因式分解(一)-奥数精讲与测试8年级
- 格式:doc
- 大小:75.00 KB
- 文档页数:4
2020年数学竞赛初二奥数之和差化积因式分解专题3 和差化积----因式分解的方法(1)阅读与思考提公因式、公式法、十字相乘法、分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法,有公因式的先提公因式,分解必须进行到每一个因式都不能再分解为止. 一些复杂的因式分解问题经常用到以下重要方法: 1.换元法:对一些数、式结构比较复杂的多项式,可把多项式中的某些部分看成一个整体,用一个新字母代替,从而可达到化繁为简的目的.从换元的形式看,换元时有常值代换、式的代换;从引元的个数看,换元时有一元代换、二元代换等. 2.拆、添项法:拆项即把代数式中的某项拆成两项的和或差,添项即把代数式添上两个符号相反的项,因式分解中进行拆项与添项的目的是相同的,即经过拆项或添项后,多项式能恰当分组,从而可以运用分组分解法分解.例题与求解【例l 】分解因式()()=-++++122122x x x x ___________.(浙江省中考题)解题思路:把()x x +2看成一个整体,用一个新字母代换,从而简化式子的结构.【例2】观察下列因式分解的过程: (1)y x xy x 442-+-;原式=()()()()()()44442+-=-+-=-+-x y x y x y x x y x xy x ;(2)bc c b a 2222+--.原式=()()()()c b a c b a c b a bc c b a +--+=--=-+-222222.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式. 仿照上述分解因式的方法,把下列各式分解因式: (1)bc ac ab a -+-2;(西宁市中考试题)(2)yz z y x 44222+--.(临沂市中考试题)解题思路:通过分组,使每一组分组因式后,整体能再分解,恰当分组是关键,经历“实验--失败--再试验--再失败--直至成功”的过程.【例3】分解因式(1)1999)11999(199922---x x ;(重庆市竞赛题)(2)()()()()112-+++++xy xy xy y x y x ;(“缙云杯”邀请赛试题)(3)()()()33322y x y x -----.(“五羊杯”竞赛试题)解题思路:(1)式中系数较大,直接分解有困难,不妨把数字用字母来表示;(2)式中y x +、xy 反复出现,可用两个新字母代替,突出式子的特点;(3)式中前两项与后一项有密切联系.【例4】把多项式34222----y x y x 因式分解后,正确的结果是( ).A .()()13--++y x y xB .()()31+--+y x y xC .()()13+--+y x y xD .()()31--++y x y x(“希望杯”邀请赛试题)解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.【例5】分解因式: (1)15++x x ;(扬州市竞赛题)(2)893+-x x ;(请给出多种解法)(“祖冲之杯”邀请赛试题)(3)1232234++++a a a a .解题思路:按次数添上相应的项或按系数拆项法分解因式的基本策略.【例6】分解因式:611623+++x x x .(河南省竞赛试题)解题思路:拆哪一项?怎样拆?可有不同的解法.能力训练A 级1.分解因式: (1)2341x x x -+=___________________________. (泰安市中考试题)(2)33164mn n m -=__________________________.(威海市中考试题)2.分解因式:(1)xy y y x x 2)1()1(-++-=_________________________; (2)8)3(2)3(222-+-+x x x x =_____________________________. 3.分解因式:32422+++-b a b a =____________________________. 4.多项式a ax 83-与多项式442+-x x 的公因式是____________________.5.在1~100之间若存在整数n ,使n x x -+2能分解为两个整系数一次式的乘积,这样的n 有_______个. 6.将多项式yz z y x 1294222---分解因式的积,结果是().A .)32)(32(z y x z y x ---+B .)32)(32(z y x z y x +---C .)32)(32(z y x z y x -+++D .)32)(32(z y x z y x --++ 7.下列各式分解因式后,可表示为一次因式乘积的是().A .2727923-+-x x x B .272723-+-x x x C .272734-+-x x x D .279323-+-x x x(“希望杯”邀请赛试题)8.把44+a 分解因式,其中一个因式是( ).A .1+aB .22+a C .42+a D .222+-a a 9.多项式abc c b a 3333++-有因式( ).A .b a c -+B .c b a ++C .ab ac bc c b a -+-++222D .ab ac bc +-(“五羊杯”竞赛试题)10.已知二次三项式10212-+ax x 可分解成两个整系数的一次因式的积,那么().A .a 一定是奇数B .a 一定是偶数C .a 可为奇数也可为偶数D .a 一定是负数 11.分解因式:(1)13322)132(222-+-+-x x x x ; (2)90)384)(23(22-++++x x x x ;(3)1724+-x x ; (“祖冲之杯”邀请赛试题) (4)65223--+x x x ; (重庆市竞赛试题) (5)444)(y x y x +++;(6)2)1)(13)(12)(16(x x x x x +----.12.先化简,在求值:2)()(2b a b a a +-+,其中 2008=a ,2007=b .B 级1.分解因式:344422-+--y y x x =_______________.(重庆市竞赛试题)2.分解因式:)5()4)(3)(2)(1(++++++x x x x x x =_____________.(“五羊杯”竞赛试题)3.分解因式:12)5)(3)(1(2+++-x x x =_________________________.(“希望杯”邀请赛试题)4.分解因式:15-+x x =______________________.(“五羊杯”竞赛试题)5.将145++x x 因式分解得().A .)1)(1(32++++x x x x B .)1)(1(32+++-x x x xC .)1)(1(32+-+-x x x xD .)1)(1(32+-++x x x x(陕西省竞赛试题)6.已知c b a ,,是△ABC 三边的长,且满足0)(22222=+-++c a b c b a ,则此三角形是( ). A .