板式换热器设计计算与校核计算
- 格式:doc
- 大小:564.50 KB
- 文档页数:43
板换换热器计算公式板换换热器是一种常见的换热设备,广泛应用于化工、石油、食品、医药等行业。
它通过板式换热器内部的板片将两种流体进行换热,达到升温或降温的目的。
在工程实际中,需要对板换换热器进行计算和设计,以确保其换热效果和运行安全。
本文将介绍板换换热器的计算公式及其应用。
一、板换换热器的热传导计算。
板换换热器的热传导计算是指在给定的工况下,计算板换换热器内部的传热系数和传热面积。
其计算公式如下:1.传热系数的计算。
板换换热器的传热系数可以通过Nusselt数计算得到,Nusselt数的计算公式为:Nu = hL/k。
其中,Nu为Nusselt数,h为传热系数,L为板片间距,k为传热介质的导热系数。
通过该公式可以计算出板换换热器内部的传热系数。
2.传热面积的计算。
传热面积的计算是指在给定的工况下,计算板换换热器内部的传热面积。
传热面积的计算公式为:A = Q/(UΔT)。
其中,A为传热面积,Q为换热量,U为总传热系数,ΔT为温度差。
通过该公式可以计算出板换换热器内部的传热面积。
二、板换换热器的压降计算。
板换换热器的压降计算是指在给定的工况下,计算板换换热器内部的流体压降。
其计算公式如下:ΔP = f(ρv^2/2)。
其中,ΔP为压降,f为摩擦阻力系数,ρ为流体密度,v为流速。
通过该公式可以计算出板换换热器内部的流体压降。
三、板换换热器的换热面积计算。
板换换热器的换热面积计算是指在给定的工况下,计算板换换热器内部的换热面积。
其计算公式如下:A = (mCpΔT)/(UΔTm)。
其中,A为换热面积,m为质量流量,Cp为比热容,ΔT为温度差,U为总传热系数。
通过该公式可以计算出板换换热器内部的换热面积。
四、板换换热器的换热器表面积计算。
板换换热器的换热器表面积计算是指在给定的工况下,计算板换换热器内部的换热器表面积。
其计算公式如下:A = (mCpΔT)/(UΔTm)。
其中,A为换热器表面积,m为质量流量,Cp为比热容,ΔT为温度差,U为总传热系数。
板式换热器计算范文板式换热器是一种常见的热交换设备,广泛应用于各种工业领域,特别是在化工、冶金、电力、石油和制药等行业中。
其主要功能是将一种介质的热量传递给另一种介质,实现能量的转换。
本文将介绍板式换热器的基本原理、计算方法和设计要点。
一、板式换热器的基本原理板式换热器由多个平行排列的金属板组成,通过板与板之间的波纹增加热传导面积,从而提高换热效率。
介质1通过间隔板的一侧流动,介质2通过另一侧流动,两种介质之间通过金属板进行热量传递。
换热过程中介质1和介质2不直接接触,通过热传导实现能量的转移。
二、板式换热器的计算方法1.换热面积计算:换热面积是板式换热器的重要参数,决定了换热器的换热效率。
换热面积的计算公式为:A=N*b*L其中,A为换热面积,N为板子的个数,b为板子的宽度,L为板子的有效长度。
2.热传导计算:热传导是介质1和介质2之间热量传递的主要方式。
在换热过程中,通过热传导方程计算介质的传热速率:q=k*A*(T1-T2)/d其中,q为传热速率,k为传热系数,A为换热面积,T1为介质1的温度,T2为介质2的温度,d为板子的厚度。
3.流体阻力计算:流体阻力是介质在板子之间流动时受到的阻碍。
流体阻力的计算公式为:ΔP=2*(F1-F2)/(ρ*V^2)其中,ΔP为流体压降,F1和F2为两侧流体的阻力,ρ为流体密度,V为流体的平均流速。
三、板式换热器的设计要点1.板材选择:板式换热器的板材应具有良好的导热性能和耐腐蚀性,常见的材料有不锈钢、钛合金、镍合金等。
2.特殊设计要点:在一些特殊工况下,需要采取一些特殊的设计措施。
例如,在液体中含有颗粒物的情况下,可以在板片表面采用翅片结构,增加换热面积;在一些高温、腐蚀性强的介质中,可以在板片表面覆盖一层陶瓷涂层,增加板片的耐用程度。
