电力系统潮流计算
- 格式:doc
- 大小:376.00 KB
- 文档页数:32
电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
电力系统潮流计算电力系统潮流计算是电力系统运行和安排分析的基础,也是现代电力系统科学研究的重要内容之一。
潮流计算主要是根据电力系统终端负荷和电力系统节点的运行状态,计算和分析不同状态下电力系统的各种相关物理量。
电力系统潮流计算的核心目的是为了确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,以此来达到系统的安全、稳定、可靠和经济的运行。
电力系统潮流计算是通过对电力系统运行特征和物理约束的有效分析,来检测b系统安全性、稳定性和经济性,以及发电、负荷、输电线路和变压器等设备状态的检测,从而有效帮助电力系统的运行和控制。
潮流计算可以用来分析电力系统拓扑结构、根据拓扑结构对系统故障进行性检查、以及分析电力系统的安全稳定性等。
电力系统潮流计算的计算方法主要有基于线性代数的潮流计算法、参数拟合法,基于全局优化的潮流计算法,基于负载拟合的潮流计算法等方法。
基于线性代数的潮流计算法主要是根据电力系统的线性约束和Kirchhoff定律来建立电力系统的各种物理参数的数学模型,以此来计算出电力系统的潮流和电压。
参数拟合法是根据电力系统各节点的历史数据来建立负荷模型,然后根据这些模型来拟合出电力系统的潮流和电压。
基于全局优化的潮流计算法则是利用模拟退火和遗传算法等全局优化算法,求解出电力系统的潮流和电压。
潮流计算结果主要应用在电力系统规划设计、电力网络安全分析、发电满足率分析、电网终端负荷预测、电力系统容量及负荷平衡等方面。
电力系统规划设计时,可以利用潮流计算结果,选择合适的设备、制定负荷安排方案,确定电力系统的最佳运行模式,以保证系统的安全可靠。
电力网安全分析中,可以利用潮流计算的结果,检测出电力系统的故障点,以及设备的运行情况,从而有效预防和应对电力系统的安全威胁。
综上所述,电力系统潮流计算是电力系统及其科学研究的重要内容,通过对电力系统的物理参数有效分析,可以帮助电力系统安全、可靠的运行。
潮流计算的核心目的是确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,并且利用潮流计算结果,可以在电力系统规划、安全分析、发电满足率分析、电网终端负荷预测等方面发挥作用。
电力系统潮流计算引言电力系统潮流计算是电力系统分析中的重要环节。
通过潮流计算,可以确定电力系统中各个节点的电压和电流分布,从而评估系统的稳定性、负载能力以及潮流路径等重要参数。
本文将介绍电力系统潮流计算的基本原理、常用的计算方法以及相关的软件工具。
潮流计算原理电力系统潮流计算基于基尔霍夫电流法和功率-电压关系理论。
在潮流计算中,电力系统被建模为一个复杂的电路网络,其中各个节点表示发电机、负载和变电站等设备。
通过求解节点间的电压和电流,可以得到系统各个节点的电压和电流分布情况。
潮流计算方法直流潮流计算直流潮流计算是潮流计算中最简单和最常用的方法。
在直流潮流计算中,电力系统中的电流和电压被假设为恒定的直流量。
这种方法适用于传输系统和简单的配电网。
直流潮流计算的基本步骤包括建立节点电压方程、定义线路参数、计算线路功率损耗和节点电压。
交流潮流计算交流潮流计算是潮流计算中更为复杂的方法,它考虑了网络中的电压相位差和无功功率流动。
在交流潮流计算中,电力系统的节点电压和变压器的变比可以变化。
这种方法适用于复杂的电力系统,能够更准确地模拟实际情况。
交流潮流计算的基本步骤包括建立节点功率方程、定义节点电压相位差、计算线路功率和节点电压。
潮流计算软件潮流计算是一项复杂且计算量大的工作,需要借助计算机软件来实现。
以下是一些常用的潮流计算软件:1.PSS/E:由Siemens开发的电力系统潮流计算软件,功能强大且广泛使用。
2.PowerWorld Simulator:一款商业化的电力系统仿真软件,可以进行潮流计算、稳定性分析和故障分析等。
3.MATLAB/Simulink:MATLAB提供了强大的数值计算和仿真功能,可以用于电力系统潮流计算和建模。
结论电力系统潮流计算是电力系统分析中的重要环节,可以帮助我们了解系统的运行状态和性能。
直流潮流计算和交流潮流计算是常用的潮流计算方法,可以根据系统的复杂程度和要求选择合适的方法。
电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。
其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。
本文将详细介绍电力系统潮流计算的原理、方法和应用。
