实验报告_高温超导材料临界转变温度的测定
- 格式:doc
- 大小:506.50 KB
- 文档页数:16
第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。
2. 学习液氮低温技术,掌握低温环境下的实验操作。
3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。
4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。
二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。
实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。
三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。
2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。
3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。
- 记录电阻值,作为初始数据。
4. 临界温度测量:- 慢慢升温,观察电阻变化。
- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。
5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。
- 慢慢增加磁场强度,观察电阻变化。
- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。
6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。
- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。
7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。
- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。
8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。
- 对比不同高温超导材料的物理性质,总结实验结果。
五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。
2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。
3. 注意实验安全,防止低温伤害。
实验十一 高温超导转变温度测量实验超导电性简称超导(superconductivity ),它是指某物质在温度低于某一定值时,出现电阻率为零的现象。
自20世纪20年代起,人们就开始对超导性的理论和应用做了大量的研究。
随着超导研究的进展,特别是20世纪80年代高温超导材料问世后,超导技术已开始广泛应用于科学研究和人类生活之中。
一.实验目的1.了解FD-TX-RT-II 高温超导转变温度测定仪的结构及使用方法;2.掌握液氮低温技术;3.利用FD--RT-II 高温超导转变温度测定仪,测量氧化物超导体YBa2CuO7的超导临界温度。
二.实验原理1.超导现象在所用气体中,氮具有最低的液化温度。
1908年,卡末林·昂尼斯(H ·Kammerlingh Onnes )首先成功地液化了氮,利用液氮又获得了4.25~1.15K 的极低温度。
在新到达的低温范围内,昂尼斯进行了金属电阻随温度变化的研究。
1911年,他发现当温度降低时,汞的电阻率先平缓地减少,当温度T <4.2K 时,汞的电阻率突然降为零。
随后他又发现,除铜、金、银与铁等室温下的良导体以外,还有其他许多金属有此现象。
1913年他将这种新的物态定名为超导态(Superconducting State ),而将电阻率突然为零的温度称为超导体转变温度(inversiontemperature )或临界温度,用T c 表示。
在昂尼斯之后,人们又陆续发现了许多其他金属或合金在低温下也能转变为超导态,但它们的转变温度不同。
由于这些金属的超导现象是在低温下获得,故这种超导现象也称为低温超导。
处在超导态的物质具有如下重要性质:1) 直流零电阻效应如前所述,当某些金属、合金和化合物的温度下降到T <T c 时,它们的电阻率突然降为零,处于超导态。
在超导态下,物质的电阻真的完全消失了吗?最灵敏的试验是超导环中的持续电流试验:将一金属环放在垂直于环平面的磁场中,将其冷却到超导的转变温度以下,然后撤去磁场,由电磁感应原理知,这时在环中产生感应电流。