等腰三角形 B .等边三角形 C .直角三角形 D .不能确定 7.613223+-+x x x 的因式是( ).A .12-xB .2+xC .3-xD .12+x E. 12+x(美国犹他州竞赛试题)8.分解因式:(1)2)1()2)(2(ab b a ab b a -+-+-+; (湖北省黄冈市竞赛试题) (2)19991998199924+++x x x ; (江苏省竞赛试题) (3)22212)16)(1(a a a a a ++-++; (陕西省中考试题) (4)153143+-x x ; (“祖冲之杯”邀请赛试题) (5)333)(125)23()32(y x y x y x ---+-; (“五羊杯”竞赛试题) (6)6121444234++--x x x x . (太原市竞赛试题)9.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+ ))((43223455b ab b a b a a b a b a ++++-=-利用或者不利用上述公式,分解因式:12468++++x x x x .(“祖冲之杯”邀请赛试题)10.分解因式: (1)x x x 27623-+; (2)123--+a a a ;(3)xy y x x y x ++--)7()2(822.11.对方程20042222=++b a b a ,求出至少一组正整数解.(莫斯科市竞赛试题)12.已知在△ABC 中,),,(010616222是三角形三边的长c b a bc ab c b a =++--, 求证:b c a 2=+.(天津市竞赛试题)专题03 和差化积-------因式分解的方法(1)例1. 22(5)(2)x x x x +++-例2. (1) 原式2()()()()()()a ab ac bc a a b c a b a b a c =-+-=-+-=-+ (2) 原式22222(44)(2)(2)(2)x y yz z x y z x y z x y z =--+=--=+--+ 例3.(1) (19991)(1999)x x +- (2) (1)(1)(1)x y xy x y ++++- (3) 3(2)(2)()x y x y --- 例4. D例5.(1) 232(1)(1)x x x x ++-+ 提示: 原式522()(1)x x x x =-+++ (2) 2(1)(8)x x x -+- 提示: 原式339988x x x =--+(3) 22(1)a a ++ 提示: 原式432322()()(1)a a a a a a a a =++++++++例6. 解法1 原式3222()(55)(66)(1)5(1)6(1)x x x x x x x x x x =+++++=+++++ 2(1)(56)(1)(2)(3)x x x x x x =+++=+++解法2 原式3222(2)(48)(36)(2)4(2)3(2)x x x x x x x x x x =+++++=+++++ 2(2)(43)(1)(2)(3)x x x x x x =+++=+++A 级1. (1) 21()2x x -(2) 4(2)(2)mn m n m n +- 2. (1) ()(1)x y x y ---(2) (1)(4)(1)(2)x x x x -+++ 3. (1)(3)a b a b ++-+ 4. 2x - 5. 9 6. D 7. A 8. D 9. A 10. A11. (1)(23)(3)(23)x x x x --+ 提示: 令 223x x y -= (2)2(2512)(27)(1)x x x x +++- (3) 22(31)(31)x x x x ++-+\(4) (1)(3)(2)x x x ++- 提示: 原式322()()(66)x x x x x =+++-+ (5) 2222()x y xy ++ 提示: 原式222224()2()x y x y x y =+-++ (6) 22(661)x x -+12. 原式22()(2)a b a a b a b =+--=-当a b ==原式22200820071=-=-=B 组1. (1) (23)(23)x y x y +--+ (2) 22(53)(58)x x x x ++++ 3. 22(43)(41)x x x x +-++ 5. D 6. B7. A 提示: 原式32(216)(1322)x x x =-+-+ 8. (1) 22(1)(1)a b --(2) 22(1)(1999)x x x x ++-+ 提示: 令1999a = (3) 22(1)(31)a a a --+(4) (21)(25)(3)x x x --+ 提示: 原式343015x x x =--+ (5) 15()(23)(32)x y x y x y ---- (6) 222(3)(221)x x x ---9. 由公式有 10286421(1)(1)x x x x x x -=-++++1055864243243221111(1)(1)111x x x x x x x x x x x x x x x x x x --+∴++++===++++-+-+--+ 10. (1) (9)(3)x x x +-(2) 2(1)(1)a a +- (3) (4)(4)x y x y +-11. 22(1)(1)2005540112005a b ++==⨯=⨯ 有22151401a b ⎧+=⎨+=⎩或22140115a b ⎧+=⎨+=⎩解得 220a b =⎧⎨=⎩或202a b =⎧⎨=⎩12. 222222222--++=++--+=+--a b c ab bc a ab b b bc c a b b c6610(69)(2510)(3)(5)=++-+--=+--+[(3)(5)][(3)(5)](8)(2)a b b c a b b c a b c a b c∴+->+-=+-+>a b c a b c a b c b,,a b c是三角形三边长, 0,8()70由条件只有20+=a c ba b c-+=,故2专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法 1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法. 2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l 】xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .()()()z x y x z y -+-B .()()()z x y x z y +--C .()()()z x y x z y +-+D .()()()z x y x z y -++(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1)bc ac ab c b a 54332222+++++;(“希望杯”邀请赛试题)(2)z y xy xyz y x z x x 222232242-++--.