一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。
潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。
电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。
$V_i$和$\theta_i$表示第i个节点的电压和相角。
$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。
二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。
1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。
直接法的计算速度快,但对系统规模有一定的限制。
2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。
迭代法通过迭代求解潮流方程来计算电力系统的潮流。
迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。
3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。
电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。
通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。
本文将介绍电力系统潮流计算的基本原理、计算方法和应用。
一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。
潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。
2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。
3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。
二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。
其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。
牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。
快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。
三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。
具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。
2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。
3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。
电力系统潮流计算汇总电力系统潮流计算是电力系统分析和研究的基础之一,它是通过数学方法和电力系统的物理方程,计算并确定电力系统中各节点的电压幅值和相角,以及各支路的电流大小和相位。
电力系统潮流计算可以用于电力系统的规划、设计、运行与故障分析等方面。
电力系统潮流计算主要包括直流潮流计算和交流潮流计算。
直流潮流计算是指在电力系统中忽略线路的阻抗和电抗,只考虑发电机的电动势和负荷的功率需求,采用简化模型进行计算。
直流潮流计算方法简单,适用于小型、低压、简单电力系统的计算。
然而,对于复杂的大型交流电力系统,需要进行交流潮流计算。
交流潮流计算是指在电力系统中考虑线路的阻抗和电抗,并且计算节点的电压幅值和相角,以及各线路的电流大小和相位。
交流潮流计算需要解决一组非线性方程组,使用迭代法进行求解。
常见的交流潮流计算方法有牛顿-拉夫逊法、高斯-赛德尔法和快速潮流法等。
牛顿-拉夫逊法是一种常用的交流潮流计算方法,通过迭代法求解非线性方程组。
该方法将电力系统的潮流计算问题转化为求解节点电压和功率不平衡的方程组。
牛顿-拉夫逊法采用雅可比矩阵进行线性化,通过迭代计算修正方向和步长,逐步逼近方程组的解。
然后,根据修正的节点电压和功率不平衡进行下一次迭代,直到方程组的解满足收敛条件为止。
高斯-赛德尔法是另一种常用的交流潮流计算方法,该方法通过一次迭代求解并更新所有节点的电压和功率不平衡。
