第二章基因工程第一节基因与基因组
- 格式:ppt
- 大小:6.42 MB
- 文档页数:91
第一章基因克隆基因工程的基本技术有哪些?答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。
构建基因文库一般使用什么作为载体?答:一般使用大肠杆菌作为载体克隆与亚克隆?答:克隆在一等程度上等同于基因的分离。
亚克隆是将目的基因所对应的小段的DNA片段找出来。
PCR对基因克隆有什么作用?答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。
但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。
第二章分子克隆工具酶限制与修饰系统?答:限制系统可以排除外来DNA。
限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。
甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。
并且能够保证自身的DNA不被降解。
使用最广泛的限制酶?答:EcoR I是应用最广泛的限制性内切酶限制性内切酶的命名?答:宿主属名第一字母、种名头两个字母、菌株号+序列号。
如:HindIII限制与修饰系统分类?答:至少可分为3类。
II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。
其限制反应与甲基化反应是分开的反应。
不需要ATP的参与。
限制酶识别的序列长度?结构?答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。
回文序列,不对称序列,多种不同序列,间断对称序列限制酶产生的末端?答:1、黏末端2、平末端3、非对称突出末端什么是同裂酶?分类?答:识别相同序列的限制酶称为同裂酶。
但他们的切割位点有可能不同。
分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他限制性内切酶的作用是什么?它的反酶是什么?答:什么是同尾酶?答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。
目录第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容第二章基因操作的主要技术原理第一节核酸的凝胶电泳第二节核酸分子杂交第三节细菌转化1.肺炎球菌的转化2.大肠杆菌的转化3.细菌转化频率第四节DNA核苷酸序列分析第五节基因的化学合成第六节基因定点突变第七节基因扩增第八节研究DNA与蛋白质相互作用的方法第三章基因克隆的酶学基础第一节核酸内切限制酶与DNA分子的体外切割1.寄主控制的限制与修饰现象2.核酸内切限制酶的类型3.I 型和III型核酸内切限制酶的基本特性4.II型核酸内切限制酶的基本特性[1].基本特性[2].同裂酶[3].同尾酶[4].限制片段末端的连接作用5.核酸内切限制酶的命名法6.影响核酸内切限制酶活性的因素[1].DNA的纯度[2].DNA的甲基化程度[3].酶切消化反应的温度[4].DNA分子的结构[5].核酸内切限制酶的缓冲液7.核酸内切限制酶对DNA的消化作用[1].核酸内切限制酶与靶DNA识别序列的结合模式[2].核酸内切限制酶对DNA分子的局部消化作用[3].核酸内切限制酶对真核基因组DNA的消化作用第二节DNA连接酶与DNA分子的体外连接1.DNA连接酶2.粘性末端DNA片段的连接3.平末端DNA片段的连接[1].同聚物加尾法[2].衔接物连接法[3].DNA接头连接法4.热稳定的DNA连接酶[1].寡核苷酸连接测定法[2].连接酶链式反应(LCR)第三节DNA聚合酶1.DNA聚合酶I与核酸杂交探针的制备[1].DNA聚合酶I[2].DNA缺口转移[3].DNA杂交探针的制备2.大肠杆菌DNA聚合酶I 的Klenow片段与DNA末端标记3.T4 DNA聚合酶和取代合成法标记DNA片段4.依赖于RNA的DNA聚合酶与互补DNA的合成5.T7 DNA聚合酶6.修饰的T7 DNA聚合酶第四节DNA及RNA的修饰酶1.末端脱氧核苷酸转移酶与同聚物加尾2.T4多核苷酸激酶与DNA分子5’-末端的标记3.碱性磷酸酶与DNA脱磷酸作用第五节核酸外切酶1.核酸外切酶VII (exo VII)2.核酸外切酶III (exo III)3.λ核酸外切酶(λ exo)和T7基因6核酸外切酶第六节单链核酸内切酶1.S1核酸酶与RNA分子定位2.Bal1 核酸酶与限制位点的确定第四章基因克隆的质粒载体第一节质粒的一般生物学特性1.