(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式1)12()12(2223-+-++++a x a a x a x .解题思路:因a 的最高次数低于x 的最高次数,故将原式整理成字母a 的二次三项式.【例4】k 为何值时,多项式k y x y xy x +++-+108222有一个因式是?22++y x(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式12544234+-+-x x x x 写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是44x ,因此二次三项式的一般形式为b ax x ++22,求出b a 、即可.【例6】如果多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +,)(c x +的乘积(c b ,为整数),则a 的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于a c b ,,的方程组,通过消元、分解因式解不定方程,求出a c b ,,的值.能力训练A 级1.分解因式:222449c bc b a -+-=___________________________.2.分解因式:22635y y x xy x ++++=_______________________(河南省竞赛试题)3.分解因式:)(3)(322y x y y x x -+-+++=____________________________.(重庆市竞赛试题)4.多项式78622++-+y x y x 的最小值为____________________.(江苏省竞赛试题)5.把多项式822222--++-y x y xy x 分解因式的结果是( )A .)2)(4(+---y x y xB .)8)(1(----y x y xC . )2)(4(--+-y x y xD .)8)(1(--+-y x y x6.已知122-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ).A .3 个B .4 个C .5 个D .6个 7.若4323+-kx x 被13-x 除后余3,则k 的值为( ). A .2 B .4 C .9 D .10(“CASIO 杯”选拔赛试题)8.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值是( ). A .92 B .32 C .54D .0(大连市“育英杯”竞赛试题)9.分解因式:(1)ac bc ab b a 2222++--;(吉林省竞赛试题)(2)))((4)(2b ac b a c ----;(昆明市竞赛试题)(3)a x a x x 2)2(323-++-;(天津市竞赛试题)(4)12267222--++-y x y xy x ;(四川省联赛试题)(5)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy(天津市竞赛试题)10.如果1)4)((---x a x 能够分割成两个多项式b x +和c x +的乘积(c b 、为整数),那么a 应为多少?(兰州市竞赛试题)11.已知代数式24322-+---by x y xy x 能分解为关于y x ,的一次式乘积,求b 的值.(浙江省竞赛试题)B 级1.若k x x x +-+3323有一个因式是1+x ,则k =_______________.(“希望杯”邀请赛试题)2.设y kx xy x x 42323---+可分解为一次与二次因式的乘积,则k =_____________.(“五羊杯”竞赛试题)3.已知4+-y x 是4322+++-y mx y x 的一个因式,则m =________________________. (“祖冲之杯”邀请赛试题) 4.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值为__________.(北京市竞赛试题)5.若823+++bx ax x 有两个因式1+x 和2+x ,则b a +=().A .8B .7C . 15D .21E .22(美国犹他州竞赛试题)6.多项式251244522+++-x y xy x 的最小值为( ). A .4 B .5 C .16 D .25(“五羊杯”竞赛试题)7.若136498322++-+-=y x y xy x M (y x ,为实数),则M 的值一定是().A .正数B .负数C .零D .整数(“CASIO 杯”全国初中数学竞赛试题) 8.设n m ,满足016102222=++++mn n m n m ,则),(n m =()A .(2,2)或(-2,-2)B .(2,2)或(2,-2)C .(2,-2)或(-2,2)D .(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:222444)(2)(b ab a b a b a ++=+++.(北京市竞赛试题)11.已知整数c b a ,,,使等式)1)(11()10())((+-=-+++x x x c b x a x 对任意的x 均成立,求c 的值.(山东省竞赛试题)12.证明:对任何整数y x ,,下列的值都不会等于33.543223451241553y xy y x y x y x x ++--+(莫斯科市奥林匹克试题)专题04 和差化积-------因式分解的方法(2)例1. A 提示: 将原式重新整理成关于x 的二次三项式例2. (1) (23)()a b c a b c ++++ 提示: 原式222(34)(352)a b c a c bc b =+++++ (2) 2()(2)x y x z -- 提示: 原式2232(2)(24)(2)x z y xz x y x x z =-+-+-例3. 原式223222(1)(22)(1)(1)(2(1)(1)(1)x a x x a x x x x a x x a x x =+++++--=+++++- 22(1)(21)(1)(1)(1)x a ax x x x a x a =+++-=++++-例4. 12k = 提示: 222(2)()x xy y x y x y +-=+- ∴可设原式(22)()x y x y n =++-+展开比较对应项系数得28,2210,2,n n k n +=⎧⎪-=⎨⎪=⎩解得k =12.例5 原式=()2221x x -+.例6 设x 2-(a +5)x +5a -1=(x +b )(x +c )=x 2+(b +c )x +bc . ∴()5,5 1.b c a bc a +=-+⎧⎪⎨=-⎪⎩①②①×5+2得bc +5(b +c )=-26,bc +5(b +c )+25=-1,(b +5)(c +5)=-1. ∴51,51b c +=⎧⎨+=-⎩或51,5 1.b c +=-⎧⎨+=⎩∴4,6b c =-⎧⎨=-⎩或6,4.b c =-⎧⎨=-⎩故a =5.A 级1.