实验二 高温超导体的临界温度和临界电流的测量在各种新材料特性研究中,其电特性的研究占有相当重要的地位,往往由此揭示新的物理规律和这些材料新的应用前景.追溯超导电现象的发现历史,就是在著名低温物理学家昂尼斯(K.Onnes ,1853-1926)的指导下,实现的氦的液化,达到4.2K 这个当时所能达到的最低温度后,探索在所达到的新的低温区内各种金属电阻变化规律,当选用纯汞作实验时,发现随着温度的下降,汞的电阻先是平缓地减小,而在 4.2K 附近,电阻在很窄的温区内,突然降为零.如图C.2.1所示.他把这种显示零电阻特性的物质状态定为“超导态”,该现象称为“超导电性”.又如现在广泛应用的半导体,其基本特性的揭示是和电阻-温度关系的研究分不开的.而在低温测量中广泛应用的电阻温度计,完全是建立在对各种类型材料的电阻-温度关系研究的基础上的.实验目的1.掌握超导材料临界温度和临界电流测试原理和方法. 2.测量反映高温超导体基本特性.3.利用电磁测量的基本手段来研究高温超导体.仪器和用具低温装置(包括真空玻璃杜瓦和测试探头),数字电压表2台(分别为215214和位的数字电压表),铂电阻温度计或铜-康铜温差电偶,恒流源(100mA ,100Ω),直流稳压电源与标准电阻(10Ω、1Ω),高温超导样品,铟丝,银引线(或细漆包线),液氮,直流放大器.实验原理1.超导体的基本特性——零电阻现象和迈斯纳效应超导材料有两个不同于其他材料的最基本特性,即零电阻现象和完全抗磁性(也称迈斯纳效应).零电阻现象是指具有超导电性的材料,当温度下降时,其电阻随温度下降发生缓K /图C.2.1汞的电阻与温度关系0=R C起始R R 9.05.0R 1.0R 图C.2.2转变宽度T ∆慢的变化(一种是金属性的材料,其电阻缓慢下降;一种是显示半导体性,其电阻缓慢升高),而当到达某一温度时,其电阻在很窄的温区内,从n R 急剧地变为零,超导体呈现零电阻现象.为描述电阻陡降的突变过程,可以定义如下几个特征温度:起始转变温度起始T 是指电阻随温度的变化偏离线性的温度;临界温度C T 是指电阻值下降到2/n R 时所对应的温度,零电阻温度0=R T 为电阻刚降至零时对应的温度,而把电阻变化1/10到9/10所对应的温度间隔定义为转变宽度T ∆,如图C.2.2所示.超导体的另一个重要电磁特性是完全抗磁性,即所谓迈斯纳效应.不论超导体是先降温到超导态再加磁场,还是先加磁场后降温,只要温度低于零电阻温度,置于磁场下超导体内的磁感应强度B 都恒等于零,磁场被排斥到超导体外面,该现象称为迈斯纳效应.该效应是超导体区别于理想导体的独有特性.由于磁感应强度B 和磁场强度H 有如下关系:H M x H B m r ⋅+==)1(0μμ (C.2.1)式中0μ为真空磁导率,r μ为介质的相对磁导率,m x 为磁化率.当发生正常态到超导态的转变时,r μ由1变到零,或者说磁化率由近于零变到-1,从而使超导体内部B=0.如果把超导体材料作成线圈的芯子,则线圈自感L 和介质的磁导率的关系如下:V n L r 20μμ= (C.2.2)式中n 为线圈单位长度的匝数,V 为线圈的体积,可见当发生超导转变时,磁导率r μ发生变化,线圈的电感量也变化.利用超导转变时,线圈电感量变化来测量临界温度的方法,称为电感法.1.临界电流当通过超导线的电流超过一定的数值后,超导态便被破坏,转变为正常态,该电流I c 称为超导体的临界电流.当电流超过一定值后,所以能引起超导态到正常态的转化,其根本原因是由于电流所产生的磁场(自场)超过临界磁场引起的.各超导体临界电流的大小,除和超导材料组成和结构有关外,对同一种超导材料而言,与其截面积的大小和形状有关.2.测量方法及参考方案电阻法测临界电流最常用的方法是四引线法.四引线法示意图如图C.2.3所示,其中两图C.2.3四引线法端的电流引线与恒流源相连,用以检测超导样品的电压.当产生超导转变时,其电压降为零.采用四引线法的优点在于能够避免引线及接点电阻所引入的测量误差.由于数字电压表的输入阻抗很高,所以引线的接点的接触电阻均可忽略.用四引线法测超导转变温度的原理简图如图C.2.4所示.图中温度测量是用铜-康铜温差电偶,也可采用铂电阻温度计,铂电阻温度计电阻的对应关系见文献]3[所附分度值表.如用铜-康铜温差电偶,则必须利用铂电阻温度计在所使用的温区(即77K~室温)对铜-康铜温差电偶进行定标.通过样品的电流在毫安量级.实验中采用的低温装置是一种简易的真空玻璃杜瓦瓶,内盛液氮,低温可到达液氮温度.超导样品和测量用铂电阻温度计或铜-康铜温差电偶安装在测试探头上,如图 C.2.5所示.