质粒DNA2.质粒DNA编码的表型3.质粒DNA的转移[1].质粒的类型[2].F质粒[3].质粒DNA的接合作用4.质粒DNA的迁移作用5.质粒DNA的复制类型6.质粒DNA的不亲和性[1].质粒的不亲和性现象[2].质粒不亲和性的分子基础7.第二节质粒DNA的复制与拷贝数的控制1.质粒DNA复制的多样性2.ColE 1质粒DNA复制的启动3.质粒DNA拷贝数的控制[1].天然质粒拷贝数的控制[2].杂种质粒拷贝数的控制4.质粒复制控制的分子模型[1].抑制蛋白质稀释模型[2].自体阻遏蛋白质模型5.第三节质粒DNA的分离与纯化1.氯化铯密度梯度离心2.碱变性法3.微量碱变性法4.影响质粒DNA产量的因素[1].寄主菌株的遗传背景[2].质粒的拷贝数与分子大小5.第四节质粒载体的构建与类型1.天然质粒用作克隆载体的局限性2.质粒载体必须具备的基本条件3.质粒载体的选择记号[1].高拷贝数的质粒载体[2].低拷贝数的质粒载体[3].失控的质粒载体[4].插入失活型的质粒载体[5].正选择的质粒载体[6].表达型的质粒载体4.第五节重要的大肠杆菌质粒载体1.pSC101 质粒载体[1].应用pSC101 质粒作基因克隆载体的实例一---葡萄球菌质粒基因在大肠杆菌中的表达[2].应用pSC101 质粒作基因克隆载体的实例二---在大肠杆菌中克隆非洲爪蟾2.Col 1质粒载体3.pBR322质粒载体[1].pBR322质粒载体的构建[2].pBR322质粒载体的优点[3].pBR322质粒载体的改良[4].应用pBR322质粒作为基因克隆载体的实例---水稻夜绿体光诱导基因psbA的结构分析4.pUC 质粒载体[1].pUC 质粒载体的结构[2].pUC 质粒载体的优点5.其他重要的质粒载体[1].丧失迁移功能的的质粒载体[2].能在体外转录克隆基因的质粒载体[3].穿梭质粒载体第六节质粒载体的稳定性问题1.质粒载体不稳定性的类型[1].结构的不稳定性[2].分离的不稳定性2.影响质粒载体稳定性的主要因素[1].新陈代谢负荷对质粒载体稳定性的效应[2].拷贝数差度对质粒载体稳定性的影响[3].寄主重组体系对质粒载体稳定性的效应3.随机分配的分子机理[1].通过精巧的控制环路使质粒拷贝数的差度限制在最低的水平[2].通过位点特异的重组作用消除天然质粒的寡聚体[3].通过调节细胞的分裂活动阻止无质粒细胞的产生[4].大肠杆菌素的合成增进了质粒的稳定性4.主动分配的分子机理[1].分配区的结构与功能[2].预配对模型[3].二聚体的解离有助于质粒的主动分配[4].寄主致死功能对质粒稳定性的效应5.第五章噬菌体载体和柯斯载体第一节噬菌体的一般生物学特性第二节λ噬菌体载体第三节柯斯质粒载体第四节单链DNA噬菌体载体第五节噬菌体载体第六章基因的分离与鉴定第一节DNA克隆片段的产生与分离1.基因组DNA克隆片段的产生与分离2.DNA片段的大小分部3.编码目的基因的克隆片段的富集第二节重组体DNA分子的构建及导入受体细胞1.外源DNA片段同载体分子的重组[1].外源DNA片段定向插入载体分子[2].非互补粘性末端DNA分子间的连接[3].最佳连接反应2.重组体分子导入受体细胞的途径[1].重组体DNA分子的转化或转染[2].体外包装的λ噬菌体的转导第三节基因克隆的实验方案1.互补作用基因克隆2.cDNA基因克隆[1].cDNA文库的建立[2].不同丰度mRNA的cDNA克隆[3].全长cDNA的合成[4].cDNA克隆的优越性3.基因组DNA克隆[1].应用 噬菌体载体构建基因组文库[2].应用柯斯质粒载体构建基因组文库4.基因定位克隆[1].拟南芥菜简介[2].RFLP分子标记[3].RFLP作图的原理与步骤[4].染色体步移[5].大尺度基因组物理图谱的构建第四节克隆基因的分离1.应用核酸探针分离克隆的目的基因[1].核酸探针的来源[2].寡核酸探针的的人工合成[3].假阳性克隆的克服2.应用差别杂交或扣除杂交法分离克隆的目的基因[1].差别杂交[2].差别杂交的局限性[3].扣除杂交3.应用mRNA差别显示技术分离克隆的目的基因[1].mRNA差别显示的原理[2].mRNA差别显示的基本过程[3].mRNA差别显示的局限性4.引用表达文库分离克隆的目的基因5.酵母双杂交体系[1].酵母双杂交体系的基本原理[2].酵母双杂交体系的寄主菌株[3].酵母双杂交体系的实验程序第五节重组体分子的选择与鉴定1.遗传检测法[1].根据载体表型特征选择重组体分子的直接选择法[2].根据插入序列的表型特征选择重组体分子的直接选择法2.物理检测法[1].