(3a +2b -c )(3a -2b +c ) 2.(x +3y )(x +2y +1) 3.(x +y +1)(x -y +3) 4.-18 5.C 6.D 7.D 8.D9.(1)(2a +b )(a -b +c ); (2)(a +c -2b )2; (3)(x -2)(x 2-x +a ); (4)(x -2y +3)(2x -3y -4); (5)(x +1)(y +1)(x -1)(y -1).10.提示:由题意得4,4 1.b c abc a+=--⎧⎨=-⎩①②①×4+②,得(b+4)(c+4)=-1,推得3,5bc=-⎧⎨=-⎩或5,3,bc=-⎧⎨=-⎩故a=4.11.∵x2-3xy-4y=(x+y)(x-4y),∴可设原式=(x+y+m)(x-4y+n),展开比较对应项系数得b=-6或9.B级1.k=-52.-2提示:原式=x(x2+3x-k)-2y(x+2),令x=-2.3.5提示:令原式=(x-y+4)·A,取一组x,y的值代入上式.4.-35.C提示:x=-1,x=-2是方程x3+ax2+bx+8=0的解.6.C提示:原式=(x-2y)2+(2x+3)2+167.A提示:原式=2(x-2y)2+(x-2)2+(y+3)2≥0,且这三个数不能同时为零,M>0.8.C9.k=-3提示:因x2+3x+2=(x+1)(x+2),故可令原式=(x+my+1)·(x十ny+2),展开比较对应项系数求出k.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开x2+(a+b+c)x+ab-l0c=x2-10x-11.∴10,1011.a b cab c++=-⎧⎨-=-⎩①②①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴101,1011.ab+=⎧⎨+=-⎩或101,1011.ab+=-⎧⎨+=-⎩或1011,10 1.ab+=⎧⎨+=-⎩或1011,10 1.ab+=-⎧⎨+=⎩∴9,21ab=-⎧⎨=-⎩或11,1ab=-⎧⎨=⎩或1,11ab=⎧⎨=-⎩或21,9.ab=-⎧⎨=-⎩代入①得c=0或20.12.原式=(x5+3x4y)-(5x3y+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y2)=(x+3y)(x2-4y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5≠33;当y≠0时,x+3y,x-y,x-2y,x+2y,x+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当x取任意整数,y取不为0的任意整数,原式≠33.。
例1.分解因式:⑴a6−b6;⑵a2+b2+c2−2bc+2ca−2ab;⑶a7−a5b2+a2b5−b7例2.分解因式:⑴a3+b3+c3−3abc;⑵x3+y3+3xy−1. 例3.分解因式:(x−1)3+(x−2) 3+(3−2x) 3例4.分解因式:x3−5x+4.例5.分解因式:x5n+x n+1.例6.分解因式:(x+1)4+(x2−1)2十(x−1) 4.例7.分解因式:a4+b4+c4−2a2b2−2b2c2−2c2a2A卷一、填空题01.分解因式(a+b)2+(a−b) 2+c(a2+b2)=_________。
02 .计算()222200220012003 2002200220012001-⨯-⨯+的结果等于_________。
03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。
04.分解因式(x2+3x−3)(x2十3x+4)−8=_________。
05.将多项式x2−4y2−9z2−12yz分解成因式的积,结果是_________。
06.把(1− x2)(1− y2)+4xy因式分解,结果是_________。
07.已知x−1是多项式x3−3x+k的一个因式,那么这个多项式的其它因式有_________。
08.分解因式(x2−1)(x4+x2+1)− (x3+1)2 =_________。
09.分解因式a3b+ab+30b的结果是_________。
10.分解因式(x−2y)x3−(y−2x) y3=_________。
二、解答题11.分解因式a3+b3+c3−3abc.12.已知x y≠,且x3−x=7,y3−y=7,那么x2+xy+y2的值是多少?B卷一、填空题01.分解因式ab(c2−d2)−cd(a2−b2)=_________。
02. 若x2+y2+54=2x+y,那么x y+y x= _________。
03.分解因式x4+x3+6x2+5x+5=_________。
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的初⼆年级奥数轴对称及因式分解测试题及答案,欢迎⼤家阅读。
⼀、选择题(共10⼩题,每⼩题3分,共30分)1.下列图形不是轴对称图形的是( )2.已知三⾓形两边的长分别是4和10,则此三⾓形第三边的长可能是( )A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为( )A.11B.30C.D.4.下列计算错误的是( )A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点 O连在⼀起,使AA′、BB′能绕着点O⾃由转动,就做成了⼀个测量⼯具,由三⾓形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是( )A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘⽶,AB=10厘⽶,则△EBC的周长为( )厘⽶.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为( )A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是⾓平分线,E是AB上⼀点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )A①②③ B、① C、② D、③⼆、填空题(共6⼩题,每⼩题3分,共18分)11.计算:20130﹣2﹣1=__________12.化简(1- )(m+1)的结果是 .13.如图,这是由边长为1的等边三⾓形摆出的⼀系列图形,按这种⽅式摆下去,则第n个图形的周长是 .14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的⼤⼩是 度.15.如图,已知△ABC是等边三⾓形,点B、C、D、E在同⼀直线上,且CG=CD,DF=DE,则∠E= 度.16.已知⼀个多边形的内⾓和与外⾓和的差是1260°,则这个多边形边数是 .