3.清洗和维护:板式换热器在使用一段时间后,可能会出现堵塞、结垢等问题,需要进行清洗和维护。
常用的清洗方法有化学清洗和机械清洗,根据具体情况选择合适的清洗方式。
本标准适用于集中供热、空调及生活热水等换热系统中使用的板式换热机组。
本标准规定了板式换热机组的型号编制方法、基本参数系列、技术要求、试验方法和检验规则、标志、包装、运输、贮存和安装使用要求。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
1. GB/T700 《碳素钢结构》2. GB707 《槽钢》3. GB/T985 《气焊、手工电弧焊及气体保护焊焊缝坡口的基本型式与尺寸》4. GB2887 《计算站场设计条件》5. GB3096 《城市区域环境噪声标准》6. GB/T5117 《碳钢焊条》7. GB7251 《低压成套开关设备》8. GB/T8163 《流体输送用无缝钢管》9. GB/T9112 《钢制法兰类型》10. GB9787 《角钢》11. GB/T12236 《通用阀门钢制旋启式止回阀》12. GB/T12237 《通用阀门法兰和对焊连接钢制球阀》13. GB/T12238 《通用阀门法兰和对夹连接蝶阀》14. GB/T12233 《通用阀门法兰连接钢制截止阀和升降式止回阀》15. GB/T12243 《安全阀弹簧直接荷载式安全阀》16. GB12459 《三通、变径管》17. GB1276 《额定电压 35kV 及以下铜铝芯塑料绝缘电力电缆》18. GB/T12712 《蒸汽供热系统凝结水回收及蒸汽疏水阀技术管理要求》19. GB/T16409 《板式换热器》20. GB/T13384 《包装》21. GB49421 《电气设备保护等级》22. GB50054 《低压配电设计规范》23. GB50174 《电子计算机房设计》24. GB50236 《现场设备、工业管道焊接工程施工及验收规范》25. JB/T81 《法兰》26. JB/T87 《垫片》27. SY/T 0510 《钢制对焊管件》28. JB/T81 《 Y2 系列三相异步电动机制造标准》29. JB/T87 《管道式离心泵产品质量分等》3 定义本标准采用下列定义。
板式换热器的计算方法一、换热面积的计算1.换热面积的计算公式:换热面积=换热量/换热系数其中,换热量为所需换热量,换热系数为换热器材料和传热介质的传热系数,需要通过实验或经验公式来确定。
2.单个换热板的换热面积的计算:单个换热板的换热面积=换热面积/换热板数量根据所需的换热面积和换热板的数量,可以得到单个换热板的换热面积。
二、传热系数的计算传热系数是指单位时间内单位面积上的换热量与温差之比,计算传热系数是为了确定换热器的换热效率。
1.平均传热系数的计算公式:平均传热系数=1/(1/内部传热系数+Σ(厚度/导热系数)+1/外部传热系数)其中,内部传热系数和外部传热系数可以通过换热器的材料和实验数据来确定,厚度和导热系数可以通过板式换热器的设计参数来确定。
2.内部传热系数的计算:内部传热系数=0.023*(流体的物性参数)^0.8*(流体的雷诺数)^0.8/(流体的普朗特数)^0.4内部传热系数与流体的物性参数、雷诺数和普朗特数有关,需要通过实验数据或经验公式来计算。
三、流体参数的计算流体参数主要包括流体的物性参数、雷诺数和普朗特数。
1.流体的物性参数的计算:流体的物性参数包括密度、粘度、比热容等,可以通过流体的温度、压力和化学成分来确定,也可以通过实验测定得到。
2.雷诺数的计算:雷诺数是流体流动的一种无量纲数,表示流体内部动力和惯性力的比值,计算公式为:雷诺数=流体的密度*流体的流速*物体的特征尺寸/流体的粘度可以通过流体的物性参数和流动条件来计算雷诺数。
3.普朗特数的计算:普朗特数是流体流动的一种无量纲数,表示动力和传热之间的比值,计算公式为:普朗特数=流体的动力粘度/流体的热传导系数可以通过流体的物性参数来计算普朗特数。
以上就是板式换热器的计算方法。
