下的方程不用专门记忆。
3. 知道根据应变协调条件,严格的平面应力问题必须满足线性条件:ax by c =++Θ或z Ax By C ε=++。
4. 知道根据几何方程,严格的平面应力问题必须满足变形后是平截面的条件:()w Ax By C z =++。
5. 会用位移法求解简单的平面问题,特别是轴对称问题和轴反对称问题(比如7-19题)。
6. 会用Airy 应力函数求解平面问题(直角坐标系、极坐标系,轴对称、非轴对称)。
要求能根据Airy 应力函数的基本性质来构造应力函数,并进一步通过双调和方程得到应力函数的通解,最后由边界条件确定其中的待定常数。
附录B 、泛函极值与变分法(不会专门考,但要求会用)1. 知道泛函和容许自变函数的概念。
2. 会正确计算给定泛函的变分。
3. 会求泛函的无条件极值问题。
4. 会求泛函的条件极值问题。
第十章、能量原理1. 明确“真实状态”、“变形可能状态”和“静力可能状态”的相关概念。
2. 理解“可能功”、“变形功”和“虚功”的概念。
对具体问题能正确写出其广义力和广义位移。
3.明确系统的总势能(应变能+外力势)和总余能(应变余能+余势)的物理意义、相互关系和具体的表达式。
对于具体问题,能够正确写出系统的总势能和总余能。
(注意:总势能中的基本未知量为位移或应变,总余能中的基本未知量为力或应力)4.明确“可能功原理”、“功的互等定理”、“虚功原理”、“极小势能原理”、“最小势能原理”、“余虚功原理”、“极小余能原理”和“最小余能原理”的:(1)表达式(2)物理意义(比如正定理、逆定理)(3)适用范围(4)各种能量原理的相互关系5.会使用“功的互等定理”解题(关键在于通过易求的状态得到难解的状态)6.会根据“虚功原理”、“极小势能原理”和“最小势能原理”,由变分法求得具体问题的欧拉方程和自然边界条件。
弹性力学总结第一章绪论一、弹性力学的内容:弹性力学的研究对象、内容和范围。
二、弹性力学的基本量1、外力(1)体力(2)面力2、内力——应力3、应变4、位移以上基本量要求掌握其定义、表达式、分量的符号、正负号规定、量纲。
三、弹性力学中的基本假定1、连续性2、完全弹性3、均匀性4、各向同性以上是对材料性质的假定,凡符合以上四个假定的物体,称为理想弹性体。
5、小变形假定(对物体的变形状态所作的假定)要求掌握各假定的内容和意义(在建立弹性力学基本方程时的作用)。
习题举例:1、弹性力学,是固体力学的一个分支,它的任务是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的(),从而解决各类工程中所提出的强度、刚度和稳定问题。
A.应力、应变和位移;B.弯矩、扭矩和剪力;C.内力、挠度和变形;D.弯矩、应力和挠度。
2、在弹性力学中,作用于物体的外力分为()。
A.体力和应力;B.应力和面力;C.体力和面力;D.应力和应变。
3、重力和惯性力为(C )。
A .应力;B .面力;C .体力;D .应变。
4、分布在物体体积内的力称为( C )。
A .应力;B .面力;C .体力;D .应变。
5、物体在体内某一点所受体力的集度的表达式及体力分量的量纲为( A )。
A .0lim V F f V∆→∆=∆,-2-2L MT ; B .0lim S F f S ∆→∆=∆,-1-2L MT ; C .0lim A F p A ∆→∆=∆,-1-2L MT ; D .0lim V F f V ∆→∆=∆,-1-2L MT 。
6、弹性力学研究中,在作数学推导时可方便地运用连续和极限的概念,是利用了( )假定。
A .完全弹性;B .连续性;C .均匀性;D .各向同性。
7、( A )四个假设是对物体的材料性质采用的基本假设,凡是符合这四个假设的物体,就称为理想弹性体。
A .完全弹性,连续性,均匀性和各向同性;B .完全弹性,连续性,均匀性和小变形;C .连续性,均匀性,各向同性和小变形;D .完全弹性,连续性,小变形和各向同性。
1.什么是弹性力学弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。
2.弹性力学的基本假定(1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
(2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
完全弹性分为线性弹性和非线性弹性材料弹性常数不随应力或应变的变化而改变(3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。
(4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。
(5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
3.概念:体力:分布在物体体积内的力,如重力和惯性力。
面力:分布在物体表面上的力,如流体压力和接触力。
内力:外界因素作用下,物体内部各个部分之间的相互作用力应力:分布在物体内部任意点上的力,实质上是面力的一种应变:是描述物体受力后发生变形的相对概念的力学量位移:物体内任一点位置的移动平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。
(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。
平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。
(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。
设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。
4.圣维南原理(用积分的方式表示)见例题圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
5.逆解法、半逆解法逆解法:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程的φ(x,y)的形式;(2)然后利用应力分量计算式,求出(具有待定系数);(3)再利用应力边界条件式,来考察这些应力函数φ(x,y)对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)可以求解什么问题。
《弹性力学基础》期末复习
一、名词解释
弹性力学、外力、体力、面力、应力、位移、剪应力互等定理、线应变、剪应变、平面应力问题、平面应变问题、主应力和应力主面、平衡微分方程、几何方程、平面应力问题的物理方程、边界条件。
二、简单题
1.简述弹性力学中的基本假定;
2.弹性力学中对应力的符号是如何规定的;
3.请写出什么是平面应力问题和平面应变问题;
4.请写出平面问题的位移边界条件和应力边界条件;
5.简述圣维南原理的两种表述;
6.检验平面问题中的应力分量是否为正确解答的条件是什么?