三、解答题(共8题,共72分)17.(本题8分)计算:(1)(3a﹣2b)(9a+6b); (2)(﹣2m﹣1)2;18.(本题8分)分解因式:4m2﹣9n219.(本题8分)解分式⽅程 =20.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂⾜,AF=5,求CE的长.21.(本题10分)如图,在平⾯直⾓坐标系中,直线l是第⼀、三象限的⾓平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′ 、C′ ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(a,b)关于第⼀、三象限的⾓平分线l的对称点P′的坐标为 ;运⽤与拓⼴:22.(本题8分)2015年12⽉28⽇“青烟威荣”城际铁路正式开通,从烟台到北京的⾼铁⾥程⽐普快⾥程缩短了81千⽶,运⾏时间减少了9⼩时,已知烟台到北京的普快列车⾥程约为1026千⽶,⾼铁平均时速为普快平均时速的2.5倍.(1)求⾼铁列车的平均时速;(2)某⽇王⽼师要去距离烟台⼤约630千⽶的某市参加14:00召开的会议,如果他买到当⽇8:40从烟台⾄城市的⾼铁票,⽽且从该市⽕车站到会议地点最多需要1.5⼩时,试问在⾼铁列车准点到达的情况下他能在开会之前到达吗?23.(本题10分)如图,点E是∠AOB的平分线上⼀点,EC⊥OA,ED⊥OB,垂⾜分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(本题12分)如图,已知△ABC中,∠B=∠C,AB=8厘⽶,BC=6厘⽶,点D为AB的中点.如果点P在线段BC上以每秒2厘⽶的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘⽶的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)⽤的代数式表⽰PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案⼀、选择题1. B.2. C.3. B.4. A.5. A.6. B.7. B.8. C.9. B. 10. A⼆、填空题11. 12. m. 13. 2+n. 14. 60 15. 15 16.⼗⼀.三、解答题17.解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;18.解:4m2﹣9n2=(2m+3n)(2m﹣3n).19.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式⽅程的解.故答案为:x=2.20.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠ C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.21.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);22.解:(1)设普快的平均时速为x千⽶/⼩时,⾼铁列车的平均时速为2.5x千⽶/⼩时,由题意得,,解得:x=72,经检验,x=72是原分式⽅程的解,且符合题意,则2.5x=180,答:⾼铁列车的平均时速为180千⽶/⼩时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(⼩时),王⽼师到达会议地点的时间为1点40.故他能在开会之前到达.23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三⾓形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上⼀点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘⽶,∴CP=BC﹣BP=6﹣2=4厘⽶,∵AB=8厘⽶,点D为AB的中点,∴BD=4厘⽶,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ⼜∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t= = 秒,∴VQ= = 厘⽶/秒.。
初二数学竞赛培训(一)因式分解专题一分解因式的主要方法有提公因式法、应用公式法、分组分解法、拆项添项法、十字相乘法、双十字相乘法、尝试求根法、主元法等主要公式有1))b a )(b a (b a 22-+=- 2) 222)b a (b ab 2a =+±3) )b ab a )(b a (b a 2233+±=±4))ca bc ab c b a )(c b a (abc 3c b a 222333---++++=-++5)a n -b n =(a-b)(a n-1+a n-2b+a n-3b 2+…+ab n-2+b n-1)其中n 为正整数;6)a n -b n =(a+b)(a n-1-a n-2b+a n-3b 2-…+ab n-2-b n-1),其中n 为偶数;7)a n +b n =(a+b)(a n-1-a n-2b+a n-3b 2-…-ab n-2+b n-1),其中n 为奇数.1、分解下列因式 1)ab 4c ab 12b a 8333+- 2)22q 41pq 2p 4++ 3)z xy 4yz x 4z x 223-+-4))1y x (4)y x (2-+-+ 5)9y xy 2x 22-+- 6)1ab b a +++7) 41y 91x x 2nn 2+-+ 8) 1n 2n 22n 2x 92x 271x 31+++--2、已知二次三项式c bx x 22++分解因式后为)1x )(3x (2+-,求b,c 的值3、已知x 、y 为正偶数,且2222y x ,96xy y x +=+求4、已知关于x 、y 的二次式24y 43x 5ay xy 7x 22-+-++可以分解成为两个一次因式的乘积,求a 的值。
5、求方程)y x (07y 2x 2xy ≤=+--的整数解例1 分解下列因式(双十字与尝试求根法)1)22y 6y 3x xy 5x ++++ 2)1x x ...x x x 2131415++++++变式:分解下列因式1)20y 23x 2y 6xy 5x 622-++-- 2)8x 12x 14x 13x 6x 2345+++++3)2x 3x 7x 3x 9234--+- 4)222z 2yz 7xz y 3xy 7x 6-+---例2 分解下列因式(换元法)1)12)2x x )(1x x (22-++++ 2)15)7x )(5x )(3x )(1x (+++++3)2x )6x )(3x )(2x )(1x (+++++ 4)1x 33x 22)1x 3x 2(222-+-+-变式 分解因式1)91)7a 2)(9a )(5a 22---+( 2)42424x 10)1x 3x )(1x 4x (++++-3)2)1y x ()21y x (2)3xy ()1xy (xy -+-++-+++1、分解因式1)22222b a abx 4x )b a +---( 2)10)3x x )(4x x (2424+++-+3)6y 13x y 6xy x 22-++-+ 4))1xy )(1xy ()xy 2y x )(y x (-+++++2、若的值求y x ,28x xy y ,14y xy x 22+=++=++。