在实际应用中,需结合具体的工艺要求和换热条件来确定换热面积、传热系数和流体参数等计算参数,以确保换热器的工作效率和稳定性。
板式换热器选型计算的方法及公式1.确定传热要求:首先,需要确定所需传热量。
传热量可以根据质量流量、入口温度和出口温度计算得出。
传热量=质量流量×热容×(出口温度-入口温度)其中,热容是指流体单位质量温度升高1°C所需的热量。
2.计算传热面积:传热面积是板式换热器选型时需要考虑的重要参数。
传热面积的大小直接决定了换热器的尺寸和材质。
传热面积=传热量/(传热系数×温差)其中,传热系数是指流体在单位时间内通过单位面积的换热器所传热量与温差之比。
3.确定传热系数:传热系数是指在单位时间内通过换热器的单位面积所传热量与温差之比。
传热系数的大小取决于流体的性质、流速以及流体与表面之间的热传导方式。
传热系数=温差/(1/内壁传热系数+1/外壁传热系数+污物膜传热系数+△Rf)其中,△Rf为板片的几何阻力。
4.确定换热器的型号:通过以上计算,得到传热面积和传热系数。
根据这些参数,可以选择合适的换热器型号,比如板式换热器的型号、规格等。
5.确定换热器板数:根据传热面积和换热器的尺寸,可以确定所需的板数。
板数的选择需要考虑流体的流速以及板间距等因素。
6.计算换热器的热负荷:热负荷是指在单位时间内通过换热器的热量。
热负荷=传热量/单位面积通过热负荷的计算,可以确定是否符合换热器的设计要求。
以上是板式换热器选型计算的基本方法及公式。
在实际应用中,还需要考虑到一些特殊因素,例如流体的腐蚀性、压力损失、流速限制等。
因此,在实际选型计算中,需要根据具体要求进行修正和调整,以确保选用的换热器满足应用需求。
板式换热器的计算方法板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。
在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。
目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。
以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。
以下五个参数在板式换热器的选型计算中是必须的:总传热量(单位:kW).一次侧、二次侧的进出口温度一次侧、二次侧的允许压力降最高工作温度最大工作压力如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。
温度T1 = 热侧进口温度T2 = 热侧出口温度t1 = 冷侧进口温度t2= 冷侧出口温度热负荷热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:(热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。
(1)无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;mh,mc-----热、冷流体的质量流量,kg/s;Cph,Cpc------热、冷流体的比定压热容,kJ/(kg〃K);T1,t1------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。
(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。
对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。
对数平均温差(LMTD)对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。