凝胶电泳检测法[2].R-检测环法3.菌落或噬菌斑杂交筛选法4.免疫化学检测法[1].放射性抗体检测法[2].免疫沉淀检测法[3].表达载体产物之免疫化学检测法5.DNA蛋白筛选法6.转译筛选法[1].杂交抑制的转译[2].杂交选择的转译第七章基因的表达与调节第八章真核基因在大肠杆菌中的表达第一节真核基因的大肠杆菌表达体系第二节大肠杆菌的表达载体第三节克隆的真核基因在大肠杆菌中的表达第四节影响克隆基因在大肠杆菌中表达效率的因素第九章植物基因工程第十章哺乳动物基因工程第一节哺乳动物基因转移的遗传选择标记第二节外源DNA导入哺乳动物细胞的方法第三节SV 40病毒载体第四节反转录病毒载体第五节其他的病毒载体第十一章重组DNA与现代生物技术第十二章重组DNA与医学研究第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容1.质的新组合,并使之参与到原先没有这类分子的寄主细胞内,而能够持续稳定的繁殖。
作者:吴乃虎出版社:高等教育出版社第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系二、基因工程的诞生与发展第二节基因工程是生物科学发展的必然产物一、基因是基因重组的物质基础二、DNA的结构和功能三、基因操作技术的发展促进基因工程的诞生和发展四、基因工程的内容第三节基因的结构——基因操作的理论基础一、基因的结构组成对基因操作的影响二、基因克隆的通用策略第一篇基因操作原理第二章分子克隆工具酶第一节限制性内切酶一、限制与修饰二、限制酶识别的序列三、限制酶产生的末端四、DNA末端长度对限制酶切割的影响五、位点偏爱六、酶切反应条件七、星星活性八、单链DNA的切割九、酶切位点的引入十、影响酶活性的因素十一、酶切位点在基因组中分布的不均一性第二节甲基化酶一、甲基化酶的种类二、依赖于甲基化的限制系统三、甲基化对限制酶切的影响第三节DNA聚合酶一、大肠杆菌DNA聚合酶二、KIenow DNA聚合酶三、T4噬菌体DNA聚合酶四、T7噬菌体DNA聚合酶五、耐热DNA聚合酶六、反转录酶七、末端转移酶第四节其他分子克隆工具酶一、依赖于DNA的RNA聚合酶二、连接酶三、T4多核苷酸激酶四、碱性磷酸酶五、核酸酶六、核酸酶抑制剂七、琼脂糖酶八、DNA结合蛋白九、其他酶第三章分子克隆载体第一节质粒载体一、质粒的基本特性二、标记基因三、质粒载体的种类第二节λ噬菌体载体一、λ噬菌体的分子生物学二、λ噬菌体载体的选择标记……第四章人工染色体载体第五章表达载体第六章基因操作中大分子的分离和分析第七章基因芯片技术第八章PCR技术及其应用第九章DNA序列分析第十章DNA诱变第十一章DNA文库的构建和目的基因的筛选第十二章基因组研究技术第二篇基因工程应用第十三章植物基因工程第十四章动物基因工程第十五章酵母基因工程第十六章细菌基因工程第十七章病毒基因工程第十八章医药基因工程第十九章基因工程产品的安全及其管理第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系基因操作(gene manipulation):指对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。
基因工程复习资料第一章核酸的制备1.主要步骤:分、切、接、转、筛、表2.基因工程的概念:基因工程又称基因堆叠技术和dna重组技术,就是以分子遗传学为理论基为础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种dna分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
第二章基因工程工具酶1.生物催化剂:核酶、抗体酶、模拟酶。
2.限制性内切核酸酶:定义:限制性内乌核酸酶就是一类能够辨识双链dna中特定核苷酸序列(辨识序列),并在识别序列上使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
命名:限制性内乌核酸酶通常就是以第一次抽取至这类酶的生物的种名的第一个字母和种名的第一、第二个字母命名的,有的在后面还加菌株(型)代号中的一个字母。
如果从同一种生物中先后提取到多种限制性内切核酸酶,则依次用罗马数字ⅰ、ⅱ、ⅲ表示。
并且名称的前三个字母须用斜体,第一个字母用大写。
3.dna连接酶:定义:dna连接酶也称dna黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是连接dna链3‘-oh末端和,另一dna链的5’-p末端,使二者生成磷酸二酯键,从而把两段相邻的dna链连成完整的链的一种酶。