初二年级奥数因式分解测试题及答案1.下列式子是因式分解的是(C)A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1)2.把多项式x2+ax+b分解因式,得(x+1)(x-3)则a,b的值分别是(B)A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3知识点2 提公因式法因式分解3.多项式8m2n+2mn的公因式是(A)A.2mn B.mn C.2 D.8m2n4.多项式a2-4a分解因式,结果准确的是(A)A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-45.把多项式m2(a-2)+m(2-a)因式分解,结果准确的是(C)A.(a-2)(m2-m) B.m(a-2)(m+1)C.m(a-2)(m-1) D.m(2-a)(m-1)6.用提公因式法因式分解:(1)3x3+6x4;解:原式=3x3(1+2x).(2)4a3b2-10ab3c;解:原式=2ab2(2a2-5bc).(3)-3ma3+6ma2-12ma;解:原式=-3ma(a2-2a+4).(4)6p(p+q)-4q(p+q).解:原式=2(p+q)(3p-2q).7.若m-n=-1,则(m-n)2-2m+2n的值是(A)A.3 B.2 C.1 D.-18.小玉同学在计算34.3×17.1+82.5×17.1-26.8×17.1+10×17.1=17.1×(34.3+82.5-26.8+10)=1_710.9.把多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.10.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),则这个二次三项式为x2-6x+9.11.将下列各式分解因式:(1)x4+x3+x;解:原式=x(x3+x2+1).(2)x(x-y)+y(y-x);解:原式=x(x-y)-y(x-y)=(x-y)(x-y)=(x-y)2.(3)6x(a-b)+4y(b-a);解:原式=6x(a-b)-4y(a-b)=2(a-b)(3x-2y).(4)(a2-ab)+c(a-b);解:原式=a(a-b)+c(a-b)=(a+c)(a-b).(5)4q(1-p)3+2(p-1)2.解:原式=4q(1-p)3+2(1-p)2=2(1-p)2(2q-2pq+1).12.△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.解:△ABC是等腰三角形,理由:∵a+2ab=c+2bc,∴(a-c)+2b(a-c)=0.∴(a-c)(1+2b)=0.故a=c或1+2b=0.显然b≠-12,故a=c.∴此三角形为等腰三角形.。
八年级奥数专题第一讲:勾股定理及应用----李第二讲:实数的性质-------李第三讲:二次根式(1)第四讲:二次根式(2)第五讲:一次函数的图像和性质第六讲:待定系数法------李第七讲:一次函数的应用-第八讲:二元一次方程组和不定方程第九讲:三元一次方程组与不定方程组第十讲:二元一次方程组的应用第十一讲:等腰三角形与等边三角形-------张琼方第十二讲:线段的垂直平分线第十三讲:角平分线第十四讲:一元一次不等式与一元一次不等式组第十五讲:一元一次不等式与一元一次不等式组的应用(1)第十六讲:一元一次不等式与一元一次不等式组的应用(2)------方案设计------罗第十七讲:因式分解(1)第十八讲:因式分解(2)第十九讲:因式分解(3)第二十讲:因式分解(4)第二十一讲:因式分解(5)-----刘第二十二讲:分式第二十三讲:分式的运算第二十四讲:含字母系数的方程和分式方程第二十五讲:分式方程的应用第二十六讲:平行四边形性质与判定---杨洁第二十七讲:矩形第二十八讲:菱形第二十九讲:正方形第三十讲:三角形的中位线第三十一讲:梯形第三十二讲:梯形的中位线------张皓第一讲 勾股定理及应用1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠⇔a 2+b 2=c 22、勾股定理及逆定理的应用① 作已知线段a 的2,3, 5……倍② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。
3勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做一组勾股数. 4勾股数的推算公式a) 罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
b) 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。
c) 如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫ ⎝⎛K 是一组勾股数。
例1.分解因式:⑴a6-b6;⑵a2+b2+c2-2bc+2ca-2ab;⑶a7-a5b2+a2b5-b7例2.分解因式:⑴a3+b3+c3-3abc;⑵x3+y3+3xy-1. 例3.分解因式:(x-1)3+(x-2) 3+(3-2x) 3例4.分解因式:x3-5x+4.例5.分解因式:x5n+x n+1.例6.分解因式:(x+1)4+(x2-1)2十(x-1) 4.例7.分解因式:a4+b4+c4-2a2b2-2b2c2-2c2a2A卷一、填空题01.分解因式(a+b)2+(a-b) 2+c(a2+b2)=_________。
02.计算2222002200120032002200220012001的结果等于_________。
03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。
04.分解因式(x2+3x-3)(x2十3x+4)-8=_________。
05.将多项式x2-4y2-9z2-12yz分解成因式的积,结果是_________。
06.把(1- x2)(1- y2)+4xy因式分解,结果是_________。
07.已知x-1是多项式x3-3x+k的一个因式,那么这个多项式的其它因式有_________。
08.分解因式(x2-1)(x4+x2+1)- (x3+1)2 =_________。
09.分解因式a3b+ab+30b的结果是_________。
10.分解因式(x-2y)x3-(y-2x) y3=_________。