高斯-赛德尔法是一种逐次迭代的方法,每次迭代将上一次的节点电压作为新的节点电压进行计算,直到满足收敛条件为止。
这种方法的关键是选择一个合适的迭代次数和收敛条件,以确保计算结果的准确性和可靠性。
快速潮流法是一种基于改进的高斯-赛德尔法的交流潮流计算方法。
它通过将电力系统的节点分为平衡节点和非平衡节点,将其中的平衡节点选为参考节点,简化了方程组的求解。
快速潮流法首先通过高斯-赛德尔法进行初始迭代,然后根据电压和功率不平衡的误差计算出修正系数,进一步修正节点的电压和功率不平衡,直到满足收敛条件为止。
电力系统潮流计算电力系统潮流计算是一种重要的计算方式,它主要用于计算电力系统分布式负荷和源之间的电力特性,以确定系统负荷和发电源之间的电力分配。
自上世纪80年代以来,随着电力系统越来越动态变化和智能化,电力系统潮流计算的发展就变得越来越重要。
电力系统潮流计算是基于电力系统的物理特性建模和计算,其目的是确定系统的电气特性,以确定系统的运行方式和改善系统效率。
它采用非线性扩展的模型和数学方法,建模和分析电力系统的电力特性,以确定系统发展趋势,满足入口电压和出口电压之间的平衡,为系统安全运行提供依据。
电力系统潮流计算主要分为三类:包括系统潮流分析、支路潮流分析和支路方程式分析。
系统潮流分析是基于负荷分布的潮流分析,主要用于分析和评估系统的负荷和发电源之间的电气特性,满足系统负荷和发电源之间的平衡,为系统安全运行提供分析。
支路潮流分析可以用于分析支路参数对电力系统电力特性的影响,预测改变支路参数后电力系统的变化及其他潮流分析方面的影响。
支路方程式分析是系统潮流计算的重要组成部分,它综合分析每条支路的电流和电压,以确定每条支路的电气特性。
另外,电力系统潮流计算还包括潮流抑制器的分布式潮流计算、无功补偿的潮流计算、复杂网络的潮流计算等。
电力系统潮流计算的发展有助于提高电力系统的安全性和可靠性,保证其正常运行,满足客户的负荷要求。
力系统潮流计算的重要性将更加凸显,因为它能够帮助电力公司分析和管理系统参数,以实现电力系统目标。
随着电力系统技术的不断发展,潮流计算方式也在不断改进,可以更好地满足不断变化的电力系统需求,从而更好地支持电力系统的可靠运行。
为此,电力系统潮流计算的研究和发展也将会继续受到重视。
综上所述,电力系统潮流计算是一种重要的电力系统计算技术,为电力系统的安全运行作出了重要贡献。
它的发展不仅为电力系统的智能化发展提供了重要技术支撑,而且还可以为电力系统的可靠运行提供保障,从而实现电力系统的综合优化。
电力系统潮流计算电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。
它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各中的功率分布以及功率母线上的电压(幅值及相角)、网络损耗等。
电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。
意义:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。
(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。
总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。
潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。
此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。
对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。
因此其数学模型不包含微分方程,是一组高阶非线性方程。
电力系统潮流计算简介潮流计算是电力系统运行与规划的重要工具之一,通过计算电力系统的节点电压、电流及功率等参数,可以帮助分析系统运行情况、评估电力系统稳定性和负荷承载能力,为电力系统的优化调度和规划提供依据。
本文将介绍电力系统潮流计算的基本原理和常用的数学模型,以及潮流计算的算法和应用。
潮流计算原理电力系统潮流计算是基于电力系统的等值模型进行的。
等值模型是对电力系统的复杂网络结构进行简化,将电力系统视为一组节点和支路的连接图,其中节点表示发电机、变电站和负荷,支路表示输电线路和变压器。
潮流计算的基本原理是基于电力系统的基尔霍夫电流定律和基尔霍夫电压定律,通过建立节点电压和支路功率的方程组,求解方程组得到电力系统中各节点的电压、电流和功率等参数。
潮流计算可以分为直流潮流计算和交流潮流计算两种。
直流潮流计算直流潮流计算是将电力系统视为直流电路进行计算的一种简化方法。