种类:大肠杆菌dna连接酶、t4dna连接酶、tscdna连接酶、真核生物细胞辨认出的连接酶,例如酶ⅰ、酶ⅱ、酶ⅲ等多种类型。
4.dna片段的相连接方法:①具互补黏性末端dna片段之间的连接:可用e?colidna连接酶,也可用t4dna连接酶。
②尼奥罗末端dna片段之间的相连接:就可以用t4dna连接酶,并且必须减少酶的用量。
③dna片段末端修饰后进行连接:dna片段末端同聚物加尾后进行连接,可按互补粘性末端片段之间的连接方法进行连接;粘性末端修饰成平末端后进行连接;dna片段5′端脱磷酸化后进行连接;dna片段加连杆或衔接头后连接。
5.dna聚合酶:①定义:dna聚合酶就是指用dna单链为模板,以4种脱氧核苷酸为底物,催化剂制备一条与模板链序列优势互补的dna新链的酶。
基因组学杨金水电子版基因工程电子版导读:就爱阅读网友为您分享以下“基因工程电子版”的资讯,希望对您有所帮助,感谢您对的支持! 作者:吴乃虎出版社:高等教育出版社第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系二、基因工程的诞生与发展第二节基因工程是生物科学发展的必然产物一、基因是基因重组的物质基础二、DNA的结构和功能三、基因操作技术的发展促进基因工程的诞生和发展四、基因工程的内容第三节基因的结构——基因操作的理论基础一、基因的结构组成对基因操作的影响二、基因克隆的通用策略第一篇基因操作原理第二章分子克隆工具酶第一节限制性内切酶一、限制与修饰二、限制酶识别的序列三、限制酶产生的末端四、DNA末端长度对限制酶切割的影响五、位点偏爱六、酶切反应条件七、星星活性八、单链DNA的切割九、酶切位点的引入十、影响酶活性的因素十一、酶切位点在基因组中分布的不均一性第二节甲基化酶一、甲基化酶的种类二、依赖于甲基化的限制系统三、甲基化对限制酶切的影响第三节DNA聚合酶一、大肠杆菌DNA聚合酶二、KIenow DNA聚合酶三、T4噬菌体DNA聚合酶四、T7噬菌体DNA聚合酶五、耐热DNA聚合酶六、反转录酶七、末端转移酶第四节其他分子克隆工具酶一、依赖于DNA的RNA聚合酶二、连接酶三、T4多核苷酸激酶四、碱性磷酸酶五、核酸酶六、核酸酶抑制剂七、琼脂糖酶八、DNA结合蛋白九、其他酶第三章分子克隆载体第一节质粒载体一、质粒的基本特性二、标记基因三、质粒载体的种类第二节λ噬菌体载体一、λ噬菌体的分子生物学二、λ噬菌体载体的选择标记……第四章人工染色体载体第五章表达载体第六章基因操作中大分子的分离和分析第七章基因芯片技术第八章PCR技术及其应用第九章DNA序列分析第十章DNA诱变第十一章DNA文库的构建和目的基因的筛选第十二章基因组研究技术第二篇基因工程应用第十三章植物基因工程第十四章动物基因工程第十五章酵母基因工程第十六章细菌基因工程第十七章病毒基因工程第十八章医药基因工程第十九章基因工程产品的安全及其管理第一章基因工程概述第一节基因操作与基因工程一、基因操作与基因工程的关系基因操作(gene manipulation):指对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。
绪论第1节 基因概念与基因工程的诞生一、基因工程⒈概念:一般指利用分子生物学的手段,在体外操纵、改造、重建细胞的基因组,从而使生物体的遗传性状发生按人们的意志的定向变异。
⒉特点:基因工程能够打破种属的界限,在基因水平上改变生物遗传性,并通过工程化手段为人类提供有用的产品及服务。
3.理论上的三大发现:DNA遗传物质、DNA双螺旋、遗传密码破译。
4.技术上的三大发明:限制性内切酶、逆转录酶、载体。
T4连接酶。
第二节 基因的现代概念一、移动基因1.概念:在染色体基因组不同位置上移动的基因。
也称跳跃基因。
2.功能:异常基因功能现象的解释。
3.分类:(1)插入序列( insertion sequence,IS):原核生物中存在,长度2Kb以下。
共同结构特点:①分子末端具有一段反向重复序列;②插入位点两侧为同向重复序列;③转位酶的作用:a.催化转化因子(IS)从IR处切离,b.识别插入染色体的靶点。
(2)转位子(transposons):由几个基因组成的特定DNA片段,长度大于2Kb,其中含有一个抗菌素抗性基因,广泛存在于原核与真核生物。
二、断裂基因(split gene)--在真核生物核苷酸序列中插入有与氨基酸编码无关的DNA间隔区,使一个基因分隔成不连续的若干区段,此种编码序列不连续的间断基因即断裂基因。