序号12、符号名称单位热侧冷侧ρ密度kg/m³ρh ρcCp 定压比热kJ/kg·℃Cph Cpcλ导热系数W/m·℃λh λc v 运动粘度㎡/s Vh Vc Pr 普朗特数Prh Prc345678拟定初值的办法有两种,即当流程法和不等流程法,其判别条件如下:V1/V2<2时采用等流程法;V1/V2≥2时采用不等流程法。
1)等流程法:先假设热侧流速Wb或冷侧流速Wc中任意一个值,再由VhWc=VcWh计算出另一个值。
对水--水换热介质,一般W取0.2~0.6m/s2)不等流程法:设Z=V1/V2≥2,先假定Wh和Wc中的任一个值,再按一下二式中的一个计算出另一个值WcVh=ZVcWh(当Vh>Vc时)ZWcVh=VcWh(当Vh<Vc时)计算对数平均温度(1)对流量大允许压力降小的情况应选用阻力小的板型,反之,选用阻力大的板型;(2)根据流体压力和温度情况选用可拆卸式或电焊式;(3)不宜选用单板面积太小的板片,以免板片数量过多,板间流速偏小,降低传热系数。
估算传热面积F'(㎡)F'=Q'/K'∆tm选择板型选择台数(1)大中型换热站可选2~3台最多不超过4台(2)选2台时,其每台的热负荷Q=0.6~0.7Q'选3台时,Q=0.4~0.5Q'拟定板间流速初值式中:μ---运动粘度,kg·s/㎡g----重力加速度,m/s²∆tm=(∆大-∆小)/㏑(∆大/∆小)℃当∆大≈∆小时。
可用算术平均温差代替,即∆tn=(∆大+∆小)/2℃计算热负荷Q=Vh·ρh·Cph(θ1-θ2)=Vc·ρc·Cpc(t1-t2)计算项目计算方法物性参数查处冷热流体平均温度的物性参数若Pr查不到,按Pr=3600Cpμg/λ计算设计条件冷热流体的有关参数;体积流量m³/h;进口温度℃;出口温度℃;允许压力降MPa9 10 11 1213 14 1516 17计算实际换热面积F(㎡)F=(2N·n-1)f计算冷热侧压降∆P'c,∆P'h∆P=EuρW2Nx10-6,MPaEu=bRe d考虑积垢对阻力的影响,乘以1.2系数则:∆Pc=1.2∆Pc'∆Ph=1.2∆Ph'计算传热系数K K=(1/αc+1/αh+Rρ+R fc+R fh)-1计算冷热介质的单程流道数n=V/3600SW计算流程数N N=(Fm/f-1)/2n法,其判别条件如下:V1/V2<2时采用等流程法;V1/V2≥2时采用不等流程法。
板式换热器设计计算条件一、设计题目板式换热器-油处理能力9000公斤/小时(二)设计任务及操作条件1、处理能力见下表2、设备型式板式换热器3、操作条件(1)油:入口温度70℃,出口温度40℃(2)冷却介质:冷却塔循环水,入口温度20℃。
(3)油侧与水侧允许压强降:不大于105 Pa(4)油定性温度下的物性参数:ρ(kg/m3)C p (kJ/㎏.℃) μ(Pa.s)λ(W/m.℃)名称油850 1.8 3.2×10-40.12前言1.板式换热器简介本成套设备由板式换热器、平衡槽、离心式卫生泵、热水装置(包括蒸汽管路、热水喷入器)、支架以及仪表箱等组成。
用于牛奶或其它热敏感性液体之杀菌冷却。
欲处理的物料先进入平衡槽,经离心式卫生泵送入换热器、经过预热、杀菌、保温、冷却各段,凡未达到杀菌温度的物料,由仪表控制气动回流阀换向、再回到平衡槽重新处理。
物料杀菌温度由仪表控制箱进行自动控制和连续记录,以便对杀菌过程进行监视和检查。
此设备适用于对牛奶预杀菌、巴式杀菌。
板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。
1.1板式换热器的基本结构板式换热器主要由框架和板片两大部分组成。
板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。
板片的周边及角孔处用橡胶垫片加以密封。
框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。
板式换热器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。