在直流潮流计算中,各节点的电压都假设为恒定值,即不考虑电力系统中的电压相位差。
直流潮流计算可以较准确地求解直流电力系统的电压、电流和功率等参数,常用于电力系统的初始计算和短期稳定计算。
交流潮流计算交流潮流计算是对电力系统的交流特性进行全面分析和计算的方法。
交流潮流计算考虑电力系统中的电压相位差和电流谐波等复杂情况,可以求解电力系统中各节点的电压、电流和功率的精确值。
交流潮流计算常用于电力系统长期稳定计算、电力系统规划和扩容的分析等。
潮流计算数学模型潮流计算的节点电压方程假设电力系统有n个节点,节点的电压记为V i,支路的电流记为I ij。
根据基尔霍夫电流定律和基尔霍夫电压定律,可以得到潮流计算中节点电压方程的数学表达式:$$ \\begin{align*} \\sum_{j=1}^n Y_{ij}V_j &= I_{i}^g - I_{i}^l \\\\ I_{ij} &= Y_{ij} (V_i - V_j) \\end{align*} $$其中,Y ij是节点i和节点j之间的支路导纳,I i g和I i l分别是节点i的总注入电流和总负荷电流。
第11章电力系统的潮流计算§11.0 概述§11。
1 开式网络的电压和功率分布计算§11。
2 闭式网络潮流的近似计算方法§11.3 潮流计算的数学模型§11。
4 牛顿一拉夫逊法的潮流计算§11.5P—Q分解法潮流§11。
0 概述1、定义:根据给定的运行条件求取给定运行条件下的节点电压和功率分布。
2、意义:电力系统分析计算中最基本的一种:规划、扩建、运行方式安排.3、所需:①根据系统状态得到已知条件:网络、负荷、发电机。
②电路理论:节点电流平衡方程.③非线性方程组的列写和求解.4、已知条件:①负荷功率②发电机电压5、历史:手工计算:近似方法(§11。
1,§11.2)计算机求解:严格方法§11。
1 开式网络的电压和功率分布计算注重概念,计算机发展和电力系统复杂化以前的方法。
1、已知末端功率和未端电压,见解说:已知和各点功率由此可见:利用上节的单线路计算公式,从末端开始逐级往上推算。
以图11.1讲解,已知V1和各点功率迭代法求解:①假定末端为额定电压,按上小节方法求得始端功率及全网功率分布②用求得的始端功率和已知的始端电压,计算线路末端电压和全网功率分布③用第二步求得的末端电压重复第一步计算④精度判断:如果各线路功率和节点电压与前一次计算小于允许误差,则停止计算,反之,返回第2步重复计算.⑤从首端开始计算线路各电压●如果近似精度要求不高,可以不进行迭代,只进行①、⑤计算始可。
3、对并联支路和分支的处理.4、多级电压开式电力网的计算.①折算到一侧进行计算,计算完以后再折算回去②原线路进行计算,碰到理想变压器则进行折算。
③型等值电路。
5、复杂辐射状网络的计算①基本计算步骤图讨论:a、迭代次数b、最近的研究论文②计算机实现a、节点编号(计算顺序)●引出问题●叶节点法:叶节号非叶节点编号方法b、支路返回法讨论:节点编号的工程基础③少量环网的处理方法§11.2 简单闭式网络潮流的近似计算方法简单闭式网络:两端供电网络或环形网络1、近似功率重迭原理:求两端供电网络的功率分布,本节介绍近似方法求电流分布,可以用叠加原理,则:如果忽略损耗,认为各点电压都等于V N,则在以上两式的两边各乘V N,则得到:与电路理迭加原理相对应,这便是近似功率迭加原理,以上公式中功率分为两部分,第一项:由负荷功率和网络参数确定,分别与电源点到负荷点间的阻抗共轭值成反比.第二项:负荷无关,由电势差和网络参数确定,称为循环功率。
电力系统课程设计题目: 电力系统潮流计算院系名称:电气工程学院专业班级:电气F1206班学生姓名:学号:指导教师:张孝远122.2 节点的分类 (5)3 计算方法简介 (6)3.1 牛顿—拉夫逊法原理 (6)3.1.1 牛顿—拉夫逊法概要 (6)3.1.2 牛顿法的框图及求解过程 (8)3.2 MATLAB简介 (9)4 潮流分布计算 (10)4.1 系统的一次接线图 (10)4.2 参数计算 (10)4.3 丰大及枯大下地潮流分布情况 (14)4.3.1 该地区变压器的有功潮流分布数据 (15)4.3.2 重、过载负荷元件统计表 (17)5 设计心得 (17)参考文献 (18)附录:程序 (19)原始资料一、系统接线图见附件1。
二、系统中包含发电厂、变电站、及其间的联络线路。
500kV变电站以外的系统以一个等值发电机代替。
各元件的参数见附件2。
设计任务1、手动画出该系统的电气一次接线图,建立实际网络和模拟网络之间的联系。
2、根据已有资料,先手算出各元件的参数,后再用Matlab表格核算出各元件的参数。
3、潮流计算1)对两种不同运行方式进行潮流计算,注意110kV电网开环运行。