当把测试探头浸入液氮并达到热平衡时,恒温紫铜块、超导样品和温度计均达到液氮温度.提升探头至液氮以上,恒温紫铜块和超导样品同步逐渐升温,可测出超导样品输出电压随温度的变化曲线.本实验所用的高温超导样品是采用烧结工艺制备的多晶超导块材料,其结构式为Yba 2Cu 3O 7-δ,式中δ为与超导样品氧含量有关的系数,样品的转变温度约为92K 左右,由于该样品无法用焊接法直接引出引线,四引线发的四根引线是用铟丝将细银丝粘压在高温超导样品表面,然后再焊在接线片上.所有引线均由德银管引出与德银管上端的接线插座相连,并由接头接到测量电路.临界电流的测量线路也可用图C.2.4说明,即只要把图C.2.4中的恒流源改用输出电压可调的稳压电源,毫安表改用额定电流为数安培的取样电阻就可以了.改变稳压电源的输出电压,即可改变电流,直到样品发生超导态到正常态的转变.本实验只要求测出液氮温区的临界电流.电路、仪器的配置和参数的选择由同学自己考虑选取.图C.2.4四引线法测量C T 装置的示意图若采用磁测量法测转变温度,可参阅本实验后所附参考文献,自己组装测量和调试测量装置.在科研工作中,由于研究工作的需要,往往要根据或参考别人的文献,并根据自己所需解决的问题和仪器设备条件,加以适当的改进,实现测量,这也是科研能力的训练.在以上测试中由于要用到低温容器与液氮,使用中必须注意遵守下列安全规则:1.所有盛放在低温液氮的容器都必须留有供蒸发气体逸出的孔道,以免容器内压力过大引起事故.2.液氮灌入玻璃杜瓦时,应缓慢灌入,避免骤冷引起杜瓦的破裂.灌注液氮采用专用液氮灌注器.3.实验中注意不要让液氮触及裸露的皮肤特别是眼睛,以免造成严重的冻伤. 4.使用液氮时,室内应保持空气通畅,防止液氮的大量蒸发造成室内缺氧.因为氧含量低于14%~15%,会引起人的昏厥.实验内容1.高温超导样品的准备本实验提供的高温超导样品,是用一般陶瓷烧结工艺制备的,先按照1:2:3的理想配比,将氧化钇、氧化铜和碳酸钡的分析纯粉末混合,然后经过研磨、预烧、压片和烧结等工艺制成直径为12mm 、厚度为1mm 的超导圆片,结构式为Yba 2Cu 3O 7-δ.经切割后成为2mm ×1mm 截面的条形试样.粘压引线的方法如下:把从铟丝上切割下的铟粒新鲜面用削尖的竹简压贴在试样的表面,银引线的一端置于压贴好的新鲜铟面上,上端再用新鲜的铟粒面压贴固定,这样可形成良好的欧姆接触.可用万用表检查接点是否良好.2.用四引线法测量高温超导样品的临界温度,求出几个特征温度.根据提供的测试仪器和设备,决定测量方案和测试线路,选择测量参数和操作步骤,完成测量.3.测量所提供样品的临界电流,计算临界电流密度.4.参阅参考文献,用磁测量法测量临界温度,同学也可根据迈斯纳效应的特点,设计其图C.2.5低温装置图1.真空玻璃杜瓦;2.德银管;3.外套筒;4.超导样品;5.恒温紫铜块;6.液氮;7.铂电阻温度计;8.接线片.他观察研究迈斯纳效应的实验方法.参考文献[1]章立源等.超导物理.北京:电子工业出版社,1987.8[2]贾起民,郑永令.电磁学下册.上海:复旦大学出版社,1987.182——190[3]戴乐山.温度计量.北京:中国计量出版社,1987.182——190[4]吕斯骅,朱印康.近代物理实验技术.北京:高等教育出版社,1991.240[5]俞永勤等.频率法在高温超导体中的应用.低温与超导,1989,17(4):39——42。
高温超导材料临界转变温度的测定一、实验目的1.通过对氧化物超导材料的临界温度T C 两种方法的测定,加深理解超导体的两个基本特性2.了解低温技术在实验中的应用3.了解几种低温温度计的性能及Si 二极管温度计的校正方法4.了解一种确定液氮液面位置的方法二、实验原理1.超导现象及临界参数 1)零电阻现象电阻率ρ与温度T 的关系:50AT ρρ=+。
式中,0ρ是0T K =时的电阻率,称剩余电阻率。
即使温度趋于绝对零度时,也总是存在0ρ。
超导材料包括金属元素、合金和化合物等。
发生超导转变的温度称为临界温度C T 。
用电阻法测定领结温度时,把降温过程中电阻率-温度曲线开始从直线偏离处的温度称起始转变温度,电阻率从10%0ρ到90%0ρ对应的温度间隔定义为转变宽度C T ∆,C T ∆的大小一般反映了材料品质的好坏,均匀单相的样品C T ∆较窄。
临界温度C T 定义为02ρρ=时对应的温度。
2)完全抗磁性当把超导体置于外加磁场中时,磁通不能穿透超导体,超导体内的磁感应强度始终保持为0,超导体的这个特性称为迈斯纳效应。
表示为M =-B /4π。
利用迈斯纳效应,测量电感线圈中的一个样品在降温时内部磁通被排出的情况,也可确定样品的超导临界温度,称电感法。
用电阻法测T C 较简单,只能测出其中能形成超导通路的临界温度最高的一个超导相的T C 。