1.2板式换热器的特点(板式换热器与管壳式换热器比较)优点1.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。
2.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃.3.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/8。
根据公式q=k·f·△TM,F=Q/K.ΔtmQ—热流(W)ΔTM对数平均温差(℃)F——传热面积(m*m)板型或波纹型应根据换热场合的实际需要确定。
对于流量大、允许压降小的情况,应选用低阻力的板式,否则应选用阻力大的板式。
根据流体压力和温度,确定可移动式或钎焊式。
为了避免板数过多,板间速度慢,换热系数低,对于较大的换热器,必须更加重视这一问题。
计算方法及公式(1)求热负荷QQ=G.ρ。
CP.Δt(2)计算冷热流体的进出口温度t2=t1+Q/G。
(3)冷热流体流动G=Q/ρ。
CP.(T2-t1)(4)计算平均温差ΔTMΔTM=(T1-T2)-(T2-T1)/in(T1-T2)/(T2-T1)或ΔTM=(T1-T2)+(T2-T1)/2(5)选择线路板类型如果选择了所有电路板类型,将分析结果。
(6)从K值的范围计算板数Nmin和nmax的范围Nmin=Q/Kmax.Δtm。
F P.βNmax=Q/Kmin。
Δtm。
F P.β根据不同厂家的产品性能曲线计算传热系数和压降。
性能曲线(标准相关性)通常来自产品性能测试。
对于缺乏性能试验的板形,也可以根据板形的特征几何尺寸,通过国际上的一些软件,利用参考尺寸法得到各判据之间的相关性。
扩展数据:原则:可拆卸板式换热器是由许多波纹薄板组成,这些波纹薄板以一定的间隔用垫片密封,并由框架和压紧螺钉重叠压缩。
板和垫片的四个角孔构成配液管和集液管。
同时,冷、热流体被合理分离,在每一块板两侧的流道中流动,并通过板进行热交换。
板式换热器的最佳设计计算是在已知温差比NTUE的条件下,合理确定其型号、工艺流程和换热面积,使ntup等于NTUE。
板式换热器广泛应用于冶金、矿山、石油、化工、电力、医药、食品、化纤、造纸、纺织、船舶、供热等行业。
可用于加热、冷却、蒸发、冷凝、灭菌、余热回收等场合。
太阳能利用:参与太阳能集热器上乙二醇等防冻剂的热交换过程,达到利用太阳能的目的。
根据公式q = k·f·△TM,F = Q / K .ΔtmQ-热流(W)ΔTM-对数平均温差(℃)F-传热面积(m * m)板式或波纹式应根据换热场合的实际需要确定。
对于大流量,允许压降较小的情况,应选择阻力小的板型,否则应选择阻力大的板型。
根据流体压力和温度,确定可移动类型或钎焊类型的选择。
为了避免过多的板,板之间的低速度和低的热传递系数,对于较大的热交换器,必须更加注意这个问题。
计算方法和公式(1)求热负荷QQ = G.ρ.CP.Δt(2)求出冷热流体的进出口温度t2 = t1 + Q / G。
(3)冷热流体流量G = Q /ρ.CP。
(t2-t1)(4)计算平均温差ΔTMΔTM =(T1-T2)-(t2-t1)/ in(T1-T2)/(t2-t1)或ΔTM =(T1-T2)+(t2-t1)/ 2(5)选择板子类型如果选择了所有板类型,将对结果进行分析。
(6)从K值的范围计算板数Nmin,nmax的范围Nmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β传热系数和压降的计算是根据不同制造商的产品性能曲线得出的。
性能曲线(标准相关性)通常来自产品性能测试。
对于缺乏性能测试的板形,还可以通过参考尺寸方法根据板形的特征几何尺寸,通过一些国际通用软件采用来获得准则相关性。
扩展数据:原理:可拆卸的板式换热器由许多波纹状的薄板组成,这些薄板由垫片以一定的间隔密封,并由框架和压缩螺钉重叠并压缩。
板和垫圈的四个角孔形成了流体的分配管和收集管。
同时,冷,热流体被合理地分离以在每个板的两侧的流动通道中流动,并且通过板进行热交换。