2)注意将电压调整到合理的范围110kV母线电压控制在106kV~117kV之间;220kV母线电压控制在220 kV~242kV之间。
附件一:72水电站2水电站1303x40C20+8B 2x8A2x31.5D4x7.5水电站5E2x1090+120H12.5+31.5FG1x31.5水电站324L2x150火电厂1x50M110kV线路220kV线路课程设计地理接线示意图110kV变电站220kV变电站牵引站火电厂水电站500kV变电站附件二:1、变压器:两个220kV变电站均采用参数一致的三绕组变压器,具体参数如下。
110kV及以下的变电站的变压器省略,即可将负荷直接挂在110kV母线上。
而110kV升压变只计及以下参数。
2、线路:具体参数如下。
3、发电机各发电机的参数如下:出力情况:水力发电机丰大出力70%,枯大出力20%。
火力发电机丰大出力80%,枯大出力80%。
4、负荷各110kV变电站丰大负荷按该站变电容量的50%估算,枯大负荷按该站变电容量的60%估算。
两个220kV变电站的低压侧上各挂10MW的负荷,中压侧各挂20MW负荷。
功率因素均为0.95。
5、并联电容器两个220kV变电站的低压侧上均装设并联补偿。
补偿总量按该站变电容量的20%装设,分组原则以每组电容器的容量不超过10MVar且经济性较好为准。
1 概述潮流计算是电力系统最基本最常用的计算。
根据系统给定的运行条件,网络接线及元件参数,通过潮流计算可以确定各母线的电压,包括电压的幅值和相角,各元件流过的功率,整个系统的功率损耗等一系列系统中的潮流数据。
近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。
牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。
后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法。
潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种,牛顿—拉夫逊Newton-Raphson法是数学上解非线性方程组的有效方法,有较好的收敛性。
将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性,稀疏性及节点编号顺序优划等技巧,使N-R法在收敛性,占用内存,计算速度等方面的优点都超过了阻抗法总结为在电力系统运行方式和规划方案的研究中都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时为了实时监控电力系统的运行状态也需要进行大量而快速的潮流计算。
因此潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时采用离线潮流计算在电力系统运行状态的实时监控中则采用在线潮流计算。
2 潮流计算节点介绍常规的电力系统潮流计算中一般具有三种类型的节点:PQ、PV及平衡节点。
一个节点有四个变量,即注入有功功率、注入无功功率,电压大小及相角。
常规的潮流计算一般给定其中的二个变量:PQ节点(注入有功功率及无功功率),PV节点(注入有功功率及电压的大小),平衡节点(电压的大小及相角)。
2.1 变量的分类负荷消耗的有功、无功功率——1L P 、1L Q 、2L P 、2L Q 电源发出的有功、无功功率——1G P 、1G Q 、2G P 、2G Q 母线或节点的电压大小和相位——1U 、2U 、1δ、2δ在这十二个变量中,负荷消耗的有功和无功功率无法控制,因它们取决于用户,它们就称为不可控变量或是扰动变量。
电源发出的有功无功功率是可以控制的自变量,因此它们就称为控制变量。
母线或节点电压的大小和相位角——是受控制变量控制的因变量。
其中, 1U 、2U 主要受1G Q 、2G Q 的控制, 1δ、2δ主要受1G P 、2G P 的控制。
这四个变量就是简单系统的状态变量。
为了保证系统的正常运行必须满足以下的约束条件: 对控制变量 对没有电源的节点则为 对状态变量i U 的约束条件则是 对某些状态变量i δ还有如下的约束条件2.2 节点的分类⑴ 第一类称PQ 节点。
等值负荷功率Li P 、Li Q 和等值电源功率Gi P 、Gi Q 是给定的,从而注入功率i P 、i Q 是给定的,待求的则是节点电压的大小i U 和相位角i δ。
属于这类节点的有按给定有功、无功率发电的发电厂母线和没有其他电源的变电所母线。
⑵ 第二类称PV 节点。
等值负荷和等值电源的有功功率Li P 、Gi P 是给定的,从而注入有功功率i P 是给定的。