7.列出应力表示的相容方程并简述其物理意义;
8. 简述半逆解法求解的具体步骤;
9. 试列出极坐标中的平衡微分方程、几何方程和物理方程。
弹性⼒学基本概念和考点汇总基本概念:(1)⾯⼒、体⼒与应⼒、应变、位移的概念及正负号规定(2)切应⼒互等定理:作⽤在两个互相垂直的⾯上,并且垂直于改两⾯交线的切应⼒是互等的(⼤⼩相等,正负号也相同)。
(3)弹性⼒学的基本假定:连续性、完全弹性、均匀性、各向同性和⼩变形。
(4)平⾯应⼒与平⾯应变;设有很薄的等厚度薄板,只在板边上受有平⾏于板⾯并且不沿厚度变化的⾯⼒或约束。
同时,体⼒也平⾏与板⾯并且不沿厚度⽅向变化。
这时,0,0,0z zx zy σττ===,由切应⼒互等,0,0,0z xz yz σττ===,这样只剩下平⾏于xy ⾯的三个平⾯应⼒分量,即,,x y xy yxσσττ=,所以这种问题称为平⾯应⼒问题。
设有很长的柱形体,它的横截⾯不沿长度变化,在柱⾯上受有平⾏于横截⾯且不沿长度变化的⾯⼒或约束,同时,体⼒也平⾏于横截⾯且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应⼒互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,⼜由于z ⽅向的位移w 处处为零,即0z ε=。
因此,只剩下平⾏于xy ⾯的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平⾯应变问题。
(5)⼀点的应⼒状态;过⼀个点所有平⾯上应⼒情况的集合,称为⼀点的应⼒状态。
(6)圣维南原理;(提边界条件)如果把物体的⼀⼩部分边界上的⾯⼒,变换为分布不同但静⼒等效的⾯⼒(主失相同,主矩也相同),那么,近处的应⼒分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7)轴对称;在空间问题中,如果弹性体的⼏何形状、约束情况,以及所受的外⼒作⽤,都是对称于某⼀轴(通过该轴的任⼀平⾯都是对称⾯),则所有的应⼒、变形和位移也就对称于这⼀轴。
这种问题称为空间轴对称问题。
⼀、平衡微分⽅程:(1) 平⾯问题的平衡微分⽅程;00yxx x xy yy f x yf x yτστσ??++=++=??(记)(2) 平⾯问题的平衡微分⽅程(极坐标);10210f f ρρ?ρ?ρ?ρ?ρ?σ?τσσ?ρρ??ρσ?ττρρρ-+++=+++=1、平衡⽅程仅反映物体部的平衡,当应⼒分量满⾜平衡⽅程,则物体部是平衡的。
《弹性力学基础知识概述》一、引言弹性力学作为固体力学的一个重要分支,主要研究弹性体在外力作用下的应力、应变和位移。
弹性力学的理论和方法在工程结构设计、材料科学、地球物理学等众多领域都有着广泛的应用。
本文将对弹性力学的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 弹性体弹性体是指在外力作用下,能够产生弹性变形,当外力去除后,能够完全恢复到原来形状和尺寸的物体。
弹性体的变形通常是微小的,其应力与应变之间存在着一定的关系。
2. 应力应力是指单位面积上所承受的力。
在弹性力学中,应力通常分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位是帕斯卡(Pa)。
3. 应变应变是指物体在受力作用下,形状和尺寸的改变量与原来形状和尺寸的比值。
应变通常分为正应变和切应变。
正应变是长度的改变量与原来长度的比值,切应变是角度的改变量。
应变是无量纲的量。
4. 弹性模量弹性模量是衡量材料弹性性质的指标,它表示材料在受力作用下产生弹性变形的难易程度。
弹性模量通常分为杨氏模量、剪切模量和体积模量。
杨氏模量是正应力与正应变的比值,剪切模量是切应力与切应变的比值,体积模量是体积应力与体积应变的比值。
三、核心理论1. 平衡方程平衡方程是弹性力学的基本方程之一,它描述了弹性体在受力作用下的平衡状态。
平衡方程可以表示为:$\sigma_{ij,j}+f_i=0$其中,$\sigma_{ij}$是应力张量,$f_i$是体积力,$j$表示对坐标的偏导数。
2. 几何方程几何方程描述了弹性体在受力作用下的变形情况。
几何方程可以表示为:$\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})$其中,$\epsilon_{ij}$是应变张量,$u_i$是位移矢量,$j$表示对坐标的偏导数。
3. 物理方程物理方程描述了应力与应变之间的关系。
弹性力学基础知识归纳第一篇:弹性力学基础知识归纳一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。