二、解答题11.分解因式a3+b3+c3-3abc.12.已知x y,且x3-x=7,y3-y=7,那么x2+xy+y2的值是多少?B卷一、填空题01.分解因式ab(c2-d2)-cd(a2-b2)=_________。
02. 若x2+y2+54=2x+y,那么x y+y x= _________。
03.分解因式x4+x3+6x2+5x+5=_________。
初一奥数讲座因式分解(1)答案例1.分解因式(提公因式法)(1)4a2 + 6ab + 2a解:原式= 2a(2a + 3b + 1)(2)2a m + 1 + 4a m– 2a m– 1解:原式= 2a m– 1(a2 + 2a– 1)(3)(m–n) – (n–m)2解:原式= (m–n)2 – (m–n)2= (m–n)[1 – (m–n)]= (m–n)(1 –m + n)(4)2a2b(b + c)(x + y)2 – 6a3b2(b + c)2(x + y)解:原式= 2a2b(b + c)(x + y)[(x + y) – 3ab(b + c)]= 2a2b(b + c)(x + y)(x + y– 3ab2– 3abc)例2.分解因式(运用公式法)(1)x2– 81解:原式= x2– 92= (x + 9)(x– 9)(2)4(x + y)2 – 9(x–y)2解:原式= [2(x + y) + 3(x–y)][2(x + y) – 3(x–y)]= (5x–y)(–x + 5y)= – (5x–y)(x– 5y)(3)x2 + 8xy + 16y2解:原式= x2 + 2·x·4y + (4y)2= (x + 4y)2(4)(x2– 2x)2 + 2(x2– 2x) + 1解:原式= (x2– 2x)2 + 2(x2– 2x)·1 + 12= (x2– 2x + 1)2= [(x– 1)2]2= (x– 1)4例3.分解因式(运用公式法)(1)125a3b6 + 8解:原式= (5ab2)3 + 23= (5ab2 + 2)[(5ab2)2– 2×5ab2 + 22]= (5ab2 + 2)(25a2b4– 10ab2 + 4)(2)512x9– 1解:原式= (8x3)3– 13= (8x3– 1)[(8x3)2 + 8x3 + 1]= (2x– 1)(4x2 + 2x + 1)(64x6 + 8x3 + 1)(3)1 – 12x2y2 + 48x4y4– 64x6y6解:原式= 1 – 3×4x2y2 + 3×(4x2y2)2– (4x2y2)3= (1 – 4x2y2)3= (1 + 2xy)3(1 – 2xy)3(4)x3 + 3xy + y3– 1解:原式= x3 + y3 + (– 1)3– 3·x·y(– 1)= (x + y– 1)(x2 + y2 + 1 –xy + y + x)(5)x2 + 9y2 + 4z2– 6xy + 4xz– 12yz解:原式= x2 + (– 3y)2 + (– 2z)2 + 2·x·(– 3y) + 2·x·2z + 2·(– 3y)·(2z) = (x– 3y + 2z)2例4.分解因式(1)12x2–xy +12y2解:原式= 12(x2– 2xy + y2)= 12(x–y)2(2)100 – 25x2解:原式= 25(4 –x2)= 25(2 + x)(2 –x) (3)x4– 2x2y2 + y4解:原式= (x2)2– 2x2y2 + (y2)2= (x2–y2)2= (x + y)2(x–y)2(4)2a6–12a3 +132解:原式= 2(a6–14a3 +164)= 2[(a3)2– 2×18·a3 + (18)2]= 2(a3–18 )2= 2(a–12)2(a2 +12a +14)例5.分解因式(1)– 2x5n– 1y n + 4x3n– 1y n + 2– 2x n– 1y n + 4解:原式= – 2x n– 1y n(x4n– 2x2n y2 + y4)= – 2x n– 1y n[(x2n)2– 2x2n y2 + (y2)2]= – 2x n– 1y n(x2n–y2)2= – 2x n– 1y n(x n + y)(x n–y)(2)(a2 + ab + b2)2 – 4ab(a2 + b2)解:原式= [(a2 + b2) + ab]2– 4ab(a2 + b2)= (a2 + b2)2 + 2ab(a2 + b2) + a2b2– 4ab(a2 + b2)= (a2 + b2)2– 2ab(a2 + b2) + a2b2= (a2b2–ab)2(3)(x2–x) – 4(x– 2)(x + 1) – 4解:原式= (x2–x)2– 4(x2–x– 2) – 4= (x2–x)2– 4(x2–x) + 8 – 4= (x2–x)2– 4(x2–x) + 4= (x2–x– 2)2= (x– 2)2(x + 1)2(4)a7–a5b2 + a2b5–b7解:原式= (a7–a5b2) + (a2b5–b7)= a5(a2–b2) + b5(a2–b2)= (a2–b2)(a5 + b5)= (a + b)(a–b)(a + b)(a4–a3b + a2b2–ab3 + b4)= (a + b)2(a–b)(a4–a3b + a2b2–ab3 + b4)例6.分解因式(1)a3 + b3 + c3– 3abc解:原式= (a + b)3– 3ab(a + b) + c3– 3abc= [(a + b)3 + c3] – 3ab(a + b + c)= (a + b + c)[(a + b)2– (a + b)c + c2] – 3ab(a + b + c)= (a + b + c)(a2 + b2 + c2–ab–bc–ca)(2)(x + y)3 + (z–x)3 – (y + z)3解:原式= [(x + y) + (z–x)][(x + y)2– (x + y)(z–x) + (z–x)2] – (y + z)3 = (y + z)[(x + y)2– (x + y)(z–x) + (z–x)2–(y + z)2]= (y + z)(3x2 + 3xy– 3yz– 3xz)= 3(y + z)[x(x + y) –z(x + y)]= 3(y + z)(x + y)(x–z)(3)x15 + x14 + x13 + …+ x2 + x + 1解:因为x16– 1 = (x15 + x14 + x13 + …+ x2 + x + 1)∴原式= ()()15142111x x x x xx-+++++-=1611xx--=()()()()()842111111x x x x xx++++--= (x8 + 1)(x4 + 1)(x2 + 1)(x + 1)例7.