板式换热器的最佳设计和计算是在已知温差比NTUE的条件下合理确定其型号,工艺流量和传热面积,使ntup等于NTUE。
板式换热器已广泛应用于冶金,矿山,石油,化工,电力,医药,食品,化纤,造纸,轻纺,船舶,供热等部门。
板式换热器设计计算与校核计算设计计算与校核计算是指对板式换热器进行设计和校核的过程。
设计计算是在满足热交换需求的前提下,确定板式换热器的尺寸、换热面积、流体通道和板的数量等参数。
校核计算是为了保证板式换热器在运行过程中的可靠性和安全性,对其进行力学和热力学校核。
1.设计计算:a.确定工作流体的流量、温度和压力等参数,根据这些参数计算出所需换热面积。
b.根据换热面积的要求,选择合适的板式换热器型号,并确定换热片的尺寸和数量。
c.计算工作流体的换热面积分布,确定流体通道布局和分流板的位置。
d.根据换热片的尺寸和数量,计算板式换热器的外形尺寸和重量。
e.检查设计结果是否满足热交换需求,并对设计方案进行评估和调整。
2.校核计算:a.应力校核:计算板片和密封垫的应力,包括弯曲应力、剪切应力和接触应力等。
检查应力是否满足材料的强度限制。
b.疲劳校核:根据板片的工作条件和材料的疲劳强度,计算板片的疲劳寿命,确保其在预期的使用周期内不会发生疲劳破坏。
c.热力学校核:计算板片的热应力和热膨胀,检查板片在工作温度下的变形情况。
确保板片的变形不对密封性和换热性能造成影响。
d.压降校核:计算工作流体在板式换热器中的压降,检查压降是否满足设定的要求。
e.泄漏校核:计算板片与密封垫之间的泄漏量,确保泄漏量在可接受范围内。
f.振动校核:计算板片和密封垫的共振频率,检查共振是否存在,并采取相应的措施进行抑制。
设计计算和校核计算是板式换热器设计过程中非常重要的环节,通过对换热器的尺寸、换热面积和流体通道等参数进行合理计算和校核,可以确保换热器在运行过程中具备良好的性能和可靠的安全性。
同时,也可提高换热器的热效率和运行经济性。
固定管板式换热器设计摘要在工业生产中,为了适现物料之间热量传递过程中的一种设备,统称为换热器,它是化工炼油,动力,原子能和其它许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工,炼油等工业生产来说,换热器尤为重要,换热器随着使用目的的不同可以把它分为:热交换器,加热器,冷却器,冷凝器,蒸发器和再沸器等。
本设计的主要任务是完成满足某一生产要求的管壳式换热器,它是属于列管式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。
换热器的工艺设计计算有两种类型,即设计计算和校核计算,包括计算换热面积和造型两方面。
设计计算的目的是根据给定的工作条件及热负荷,选择一种适当的换热器类型,确定所需的换热面积,进而确定换热器的具体尺寸。
校核计算的目的则是对已有的换热器校核它是否满足预定要求,这是属于换热器性能计算问题。
无论是设计计算还是校核计算,所需的数据包括结构数据、工艺数据和物性数据三大类。
其中结构数据的选择在换热器设计中最为重要。
对于列管式换热器的设计包括壳体型式、管程数、管子类型、管长、管制排列形式、折流板型式、冷热流体流动通道等方面的选择。
工艺数据包括冷热流体的流量、进出口温度、进口压力、允许压力降及污垢系数。
物性数据包括冷热流体在进出口温度或定性温度下的的密度、比热容、粘度、导热系数等。
本设计针对苯冷却的问题设计一换热器。
本设计包括三个部分:说明部分;计算部分;绘图部分。
本任务书主要是说明部分。
说明部分主要是通过对兰州地区水资源情况、常年气温情况、水价、水质等综合考虑,最后确定冷却水的用量、进出口温差等及最后的产品说明书,说明了此换热器的工作环境,工作条件,适用范围及技术要求等。
计算部分主要是针对说明部分的分析进行相应的计算,主要是对针对所选的换热器在满足生产要求的情况下进行工艺核算,最大可能的减小投入和增加收益,本设计就是为完成以上任务而进行的计算。