--内含子的一般特点:①不同断裂基因内含子数目差异极大;②不同来源内含子分子大小不同;③内含子长度超过外显子;④并非所有真核生物都有内含子。
--mRNA初级转录本的剪辑:真核细胞mRNA的5'剪辑点GU开始,3'剪辑点AG结尾,为保守序列。
根据生命活动的需要可变剪辑。
三、假基因(pseudogene)--概念:在核苷酸序列上与正常功能基因基本相同,但不具功能活性的失活基因。
--根据假基因序列的特性不同分为:①重复假基因--此类假基因与亲本基因具有较高的同源性,在染色体区段上串联重复而名。
可编辑修改精选全文完整版生物化学与分子生物学实验原理Principles of Biochemistryand Molecular Biology Techniques课程简介本课程主要是介绍常用分子生物学技术测定的原理和机制,以利于研究生了解分子生物学常用技术,并能活用这些技术。
这门课既不同于一般的分子生物学理论课,也不同于实验方法流程的介绍。
该课程分实验技术理论和实验操作两部分。
实验技术理论部分主要通过基因重组技术、目的基因的获得、分子杂交、基因多态性和基因表达调控等,介绍分子生物学实验的方法、设计思路、原理、操作技巧及应用等。
力求培养学生掌握现代分子生物学实验的基础与操作要点,同时邀请校外资深专家介绍分子生物学的新技术及新方法,为今后进一步深入研究奠定良好基础。
实验操作部分另设课程为“分子生物学实验技术”。
This course includes two sections. One section focus on the principles of the techniques used to isolate, identify, modify and analyze three key molecules: DNA, RNA and proteins. The first section includes: DNA recombination technology, molecular hybridization, gene polymorphism, and regulation of gene expression. The second section will be a separate course named the Techniques of Molecular Biology. The goal of this course is to giving students an on-bench training of basic molecular biology techniques.教学大纲一、课程名称:生物化学与分子生物学实验原理二、总学时数及学分:32学时,1.5学分理论课32学时三﹑授课对象:博士生、硕士生预修知识要求:要求有化学、生物学、遗传学、生物化学及微生物学相关知识四、教学目的及要求:目的:通过教学力求培养博士生、硕士生掌握现代生物化学与分子生物学实验的基础理论与基本操作要点,为今后的研究工作奠定良好基础。
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体〔供体〕的基因与载体在体外进展拼接重组,然后转入另一种生物体〔受体/宿主〕内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的开展:遗传工程→DNA重组技术→分子/基因克隆〔Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程〞、“DNA重组〞为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因〔供体〕:外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子〔克隆载体、表达载体〕。
宿主〔受体〕:,能摄取外源DNA、并能使其稳定维持的细胞〔组织、器官或个体〕。
4.基因工程的根本步骤〔切、接、转、增、检〔大肠杆菌是中心角色〕〔1〕目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,别离出带有目的基因的DNA片断。
〔2〕重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记〔抗菌素抗性〕的载体分子上。
〔3〕重组体的转化:将重组体〔载体〕转入适当的受体细胞中。
〔4〕克隆鉴定:摘要转化成功的细胞克隆〔含有目的基因〕。
〔5〕目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。