用电感法测T C 则可以把不同的超导相同时测出。
3)临界磁场致使超导体有超导态变为正常态的磁场称为超导体的临界磁场C H ,通常把2H H =相应的磁场叫做临界磁场。
第Ⅰ类超导体,也称软导体。
其C H 与T 的关系:2(0)[1(/)]C C C H H T T =-;式中,(0)C H 是0T K =时的临界磁场。
当C T T 时,()C H T 的典型数值为100Gs 。
第Ⅱ类超导体,也称硬导体。
它存在两个临界磁场1C H 和2C H ,12C C H H H <<的状态为混合类,磁场进入超导体,但仍具有零电阻的特性。
实验八高温超导转变温度的测量超导电性是荷兰物理学家昂尼斯(H.k.Onnes)于1911年首先发现的,在低温下它是一种相当广泛的现象,对它的研究一直吸引着人们的注意。
在超导体研究中尤以超导体转变温度的提高作为最前沿的课题,而超导体转变温度的测量则是研究中一项最基本又最重要的内容。
[实验目的]1.学会使用高温超导转变温度测量所用的各种仪器及实验软件。
2.掌握测量超导材料转变温度的方法。
3.测量超导体钇钡铜氧的超导转变温度。
4.了解安全使用液氮的基本常识及钇钡铜氧的保养、存放知识。
[实验仪器]主机,探棒,前级放大器,低温液氮杜瓦,记录仪(计算机)。
仪器主要技术参数:电压:220V±10%,50Hz功率:15W测量样品:钇钡铜氧超导体样品电流调节范围:1.5mA—33 mA样品电压最大放大倍数:10000倍样品温度变化范围:77K—室温温度计工作电流:1.00mA温度计电压放大倍数:40倍[实验原理]1.超导电性当物质的温度下降到某一确定值TC以下时,其直流电阻突然降到零,把这种在低温下发生的零电阻现象称为物质的超导电性,具有超导电性的材料称为超导体,电阻突然消失的某一确定温度TC叫做超导体的临界温度,或转变温度。
约束超导现象出现的因素不仅仅是温度。
实验表明,即使在临界温度下,如果改变流过超导体的直流电流,当电流强度超过某一临界值时,超导体的超导态将受到破坏。
如果对超导体施加磁场,当磁场强度达到某一临界值时,样品的超导态也会受到破坏。
破坏样品的超导电性所需的最小极限电流值和磁场值,分别称为临界电流IC 和临界磁场HC。
在实验中要注意,要使超导体处于超导态,必需将其置于这三个临界值以下。
超导体有许多特性,本实验只研究在电流、磁场及其他外部条件(如应力、辅照等)小于临界值的条件下,高温超导转变温度的测量问题。
2.测量原理采用常规的V—I四引线法,在恒定电流下测量R—T关系,测定转变温度。
在电阻测量中,采用四引线法可以减少引线和接触电阻的影响。
高温超导转变温度测量填空题1.超导材料: 将在一定的低温条件下呈现出零电阻和完全抗磁性的材料称为超导材料。
2.超导材料的转变温度: 电阻率降为起始转变电阻率的一半时所处的温度。
3.特殊温度的一些概念:每种超导电材料都有其独特的结构,从而具有相应的特征温度。
高于此特征温度,材料处于正常态,具有金属性的电阻率。
低于这个特征温度,电阻率为零,材料进入超导状态。
通常称这个特征温度为超导体的转变温度(transition temperature )或临界临界温度(Critical temperature ),用 Tc 表示。
当ρ刚好完全到零时对应的温度,称为完全转变温度(又称零电阻温度)。
由于材料的化学成份不纯和晶体结构不完整等因素的影响,超导体的正常态——超导态转变是在一定的温度间隔中发生的。
当我们测量电阻率温度的变化关系时。
我们通常将降温过程中ρ-T 曲线开始偏离直线处对应的温度称为起始转变温度(Onsetpoint ),该处的电阻率以ρ0n 表示。
将ρon 的 90% 到 10% 所对应的温度间隔称为转变宽度,以△T c 表示。
对于纯元素超导体,△T c ≈ 10-3 K ,对于氧化物高温超导体△T ≈ 几 K 。
从使用的角度看,T c 越高越好,△T c 越小越好。
图形如下:简答题1、为什么要用铂电阻因为金属铂具有良好的化学稳定性,体积小而且易于安装和检测,同时铂电阻的测量范围大,在本实验中能测量出所需温度。
2、为什么采用四引线法可避免引线电阻和接触电阻的影响,直接用欧姆表测不行:四引线法即每个电阻原件都采用四根引线,其中两根为电流引线,两根为电压引线;若直接用欧姆表测量导体电阻,由于表内自带电源产生电流较大,相应电流也较大,且由于接触电阻的存在,从而使得分压情况较为严重,测出的R 值不够精确,同时,测量引线通常又长又细,以及接触电阻的存在,其阻值有可能远远大于待测样品的电阻,这样就无法测量待测样品阻值;而四引线法,恒流源通过两根电流引线将待测电流提供给待测样品,而电压表则是通过两根电压引线测量样品上的电压。