等值负荷的无功功率Li Q 和节点电压的大小i U 也是给定的。
待求的则是等值电源的无功功率Gi Q ,从而注入无功功率iQ 和节点电压的相位角i δ。
有一定无功功率储备的发电厂和有一定无功功率电源的变电所母线都可以作为PV 节点;⑶ 第三类平衡节点。
潮流计算时一般只设一个平衡节点。
等值负荷功率Ls P 、Ls Q 是给定的,节点电压的大小和相位也是给定的。
担负调整系统频率任务的发电厂母线往往被选作为平衡节点。
3 计算方法简介3.1 牛顿—拉夫逊法原理3.1.1 牛顿—拉夫逊法概要首先对一般的牛顿—拉夫逊法作一简单的说明。
已知一个变量X 函数为:到此方程时,由适当的近似值)0(X出发,根据:反复进行计算,当)(n X 满足适当的收敛条件就是上面方程的根。
这样的方法就是所谓的牛顿—拉夫逊法。
这一方法还可以做下面的解释,设第n 次迭代得到的解语真值之差,即)(n X 的误差为ε时,则: 把)()(ε+n Xf 在)(n X附近对ε用泰勒级数展开上式省略去2ε以后部分)(n X 的误差可以近似由上式计算出来。
比较两式,可以看出牛顿—拉夫逊法的休整量和)(n X 的误差的一次项相等。
用同样的方法考虑,给出n 个变量的n 个方程:对其近似解1X '得修正量1X '∆可以通过解下边的方程来确定: 式中等号右边的矩阵nnx f ∂∂都是对于n X X X ''',,,21 的值。
这一矩阵称为雅可比(JACOBI )矩阵。
按上述得到的修正向量n X X X '∆'∆'∆,,,21 后,得到如下关系这比n X X X ''',,,21 更接近真实值。
这一步在收敛到希望的值以前重复进行,一般要反复计算满足ε为预先规定的小正数,1+n n X 是第n 次迭代n X 的近似值。
3.1.2 牛顿法的框图及求解过程1、用牛顿法计算潮流时,有以下的步骤: (1)给这各节点电压初始值)0()0(,fe ;(2)将以上电压初始值代入公式,求修正方程的常数项向量)0(2)0()0()(,,V Q P ∆∆∆;(3)将电压初始值在带入上述公式,求出修正方程中系数矩阵的各元素。
(4)解修正方程式)0()0(,f e ∆∆;(5)修正各节点电压)0()0()1(e e e ∆+=,)0()0()1(f f f ∆+=; (6)将)1(e ,)1(f 在带入方程式,求出)1(2)1()1()(,,V Q P ∆∆∆; (7)检验是否收敛,即{}ε<∆∆)()(,max k ik i Q P(8)如果收敛,迭代到此结束,进一步计算各线路潮流和平衡节点功率,并打印输出结果。
如果不收敛,转回(2)进行下次迭代计算,直到收敛为止。
2、程序框图如下3.2 MATLAB 简介MATLAB 是用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。
是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C 、Fortran )的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB 是一种交互式、面向对象的程序设计语言广泛应用于工业界与学术界主要用于矩阵运算同时在数值分析、自动控制模拟、数字信号处理、动态分析、绘图等方面也具有强大的功能。
MATLAB 程序设计语言结构完整且具有优良的移植性它的基本数据元素是不需要定义的数组。
它可以高效率地解决工业计算问题特别是关于矩阵和矢量的计算。
MATLAB 与C 语言和FORTRAN 语言相比更容易被掌握。
通过M 语言可以用类似数学公式的方式来编写算法大大降低了程序所需的难度并节省了时间,从而可把主要的精力集中在算法的构思而不是编程上。
目前电子计算机已广泛应用于电力系统的分析计算潮流计算是其基本应用软件之一。
现有很多潮流计算方法。
对潮流计算方法有五方面的要求(1)计算速度快(2)内存需要少(3)计算结果有良好的可靠性和可信(4)适应性好亦即能处理变压器变比调整、系统元件的不同描述和与其它程序配合的能力强。
4 潮流分布计算4.1 系统的一次接线图图4.1 系统的一次连接图4.2 参数计算设定基准值MVA S B 100 ,Ub=Uav.n ,则各参数如下。
(1)发电机的次暂态电抗:X=X*Sb/Sn ,Z B =U B 2/S N发电机参数 单位(MW ) 电厂 装机容量枯水出力丰水出力丰大有功 丰大无功 枯大有功 枯大无功短路X*''(2)110KV升压变压器的参数:电阻:R=PK *UN2/ 1000SN2;电抗:X=UK (%)*UN2/ 100 SN;电导:G=P0/ 1000 UN2;电纳:B=I0(%)*SN/ 100 UN2;式中UN 以KV为单位,SN以MVA为单位,P、PK以KW为单位。