绘图部分主要是遵照计算的要求在绘图纸上按照一定的比例要求把所设计的换热器反映到图纸上来,同时要反映出管口方位以及所使用的部件的材料,规格等。
板式换热器简易计算表1.换热面积计算:换热面积是板式换热器的重要参数,用于决定换热效果和换热器的尺寸。
其计算公式为:A = Q / (U × ΔTlm)其中,A为换热面积,单位为平方米;Q为热量传递率,单位为千瓦;U为整体传热系数,单位为千瓦/平方米·摄氏度;ΔTlm为对数平均温差,单位为摄氏度。
2.弹性计算:在实际操作中,常常需要进行弯曲或挤压板式换热器的弹性计算。
弹性计算可以通过以下步骤进行:(1)计算换热器的最大应力:σ=M×y/I其中,σ为最大应力,单位为帕斯卡;M为挤压力矩,单位为牛顿·米;y为换热器的远离中心轴的最大距离,单位为米;I为惯性矩,单位为米的四次方。
(2)计算挤压压力:P=σ×A其中,P为挤压压力,单位为牛顿;A为换热器截面的面积,单位为平方米。
(3)判断换热器的弹性:比较挤压压力和材料的临界弹性极限,若挤压压力小于临界弹性极限,则换热器满足弹性要求。
3.流体流量计算:在设计和运行板式换热器时,需要正确计算流体的流量。
流体流量的计算公式如下:m=ρ×v×A其中,m为流体的质量流量,单位为千克/秒;ρ为流体的密度,单位为千克/立方米;v为流体的速度,单位为米/秒;A为流体的横截面积,单位为平方米。
4.热传导计算:Q=k×A×ΔT/d其中,Q为热量,单位为千焦耳;k为热导率,单位为千焦耳/米·秒·摄氏度;A为传热面积,单位为平方米;ΔT为温差,单位为摄氏度;d为传热距离,单位为米。
以上是板式换热器的简易计算表,供参考使用。
但是需要注意的是,实际应用中,还需要考虑更多的因素,例如流体的参数、换热器的材料、温度差等,以获得准确的计算结果。
因此,在实际工程中,建议结合具体条件进行更详细和准确的计算。
板式换热器热力计算及分析板式换热器是一种常见的换热设备,其内部由一系列板片组成,用于传递热量。
在进行板式换热器的热力计算和分析时,需要考虑各种因素,如换热器的设计参数、换热介质的性质以及换热器的操作条件等。
本文将对板式换热器的热力计算和分析进行详细介绍。
首先,我们需要确定板式换热器的设计参数。
设计参数包括板片的几何尺寸、传热面积、板片的数量以及流体的通道尺寸等。
确定了设计参数后,我们可以利用传热理论进行热力计算。
传热理论分为传导、对流和辐射传热三种,不同的传热方式对应不同的计算公式。
在板式换热器中,传导传热很小,可以忽略不计,因此主要考虑对流传热。
对流传热的计算需要确定流体的流动状态。
流体的流动可以是单相流动,也可以是两相流动。
在单相流动情况下,我们可以利用换热器的流体动力学模型进行计算。
在两相流动情况下,需要考虑流体的沸腾和凝结现象,利用传热换热理论进行热力计算。
在热力计算中,我们还需要考虑流体的性质以及流体流动的操作条件。
流体的性质包括密度、热导率、比热容等。
这些性质可以通过实验或者查找相关文献进行确定。
流体的操作条件包括流速、入口温度、出口温度等。
通过确定流体的性质和操作条件,可以计算出流体的传热系数。
在热力计算的过程中,我们还需要考虑换热过程中的压力损失。
换热器内部的板片和管道会引起流体流动的阻力,从而导致压力损失。
压力损失的计算可以通过经验公式或者流体力学计算方法进行估算。
完成了热力计算后,我们可以进行换热器的分析。
换热器的分析可以从换热效率、压降、温度分布等方面进行。
换热效率是用于衡量换热器传热效果的参数,可以通过比较换热器进口和出口的流体温度来计算。
压降是指流体在换热过程中因阻力而产生的压力损失,可以通过计算换热器的压力损失来估算。
温度分布是指在换热器内部流体的温度变化情况,可以通过计算得到。
总结而言,板式换热器的热力计算和分析是一个复杂的过程,需要考虑各种因素。
热力计算的结果可以帮助我们优化换热器的设计和运行条件,提高换热效率,降低压力损失。