分解因式(分组分解法)(1)a2–b2– 2a– 2b解:原式= (a + b)(a–b) – 2(a + b)= (a + b)(a–b– 2) (2)25a4–x2– 2x– 1解:原式= (5a2)2– (x2 + 2x + 1)= (5a2)2– (x + 1)2= (5a2 + x + 1)(5a2–x– 1)(3)4a2–b2– 2a +1 4解:原式= 4a2– 2a +14–b2= (2a–12)2–b2= (2a–12+ b)( 2a–12–b)(4)(1 –a2)(1 –b2) – 4ab解:原式= 1 –a2–b2 + a2b2– 4ab= a2b2– 2ab + 1 –a2– 2ab–b2= (ab– 1)2– (a + b)2= (ab– 1 + a + b)(ab– 1 –a–b)(5)a4 + a2b2 + b4解:原式= a4 + 2a2b2 + b4–a2b2= (a2 + b2)2–a2b2= (a2 + b2 + ab)( a2 + b2–ab)练习1.证明:817– 279– 913能被45整除证明:∵817– 279– 913 = 328– 327– 326 = 326(32– 3 – 1) = 326×5 = 324×32×5 = 324×45 ∴817– 279– 913能被45整除2.求证:四个连续自然数的积再加上1,一定是一个完全平方数证明:设这四个连续自然数分别为n,n + 1,n + 2,n + 3n(n + 1)(n + 2)(n + 3) + 1= n(n + 3)(n + 1)(n + 2) + 1= (n2 + 3n)(n2 + 3n + 1) + 1= (n2 + 3n)2 + 2(n2 + 3n) + 1= (n2 + 3n + 1)2∴n(n + 1)(n + 2)(n + 3) + 1一定是一个完全平方数。
因式分解的高级方法一.双十字相乘法1.双十字相乘法原理计算()()22235316731385x y x y x xy y x y -++-=--++-.从计算过程可以发现,乘积中的二次项22673x xy y --只和乘式中的一次项有关,而与常数项无关;乘积中的一次项138x y +,只和乘式中的一次项及常数项有关系;乘积中的常数项,只和乘式中的常数项有关系。
2.所以运用双十字乘法对22Ax Bxy Cy Dx Ey F +++++型的多项式分解因式的步骤: (1)用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数在第二个十字中交叉之积之和,等于原式中含y 的一次项的系数E ,同是还必须与第一个十字中左列的两个因数交叉相乘,使其交叉之积之和等于原式中含x 的一次项的系数D .二.对称式与轮换对称式【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。
例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。
如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。
因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。
例1.分解因式:
⑴a6−b6;
⑵a2+b2+c2−2bc+2ca−2ab;
⑶a7−a5b2+a2b5−b7
例2.分解因式:
⑴a3+b3+c3−3abc;⑵x3+y3+3xy−1. 例3.分解因式:(x−1)3+(x−2) 3+(3−2x) 3例4.分解因式:x3−5x+4.
例5.分解因式:x5n+x n+1.
例6.分解因式:(x+1)4+(x2−1)2十(x−1) 4.例7.分解因式:a4+b4+c4−2a2b2−2b2c2−2c2a2
A卷
一、填空题
01.分解因式(a+b)2+(a−b) 2+c(a2+b2)=_________。
02 .计算
()
2
22
200220012003 2002200220012001
-⨯
-⨯+
的结果等于_________。
03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。
04.分解因式(x2+3x−3)(x2十3x+4)−8=_________。
05.将多项式x2−4y2−9z2−12yz分解成因式的积,结果是_________。
06.把(1− x2)(1− y2)+4xy因式分解,结果是_________。
07.已知x−1是多项式x3−3x+k的一个因式,那么这个多项式的其它因式有_________。
08.分解因式(x2−1)(x4+x2+1)− (x3+1)2 =_________。
09.分解因式a3b+ab+30b的结果是_________。
10.分解因式(x−2y)x3−(y−2x) y3=_________。
二、解答题
11.分解因式a3+b3+c3−3abc.
12.已知x y
≠,且x3−x=7,y3−y=7,那么x2+xy+y2的值是多少?
B卷
一、填空题
01.分解因式ab(c2−d2)−cd(a2−b2)=_________。
02. 若x2+y2+5
4
=2x+y,那么x y+y x= _________。
03.分解因式x4+x3+6x2+5x+5=_________。
04.分解因式x2(y−z)十y2 (z−x)+z2 (x−y) =_________。
05.已知a为正数,且a[a(a+b)+b]+b=1,则a+b的值是_________。
06.若x+1
x
=t,则x3+
3
1
x
=_________。
07.若A=(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1),则A−2002的末位数字是_________。
08.分解因式(c2−b2+d2−a2)2−4(ab−cd)2=_________。
09.若两个不等实数m、n满足:m2+2m=a,n2+2n=a,m2+n2=3,那么实数a的绝对值是_________。
10.分解因式(x−1) 3+(x−2)3+(3−2x) 3=_________。
二、解答题
11.分解因式ab2+bc2+ca2+a2b+b2c+c2a+2abc.
12.是否存在两个正整数m和n,能使m2−n2= 2002
C卷
解答题
01.分解因式(x+y) (x+y+2xy)+(xy+1) (xy−1).
02.分解因式(xy−1)2−(x+y−2xy) (2−x−y).
03.分解因式(a+b−2x)3− (a−x) 3− (b−x) 3.
04.设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,则mn也可表示成两个整数的平方和,其形式是什么?
05.若a、b、c满足a2+b2+c2=9,那么代数式(a−b)2+(b−c) 2+(c−a) 2的最大值是多少?06.已知x3+y3−z3=96,xyz=4,x2+y2+z2−xy+xz+yz=12:则x+y−z的值是多少?
07.立方体的每个面上都写有一个正整数,并且相对两个面所写两数之和都相等,若18的对面写的是a,14的对面是b,35的对面写的是c,试求a2+b2+c2−ab−bc−ca的值。
08.已知a≠0,且14(a2+b2+c2)=(a+2b+3c) 2,求a :b :c.
09.已知
1
x a
a
=+,x3−2x2−3x+6=0,求2
2
1
2
a
a
++的值。
10,若m、n是整数,且n2+3m2n2=30m 2+517,求3m2n2的值。